Next Article in Journal
Linguistic Patterns for Code Word Resilient Hate Speech Identification
Previous Article in Journal
Innovative Integrated Solution for Monitoring and Protection of Power Supply System from Railway Infrastructure
Previous Article in Special Issue
Application of a Machine Learning Algorithms in a Wrist-Wearable Sensor for Patient Health Monitoring during Autonomous Hospital Bed Transport
Article

A CMOS PSR Enhancer with 87.3 mV PVT-Insensitive Dropout Voltage for Sensor Circuits

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
*
Author to whom correspondence should be addressed.
Academic Editor: Alfio Dario Grasso
Sensors 2021, 21(23), 7856; https://doi.org/10.3390/s21237856
Received: 1 November 2021 / Revised: 23 November 2021 / Accepted: 24 November 2021 / Published: 25 November 2021
(This article belongs to the Special Issue Advanced Interface Circuits for Sensor Systems)
A new power supply rejection (PSR) based enhancer with small and stable dropout voltage is presented in this work. It is implemented using TSMC-40 nm process technology and powered by 1.2 V supply voltage. A number of circuit techniques are proposed in this work. These include the temperature compensation for Level-Shifted Flipped Voltage Follower (LSFVF) and the Complementary-To-Absolute Temperature (CTAT) current reference. The typical output voltage and dropout voltage of the enhancer is 1.1127 V and 87.3 mV, respectively. The Monte-Carlo simulation of this output voltage yields a mean T.C. of 29.4 ppm/°C from −20 °C and 80 °C. Besides, the dropout voltage has been verified with good immunity against Process, Temperature and Process (PVT) variation through the worst-case simulation. Consuming only 4.75 μA, the circuit can drive load up to 500 μA to yield additional PSR improvement of 36 dB and 20 dB of PSR at 1 Hz and 1 MHz, respectively for the sensor circuit of interest. This is demonstrated through the application of an enhancer on the instrumentation Differential Difference Amplifier (DDA) for sensing floating bridge sensor signal. The comparative Monte-Carlo simulation results on a respective DDA circuit have revealed that the process sensitivity of output voltage of this work has achieved 14 times reduction in transient metrics with respect to that of the conventional counterpart over the operation temperature range in typical operation condition. Due to simplicity without voltage reference and operational amplifier(s), low power and small consumption of supply voltage headroom, the proposed work is very useful for supply noise sensitive analog or sensor circuit applications. View Full-Text
Keywords: PSR enhancer; regulator; dropout voltage; temperature compensation; current reference; voltage reference; FVF circuit; PVT variation; sensor circuit; Differential Difference Amplifier; operational amplifier PSR enhancer; regulator; dropout voltage; temperature compensation; current reference; voltage reference; FVF circuit; PVT variation; sensor circuit; Differential Difference Amplifier; operational amplifier
Show Figures

Figure 1

MDPI and ACS Style

Zhang, J.; Chan, P.K. A CMOS PSR Enhancer with 87.3 mV PVT-Insensitive Dropout Voltage for Sensor Circuits. Sensors 2021, 21, 7856. https://doi.org/10.3390/s21237856

AMA Style

Zhang J, Chan PK. A CMOS PSR Enhancer with 87.3 mV PVT-Insensitive Dropout Voltage for Sensor Circuits. Sensors. 2021; 21(23):7856. https://doi.org/10.3390/s21237856

Chicago/Turabian Style

Zhang, Jianyu, and Pak K. Chan 2021. "A CMOS PSR Enhancer with 87.3 mV PVT-Insensitive Dropout Voltage for Sensor Circuits" Sensors 21, no. 23: 7856. https://doi.org/10.3390/s21237856

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop