Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = different maneuvering modes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1775 KB  
Article
Design of Terminal Guidance Law for Cooperative Multiple Vehicles Based on Prescribed Performance Control
by Fuqi Yang, Jikun Ye, Xirui Xue, Ruining Luo and Lei Shao
Aerospace 2025, 12(10), 898; https://doi.org/10.3390/aerospace12100898 - 5 Oct 2025
Viewed by 232
Abstract
To address the issue of jitter and oscillation of guidance command during multi-vehicle cooperative engagement with maneuvering platforms, this paper proposes a novel terminal guidance law with prescribed performance constraints for multiple cooperative vehicles, which explicitly considers both transient and steady-state performance. Firstly, [...] Read more.
To address the issue of jitter and oscillation of guidance command during multi-vehicle cooperative engagement with maneuvering platforms, this paper proposes a novel terminal guidance law with prescribed performance constraints for multiple cooperative vehicles, which explicitly considers both transient and steady-state performance. Firstly, based on the vehicle-target relative kinematics, with time and space as the main constraint indicators, a multi-vehicle cooperative guidance model is established in the inertial coordinate system. Secondly, combined with the sliding mode control theory, cooperative guidance laws are designed for both the line-of-sight (LOS) direction and the LOS normal direction, respectively, and the Lyapunov stability proof is given. Furthermore, to counteract the impact of target maneuvers on guidance performance, a non-homogeneous disturbance observer is designed to estimate target maneuver information that is difficult to obtain directly, which ensures that performance constraints are still satisfied under strong target maneuvering conditions. Simulation results demonstrate that the proposed guidance law enables multiple coordinated vehicles to successfully engage the target under different maneuvering modes, while satisfying the terminal time-space constraints. Compared with conventional sliding mode control methods exhibiting inherent chattering, the proposed approach employs a novel PPC-SMC hybrid structure to quantitatively constrain the transient convergence of cooperative errors. This structure enhances the multi-vehicle cooperative guidance performance by effectively eliminating chattering and oscillations in the guidance commands, thereby significantly improving the system’s transient behavior. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

24 pages, 1481 KB  
Article
Optimal Heliocentric Orbit Raising of CubeSats with a Monopropellant Electrospray Multimode Propulsion System
by Alessandro A. Quarta, Marco Bassetto and Giulia Becatti
Appl. Sci. 2025, 15(16), 9169; https://doi.org/10.3390/app15169169 - 20 Aug 2025
Viewed by 505
Abstract
A Multimode Propulsion System (MPS) is an innovative spacecraft thruster concept that integrates two or more propulsion modes sharing the same type of propellant. A spacecraft equipped with an MPS can potentially combine the advantages of continuous-thrust electric propulsion and medium-to-high-thrust chemical propulsion [...] Read more.
A Multimode Propulsion System (MPS) is an innovative spacecraft thruster concept that integrates two or more propulsion modes sharing the same type of propellant. A spacecraft equipped with an MPS can potentially combine the advantages of continuous-thrust electric propulsion and medium-to-high-thrust chemical propulsion within a single vehicle, while reducing the overall mass compared to traditional configurations where each propulsion system uses a different propellant. This feature makes the MPS concept particularly attractive for small spacecraft, such as the well-known CubeSats, which have now reached a high level of technological maturity and are employed not only in geocentric environments but also in interplanetary missions as support elements for conventional deep-space vehicles. Within the MPS framework, a Monopropellant-Electrospray Multimode Propulsion System (MEMPS) represents a specific type of micropropulsion technology that enables a single miniaturized propulsion unit to operate in either catalytic-chemical or electrospray-electric mode. This paper investigates the flight performance of a MEMPS-equipped CubeSat in a classical circle-to-circle orbit-raising (or lowering) maneuver within a two-dimensional mission scenario. Specifically, the study derives the optimal guidance law that allows the CubeSat to follow a transfer trajectory optimized either for minimum flight time or minimum propellant consumption, starting from a parking orbit of assigned radius and targeting a final circular orbit. Numerical simulations indicate that a heliocentric orbit raising, increasing the initial solar distance by 20%, can be achieved with a flight time of approximately 11 months and a propellant consumption slightly below 6 kg. The proposed method is applied to a heliocentric case study, although the procedure can be readily extended to geocentric transfer missions, which represent a more common application scenario for current CubeSat-based scientific missions. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

26 pages, 66652 KB  
Article
Modeling and Analysis of Surface Motion Characteristics for a Dual-Propulsion Amphibious Spherical Robot
by Hongqun Zou, Fengqi Zhang, Meng Wang, You Wang and Guang Li
Appl. Sci. 2025, 15(16), 8998; https://doi.org/10.3390/app15168998 - 14 Aug 2025
Viewed by 777
Abstract
This study introduces an amphibious spherical robot equipped with a dual-propulsion system (ASR-DPS) and investigates its water-surface motion characteristics. Due to its distinctive spherical geometry, the robot exhibits markedly different hydrodynamic behavior compared to conventional vessels. A comparative analysis of the frontal wetted [...] Read more.
This study introduces an amphibious spherical robot equipped with a dual-propulsion system (ASR-DPS) and investigates its water-surface motion characteristics. Due to its distinctive spherical geometry, the robot exhibits markedly different hydrodynamic behavior compared to conventional vessels. A comparative analysis of the frontal wetted area is performed, followed by computational fluid dynamics (CFD) simulations to assess water-surface performance. The results indicate that the hemispherical bow increases hydrodynamic resistance and generates large-scale vortex structures as a consequence of intensified flow separation. Although the resistance is higher than that of traditional hulls, the robot’s greater draft and dual-propulsion configuration enhance stability and maneuverability during surface operations. To validate real-world performance, standard maneuvering tests, including circle and zig-zag maneuvers, are conducted to evaluate the effectiveness of the propeller-based propulsion system. The robot achieves a maximum surface speed of 1.2 m/s and a zero turning radius, with a peak yaw rate of 0.54 rad/s under differential thrust. Additionally, experiments on the pendulum-based propulsion system demonstrate a maximum speed of 0.239 m/s with significantly lower energy consumption (220.6 Wh at 60% throttle). A four-degree-of-freedom kinematic and dynamic model is formulated to describe the water-surface motion. To address model uncertainties and external disturbances, two control strategies are proposed: one employing model simplification and the other adaptive control. Simulation results confirm that the adaptive sliding mode controller provides precise surge speed tracking and smooth yaw regulation with near-zero steady-state error, exhibiting superior robustness and reduced chattering compared to the baseline controller. Full article
(This article belongs to the Special Issue Control Systems in Mechatronics and Robotics)
Show Figures

Figure 1

20 pages, 10603 KB  
Article
A Safety-Based Approach for the Design of an Innovative Microvehicle
by Michelangelo-Santo Gulino, Susanna Papini, Giovanni Zonfrillo, Thomas Unger, Peter Miklis and Dario Vangi
Designs 2025, 9(4), 90; https://doi.org/10.3390/designs9040090 - 31 Jul 2025
Viewed by 789
Abstract
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper [...] Read more.
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper presents the design and development of an innovative self-balancing microvehicle under the H2020 LEONARDO project, which aims to address these challenges through advanced engineering and user-centric design. The vehicle combines features of monowheels and e-scooters, integrating cutting-edge technologies to enhance safety, stability, and usability. The design adheres to European regulations, including Germany’s eKFV standards, and incorporates user preferences identified through representative online surveys of 1500 PLEV users. These preferences include improved handling on uneven surfaces, enhanced signaling capabilities, and reduced instability during maneuvers. The prototype features a lightweight composite structure reinforced with carbon fibers, a high-torque motorized front wheel, and multiple speed modes tailored to different conditions, such as travel in pedestrian areas, use by novice riders, and advanced users. Braking tests demonstrate deceleration values of up to 3.5 m/s2, comparable to PLEV market standards and exceeding regulatory minimums, while smooth acceleration ramps ensure rider stability and safety. Additional features, such as identification plates and weight-dependent motor control, enhance compliance with local traffic rules and prevent misuse. The vehicle’s design also addresses common safety concerns, such as curb navigation and signaling, by incorporating large-diameter wheels, increased ground clearance, and electrically operated direction indicators. Future upgrades include the addition of a second rear wheel for enhanced stability, skateboard-like rear axle modifications for improved maneuverability, and hybrid supercapacitors to minimize fire risks and extend battery life. With its focus on safety, regulatory compliance, and rider-friendly innovations, this microvehicle represents a significant advancement in promoting safe and sustainable urban mobility. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

13 pages, 2016 KB  
Article
Pelvic Floor Adaptation to a Prenatal Exercise Program: Does It Affect Labor Outcomes or Levator Ani Muscle Injury? A Randomized Controlled Trial
by Aránzazu Martín-Arias, Irene Fernández-Buhigas, Daniel Martínez-Campo, Adriana Aquise Pino, Valeria Rolle, Miguel Sánchez-Polan, Cristina Silva-Jose, Maria M. Gil and Belén Santacruz
Diagnostics 2025, 15(15), 1853; https://doi.org/10.3390/diagnostics15151853 - 23 Jul 2025
Viewed by 1437
Abstract
Background: Physical exercise during pregnancy is strongly recommended due to its well-established benefits for both mother and child. However, its impact on the pelvic floor remains insufficiently studied. This study aimed to evaluate pelvic floor adaptations to a structured prenatal exercise program using [...] Read more.
Background: Physical exercise during pregnancy is strongly recommended due to its well-established benefits for both mother and child. However, its impact on the pelvic floor remains insufficiently studied. This study aimed to evaluate pelvic floor adaptations to a structured prenatal exercise program using transperineal ultrasound, and to assess associations with the duration of the second stage of labor and mode of delivery. Methods: This is a planned secondary analysis of a randomized controlled clinical trial (RCT) (NCT04563065) including women with singleton pregnancies at 12–14 weeks of gestation. Participants were randomized to either an exercise group, which followed a supervised physical exercise program three times per week, or a control group, which received standard antenatal care. Transperineal ultrasound was used at the second trimester of pregnancy and six months postpartum to measure urogenital hiatus dimensions at rest, during maximal pelvic floor contraction, and during the Valsalva maneuver, to calculate hiatal contractility and distensibility and to evaluate levator ani muscle insertion. Regression analyses were performed to assess the relationship between urogenital hiatus measurements and both duration of the second stage of labor and mode of delivery. Results: A total of 78 participants were included in the final analysis: 41 in the control group and 37 in the exercise group. The anteroposterior diameter of the urogenital hiatus at rest was significantly smaller in the exercise group compared to controls (4.60 mm [SD 0.62] vs. 4.91 mm [SD 0.76]; p = 0.049). No other statistically significant differences were observed in static measurements. However, contractility was significantly reduced in the exercise group for both the latero-lateral diameter (8.54% vs. 4.04%; p = 0.012) and hiatus area (20.15% vs. 12.55%; p = 0.020). Distensibility was similar between groups. There were no significant differences in the duration of the second stage of labor or mode of delivery. Six months after delivery, there was an absolute risk reduction of 32.5% of levator ani muscle avulsion in the exercise group compared to the control group (53.3% and 20.8%, respectively; p = 0.009). Conclusions: A supervised exercise program during pregnancy appears to modify pelvic floor morphology and function, reducing the incidence of levator ani muscle avulsion without affecting the type or duration of delivery. These findings support the safety and potential protective role of prenatal exercise in maintaining pelvic floor integrity. Full article
Show Figures

Figure 1

23 pages, 5543 KB  
Article
Enhanced Synchrosqueezing Transform for Detecting Non-Traditional Flight Modes in High Angle of Attack Maneuvers
by Seyed Amin Bagherzadeh, Hamed Mohammadkarimi and Mohammad Hossein Alizadeh
Math. Comput. Appl. 2025, 30(2), 41; https://doi.org/10.3390/mca30020041 - 12 Apr 2025
Viewed by 707
Abstract
Due to nonlinear aerodynamics, “non-traditional” flight modes may appear in longitudinal and lateral/directional dynamics once an aircraft experiences a high angle of attack and rapid maneuvers. Signal decomposition techniques are required to uncover these modes since they are hidden in flight characteristics. This [...] Read more.
Due to nonlinear aerodynamics, “non-traditional” flight modes may appear in longitudinal and lateral/directional dynamics once an aircraft experiences a high angle of attack and rapid maneuvers. Signal decomposition techniques are required to uncover these modes since they are hidden in flight characteristics. This study represents the Enhanced SynchroSqueezing Transform (ESST) for the extraction of “non-traditional” flight modes from flight data. Developed in the framework of the SynchroSqueezing Transform (SST), the ESST decomposes an Amplitude- and Frequency-Modulated (AMFM) signal into Intrinsic Mode Functions (IMFs). This process is optimized using the Genetic Algorithm (GA). Numerical investigations are performed to confirm the validity of the ESST. Both quantitative criteria for the fitness of the IMFs and qualitative study of the Time–Frequency Representations (TFRs) suggest that the ESST may perform better than the SST in decomposing nonlinear and non-stationary signals. Then, a method is proposed to find the instantaneous characteristics of the flight modes obtained by the ESST. The ESST analyzes an aircraft’s longitudinal and lateral flight data in post-stall maneuvers. The TFRs of flight parameters verify the existence of identical flight modes at different flight conditions. The IMFs are separated, and their instantaneous characteristics are computed. In addition, the ESST modes are compared to conventional modes. The results indicate that the ESST is capable of obtaining both classical oscillatory modes, such as Short Period (SP) and Dutch Roll (DR), and “non-traditional” modes. In the end, coupled modes are identified by comparing longitudinal and lateral IMFs. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

32 pages, 14651 KB  
Article
An Adaptive Parameter Evolutionary Marine Predators Algorithm for Joint Resource Scheduling of Cooperative Jamming Networked Radar Systems
by Dejiang Lu, Siyi Cheng, You Chen, Xi Zhang, Haoyang Li and Tianjian Yang
Remote Sens. 2025, 17(8), 1325; https://doi.org/10.3390/rs17081325 - 8 Apr 2025
Viewed by 664
Abstract
This paper investigates the formation joint resource scheduling problem from the perspective of cooperative jamming against radar systems. First, the formation survivability is redefined based on the task requirements. Then, a hierarchical adaptive scheduling strategy solution framework is constructed for state prediction and [...] Read more.
This paper investigates the formation joint resource scheduling problem from the perspective of cooperative jamming against radar systems. First, the formation survivability is redefined based on the task requirements. Then, a hierarchical adaptive scheduling strategy solution framework is constructed for state prediction and detection fusion of the networked radar system. Considering the scene constraints, an Improved Adaptive Parameter Evolution Marine Predators Algorithm is designed as an optimizer and embedded in the proposed framework to jointly optimize the platform beam allocation and jamming mode selection. Based on the original algorithm, real number random coding is used to perform dimensional conversion of decision variables, an adaptive parameter evolution mechanism is designed to reduce the dependence on algorithm parameters, and an adaptive selection mechanism for dominant strategies and a search intensity control strategy are proposed to help decision-makers explore the optimal resource scheduling strategy quickly and accurately. Finally, considering the formation maneuvering behavior and incomplete information, the proposed method is compared with existing base strategies in different typical scenarios. It is proved that the proposed strategy can fully exploit the limited jamming resources and maximize the survivability of the formation in radar system cooperative jamming scenarios, demonstrating superior jamming performance and shorter decision time. Full article
Show Figures

Graphical abstract

23 pages, 3635 KB  
Article
A Framework of Recommendation System for Unmanned Aerial Vehicle Autonomous Maneuver Decision
by Qinzhi Hao, Tengyu Jing, Yao Sun, Zhuolin Yang, Jiali Zhang, Jiapeng Wang and Wei Wang
Drones 2025, 9(1), 25; https://doi.org/10.3390/drones9010025 - 30 Dec 2024
Cited by 1 | Viewed by 1698
Abstract
Autonomous maneuvering decision-making in unmanned serial vehicles (UAVs) is crucial for executing complex missions involving both individual and swarm UAV operations. Leveraging the successful deployment of recommendation systems in commerce and online applications, this paper pioneers a framework tailored for UAV maneuvering decisions. [...] Read more.
Autonomous maneuvering decision-making in unmanned serial vehicles (UAVs) is crucial for executing complex missions involving both individual and swarm UAV operations. Leveraging the successful deployment of recommendation systems in commerce and online applications, this paper pioneers a framework tailored for UAV maneuvering decisions. This novel approach harnesses recommendation systems to enhance decision-making in UAV maneuvers. Our framework incorporates a comprehensive six-degree-of-freedom dynamics model that integrates gravitational effects and defines mission success criteria. We developed an integrated learning recommendation system capable of simulating varied mission scenarios, facilitating the acquisition of optimal strategies from a blend of expert human input and algorithmic outputs. The system supports extensive simulation capabilities, including various control modes (manual, autonomous, and hybrid) and both continuous and discrete maneuver actions. Through rigorous computer-based testing, we validated the effectiveness of established recommendation algorithms within our framework. Notably, the prioritized experience replay deep deterministic policy gradient (PER-DDPG) algorithm, employing dense rewards and continuous actions, demonstrated superior performance, achieving a 69% success rate in confrontational scenarios against a versatile expert algorithm after 1000 training iterations, marking an 80% reduction in training time compared to conventional reinforcement learning methods. This framework not only streamlines the comparison of different maneuvering algorithms but also promotes the integration of multi-source expert knowledge and sophisticated algorithms, paving the way for advanced UAV applications in complex operational environments. Full article
(This article belongs to the Collection Drones for Security and Defense Applications)
Show Figures

Figure 1

12 pages, 1474 KB  
Article
A Data-Driven Model for Rapid CII Prediction
by Markus Mühmer, Alessandro La Ferlita, Evangelos Geber, Sören Ehlers, Emanuel Di Nardo, Ould El Moctar and Angelo Ciaramella
J. Mar. Sci. Eng. 2024, 12(11), 2048; https://doi.org/10.3390/jmse12112048 - 12 Nov 2024
Cited by 1 | Viewed by 1254
Abstract
The shipping industry plays a crucial role in global trade, but it also contributes significantly to environmental pollution, particularly in regard to carbon emissions. The Carbon Intensity Indicator (CII) was introduced with the objective of reducing emissions in the shipping sector. The lack [...] Read more.
The shipping industry plays a crucial role in global trade, but it also contributes significantly to environmental pollution, particularly in regard to carbon emissions. The Carbon Intensity Indicator (CII) was introduced with the objective of reducing emissions in the shipping sector. The lack of familiarity with the carbon performance is a common issue among vessel operator. To address this aspect, the development of methods that can accurately predict the CII for ships is of paramount importance. This paper presents a novel and simplified approach to predicting the CII for ships, which makes use of data-driven modelling techniques. The proposed method considers a restricted set of parameters, including operational data (draft and speed) and environmental conditions, such as wind speed and direction, to provide an accurate prediction of the CII factor. This approach extends the state of research by applying Deep Neural Networks (DNNs) to provide an accurate CII prediction with a deviation of less than 6% over a considered time frame consisting of different operating states (cruising and maneuvering mode). The result is achieved by using a limited amount of training data, which enables ship owners to obtain a rapid estimation of their yearly rating prior to receiving the annual CII evaluation. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Marine Machinery)
Show Figures

Figure 1

30 pages, 6439 KB  
Article
Adaptive Multi-Function Radar Temporal Behavior Analysis
by Zhenjia Xu, Qingsong Zhou, Zhihui Li, Jialong Qian, Yi Ding, Qinxian Chen and Qiyun Xu
Remote Sens. 2024, 16(22), 4131; https://doi.org/10.3390/rs16224131 - 6 Nov 2024
Cited by 2 | Viewed by 1916
Abstract
The performance of radar mode recognition has been significantly enhanced by the various architectures of deep learning networks. However, these approaches often rely on supervised learning and are susceptible to overfitting on the same dataset. As a transitional phase towards Cognitive Multi-Functional Radar [...] Read more.
The performance of radar mode recognition has been significantly enhanced by the various architectures of deep learning networks. However, these approaches often rely on supervised learning and are susceptible to overfitting on the same dataset. As a transitional phase towards Cognitive Multi-Functional Radar (CMFR), Adaptive Multi-Function Radar (AMFR) possesses the capability to emit identical waveform signals across different working modes and states for task completion, with dynamically adjustable waveform parameters that adapt based on scene information. From a reconnaissance perspective, the valid signals received exhibit sparsity and localization in the time series. To address this challenge, we have redefined the reconnaissance-focused research priorities for radar systems to emphasize behavior analysis instead of pattern recognition. Based on our initial comprehensive digital system simulation model of a radar, we conducted reconnaissance and analysis from the perspective of the reconnaissance side, integrating both radar and reconnaissance aspects into environmental simulations to analyze radar behavior under realistic scenarios. Within the system, waveform parameters on the radar side vary according to unified rules, while resource management and task scheduling switch based on operational mechanisms. The target in the reconnaissance side maneuvers following authentic behavioral patterns while adjusting the electromagnetic space complexity in the environmental aspect as required. The simulation results indicate that temporal annotations in signal flow data play a crucial role in behavioral analysis from a reconnaissance perspective. This provides valuable insights for future radar behavior analysis incorporating temporal correlations and sequential dependencies. Full article
Show Figures

Figure 1

16 pages, 8089 KB  
Article
Identification of Individual Mobility Anchor Places and Patterns Based on Mobile Phone GPS Data
by Xuguang Hao, Biao Yin and Liu Liu
Future Transp. 2024, 4(4), 1318-1333; https://doi.org/10.3390/futuretransp4040063 - 1 Nov 2024
Viewed by 1615
Abstract
The study on individual mobility patterns supports our better understanding of spatiotemporal characteristics of people’s travel behavior and social activities. The mobile phone GPS data are advantageous due to the large size of their data coverage. This paper aims to identify individual activity [...] Read more.
The study on individual mobility patterns supports our better understanding of spatiotemporal characteristics of people’s travel behavior and social activities. The mobile phone GPS data are advantageous due to the large size of their data coverage. This paper aims to identify individual activity anchor places and to analyze related patterns based on the GPS data collected from thousands of mobile phone users over four months in Greater Paris, France. We propose a method to refine the identification of home and secondary activities. Based on this, the mobility spatial characteristics are aggregated by applying a three-stage clustering method. As a consequence, the clusters of activity types, the daily mobility patterns (day types), and the user groups with similar daily mobility patterns are obtained stage by stage. This allows us to analyze the obtained clusters in a cascading maneuver by three different levels: activity level, day level, and individual level. Inversely, the mobility characteristics per user group are interpreted with respect to the interpretation of day types and then activity types. From the interpretable clusters, it is facilitated for us to find the daily mobility differences by user groups across weekdays and weekends, transport modes, as well as the mobility variability over the study period. Full article
Show Figures

Figure 1

18 pages, 7525 KB  
Article
Fixed-Time Anti-Saturation Tracking Control for Agile Missiles with Multiple Actuators
by Jiaxun Li and Jianqiao Yu
Aerospace 2024, 11(9), 779; https://doi.org/10.3390/aerospace11090779 - 20 Sep 2024
Cited by 1 | Viewed by 1170
Abstract
This paper investigates the fixed-time tracking control problem for agile missiles with multiple heterogeneous actuators in the presence of saturation constraints and external disturbances. To reduce the turning radius and promote maneuvering envelope, a novel combination scheme for blended actuators is introduced in [...] Read more.
This paper investigates the fixed-time tracking control problem for agile missiles with multiple heterogeneous actuators in the presence of saturation constraints and external disturbances. To reduce the turning radius and promote maneuvering envelope, a novel combination scheme for blended actuators is introduced in this paper, consisting of a flexible mechanism control system (FCS), reaction-jet control system (RCS), and aerodynamic control. Based on the proposed nonsingular terminal sliding mode surface, a fixed-time anti-saturation controller with an auxiliary system is presented first to ensure global fixed-time stability and to compensate for the adverse effects of input saturation. Subsequently, a fixed-time disturbance observer is constructed to estimate uncertainties and lumped disturbances, and to address the chattering problem. To assign the total virtual control command to different actuators, a control allocation based on dynamic programming considering actuator dynamics is established. Finally, detailed numerical simulations and comparisons are provided to verify the effectiveness and superiority of the proposed control scheme. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

21 pages, 5625 KB  
Article
Intelligent Trajectory Prediction Algorithm for Hypersonic Vehicle Based on Sparse Associative Structure Model
by Furong Liu, Lina Lu, Zhiheng Zhang, Yu Xie and Jing Chen
Drones 2024, 8(9), 505; https://doi.org/10.3390/drones8090505 - 19 Sep 2024
Cited by 7 | Viewed by 2664
Abstract
The Hypersonic Glide Vehicle (HGV) has become a focal point in military competitions among nations. Predicting the real-time trajectory of an HGV is of significant importance for aerospace defense interception and assessing enemy combat intentions. Existing prediction methods are limited by the need [...] Read more.
The Hypersonic Glide Vehicle (HGV) has become a focal point in military competitions among nations. Predicting the real-time trajectory of an HGV is of significant importance for aerospace defense interception and assessing enemy combat intentions. Existing prediction methods are limited by the need for large data samples and poor general applicability. To address these challenges, this paper presents a novel trajectory forecasting approach based on the Sparse Association Structure Model (SASM). The SASM can uncover the relationship among known data, transfer associative relationships to unknown data, and improve the generalization of the model. Firstly, a trajectory database is established for different maneuvering modes based on the six-degree-of-freedom motion equations and models of attack and bank angles of the HGV. Subsequently, three trajectory parameters are selected as prediction variables according to the maneuvering characteristics of the HGV. A parameters prediction model based on the SASM is then constructed to predict trajectory parameters. The SASM model demonstrates high accuracy and generalization in forecasting the trajectories of three different HGV types. Experimental results show a 50.35% reduction in prediction error and a 48.7% decrease in average processing time compared to the LSTM model, highlighting the effectiveness of the proposed method for real-time trajectory forecasting. Full article
(This article belongs to the Collection Drones for Security and Defense Applications)
Show Figures

Figure 1

23 pages, 5739 KB  
Article
Energy Management of a Fuel Cell Electric Robot Based on Hydrogen Value and Battery Overcharge Control
by Hamid Radmanesh and Hamed Farhadi Gharibeh
World Electr. Veh. J. 2024, 15(8), 352; https://doi.org/10.3390/wevj15080352 - 5 Aug 2024
Cited by 1 | Viewed by 1708
Abstract
The energy management system of a fuel cell electric robot should be highly responsive to provide the required power for various tactical operations, navigation of different routes, and acceleration. This paper presents a new multi-level online energy management strategy for a fuel cell [...] Read more.
The energy management system of a fuel cell electric robot should be highly responsive to provide the required power for various tactical operations, navigation of different routes, and acceleration. This paper presents a new multi-level online energy management strategy for a fuel cell electric robot based on the proposed functions of equivalent hydrogen fuel value evaluation, classification of the battery state of charge via the squared combined efficiency function, identification of the robot maneuver condition based on the proposed operation state of robot function, improvement of the overall energy efficiency based on the proposed function of the battery overcharge control, and separation of the functional points of the fuel cell based on the operational mode control strategy. The simulation study of the proposed online multi-level energy management strategy was carried out with MATLAB R2018b software to verify its superiority by comparing with other strategies. The results indicate a reduction in hydrogen consumption, reduction in fuel cell power fluctuations, prevention of battery overcharging, and incrementation in the total energy efficiency of energy storage systems compared to other energy management strategies. Full article
(This article belongs to the Special Issue Hybrid Electric Fuel Cell-Based Vehicles)
Show Figures

Figure 1

21 pages, 5453 KB  
Article
Research on Laser Dual-Mode Fusion Detection Method of Ship Wake Bubbles
by Siguang Zong, Xin Zhang, Zike Duan, Shaopeng Yang and Bao Chen
Appl. Sci. 2024, 14(9), 3695; https://doi.org/10.3390/app14093695 - 26 Apr 2024
Cited by 2 | Viewed by 1365
Abstract
Addressing the issues of weak echo signals and strong background interference in the laser detection of ships’ wakes, an analysis of the laser backscatter detection characteristics of ships’ wakes has been conducted. Based on the Monte Carlo method, a simulation model for the [...] Read more.
Addressing the issues of weak echo signals and strong background interference in the laser detection of ships’ wakes, an analysis of the laser backscatter detection characteristics of ships’ wakes has been conducted. Based on the Monte Carlo method, a simulation model for the dual-mode fusion detection of ship wake bubbles using laser technology was constructed under different target characteristics. A dual-mode fusion detection system for ships’ wakes was designed, and an indoor experimental platform for the dual-mode fusion detection of ship wake bubbles using laser technology was established. To address problems such as a wide range of echo signal intensity changes, severe signal fluctuations, low resolution, poor image contrast, and blurred target edge information, an algorithm based on multi-timescale hierarchical fusion signal processing and temporal difference accumulation image processing was proposed. Verification experiments for ship wake detection were conducted, which revealed that the dual-mode fusion detection method for ship wake bubbles using laser technology can effectively enhance the detection signal-to-background ratio and counter the maneuvering evasion of underwater weapons by ships. It achieved high sensitivity, large dynamic range, high resolution, and a wide field of view detection and real-time signal processing of ship wake bubble targets of different magnitudes against a strong reverberation background. The effectiveness of the dual-mode fusion detection mode was validated, providing theoretical support for the overall system design and parameter settings. Full article
(This article belongs to the Special Issue Application of Signal Processing in Lidar)
Show Figures

Figure 1

Back to TopTop