Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (111)

Search Parameters:
Keywords = dielectric permittivity (ε)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1556 KB  
Article
Using Biokinetic Modeling and Dielectric Monitoring to Assess Anaerobic Digestion of Meat-Processing Sludge Pretreated with Microwave Irradiation and Magnetic Nanoparticles
by Zoltán Péter Jákói, Erzsébet Illés, Réka Dobozi and Sándor Beszédes
Water 2026, 18(3), 293; https://doi.org/10.3390/w18030293 - 23 Jan 2026
Abstract
This study investigated the effects of microwave (MW) pre-treatment (45 kJ total irradiated microwave energy) and magnetic nanoparticles (MPs) on the anaerobic digestion (AD) of meat-processing sludge, integrating biokinetic modeling with dielectric parameter measurements. Five different sludge variants were examined: native (non-treated control); [...] Read more.
This study investigated the effects of microwave (MW) pre-treatment (45 kJ total irradiated microwave energy) and magnetic nanoparticles (MPs) on the anaerobic digestion (AD) of meat-processing sludge, integrating biokinetic modeling with dielectric parameter measurements. Five different sludge variants were examined: native (non-treated control); MP-only control; microwave pre-treated sludge, and MW + MP combination with the nanoparticles either retained in the fermentation medium or removed prior to anaerobic digestion. Cumulative biomethane production was evaluated using the modified Gompertz, Logistic, and Weibull models, and key kinetic parameters (maximum achievable methane yield, maximum rate of product formation, and λ-values) were compared across the different treatments. The results revealed that the highest production rate, along with the highest biomethane potential, could be achieved when combining MW treatment with magnetic nanoparticles which were retained in the fermentation medium during AD. Based on the biokinetic analysis, this combined method increased biomethane potential by 52% to 390 mL CH4/gVS and maximum methane production rate by 85% to 37 mL CH4/gVS/day compared to the untreated control. The measurement of relative permittivity (ε) exhibited progressive changes during digestion, and the maximum rate of change in ε strongly correlated with the maximum methane production rate across all samples (R2 > 0.98). These results highlight the potential of microwave–metal oxide nanoparticle pre-treatment for process enhancement and to demonstrate the suitability of dielectric parameter measurement as a rapid, non-invasive indicator of biochemical activity during anaerobic digestion. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

51 pages, 1561 KB  
Review
Recent Advances in Magnetooptics: Innovations in Materials, Techniques, and Applications
by Conrad Rizal
Magnetism 2026, 6(1), 3; https://doi.org/10.3390/magnetism6010003 - 26 Dec 2025
Viewed by 672
Abstract
Magnetooptics (MO) explores light—matter interactions in magnetized media and has advanced rapidly with progress in materials science, spectroscopy, and integrated photonics. This review highlights recent developments in fundamental principles, experimental techniques, and emerging applications. We revisit the canonical MO effects: Faraday, MO Kerr [...] Read more.
Magnetooptics (MO) explores light—matter interactions in magnetized media and has advanced rapidly with progress in materials science, spectroscopy, and integrated photonics. This review highlights recent developments in fundamental principles, experimental techniques, and emerging applications. We revisit the canonical MO effects: Faraday, MO Kerr effect (MOKE), Voigt, Cotton—Mouton, Zeeman, and Magnetic Circular Dichroism (MCD), which underpin technologies ranging from optical isolators and high-resolution sensors to advanced spectroscopic and imaging systems. Ultrafast spectroscopy, particularly time-resolved MOKE, enables femtosecond-scale studies of spin dynamics and nonequilibrium processes. Hybrid magnetoplasmonic platforms that couple plasmonic resonances with MO activity offer enhanced sensitivity for environmental and biomedical sensing, while all-dielectric magnetooptical metasurfaces provide low-loss, high-efficiency alternatives. Maxwell-based modeling with permittivity tensor (ε) and machine-learning approaches are accelerating materials discovery, inverse design, and performance optimization. Benchmark sensitivities and detection limits for surface plasmon resonance, SPR and MOSPR systems are summarized to provide quantitative context. Finally, we address key challenges in material quality, thermal stability, modeling, and fabrication. Overall, magnetooptics is evolving from fundamental science into diverse and expanding technologies with applications that extend far beyond current domains. Full article
(This article belongs to the Special Issue Soft Magnetic Materials and Their Applications)
Show Figures

Graphical abstract

21 pages, 21722 KB  
Article
V2O5-Assisted Low-Temperature Sintering and Microwave Dielectric Properties of (1 − x)Li2.08TiO3–xLi2ZnTi3O8 (x = 0.3−0.7) Ceramics for LTCC Applications
by Yu-Seon Lee and Kyoung-Ho Lee
Materials 2026, 19(1), 94; https://doi.org/10.3390/ma19010094 - 26 Dec 2025
Viewed by 471
Abstract
A new composite microwave–dielectric system, (1 − x)Li2.08TiO3-xLi2ZnTi3O8 (x = 0.3–0.7), was systematically investigated to identify the optimal composition for low-temperature co-fired ceramic (LTCC) applications by correlating sintering behavior, microstructural evolution, and microwave–dielectric properties. [...] Read more.
A new composite microwave–dielectric system, (1 − x)Li2.08TiO3-xLi2ZnTi3O8 (x = 0.3–0.7), was systematically investigated to identify the optimal composition for low-temperature co-fired ceramic (LTCC) applications by correlating sintering behavior, microstructural evolution, and microwave–dielectric properties. Although the undoped compositions exhibited excellent intrinsic dielectric performance, they required sintering at 1100 °C, making them incompatible with Ag-based LTCC processing. Among the investigated formulations, 0.6Li2.08TiO3–0.4Li2ZnTi3O8 was identified as the most suitable base composition. To reduce the sintering temperature, 0.3–1.0 wt.% V2O5 was introduced as a sintering aid, enabling densification at 900 °C for 30 min (97.0% relative density) while preserving the coexistence of Li2.08TiO3 and Li2ZnTi3O8 without XRD-detectable secondary phases. Microstructural observations indicated that V2O5 promoted liquid-phase sintering, leading to enhanced densification and Li2.08TiO3-selective abnormal grain coarsening without altering the intrinsic permittivity. Complementary dilatometry provided process-level evidence for this liquid-phase sintering mechanism: large total shrinkage at 900 °C (L/Lo≈ −17–19%), earlier Tonset/Tpeak with Tpeak lowered by ~250 °C, and an increased Rpeak, collectively supporting 900 °C/30 min as the practical firing window. The optimized 0.6Li2.08TiO3–0.4Li2ZnTi3O8 composition containing 0.3 wt.% V2O5 exhibits excellent microwave–dielectric properties (εr = 23.32, Q × f = 68,400 GHz, and τf = −1.55 ppm/°C). Higher V2O5 contents (>0.3 wt.%) caused a gradual reduction in Q × f due to increasing microstructural non-uniformity. Ag co-firing tests confirmed electrode stability with no interfacial reactions at 900 °C for 30 min. Overall, 0.3 wt.% V2O5-assisted 0.6Li2.08TiO3–0.4Li2ZnTi3O8 provides a practical sub-950 °C processing window that satisfies key LTCC requirements, including moderate permittivity, high Q × f, near-zero τf, and compatibility with Ag electrodes. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

14 pages, 1204 KB  
Article
Performance Enhancement of Piezoelectric Single Crystals Through Combination of Alternating-Current Poling and Direct-Current Poling
by Chenyang Zheng, Hao Wang, Jinpeng Ma, Bingzhong Shen, Rui Zhang, Xudong Qi and Yang Liu
Sensors 2026, 26(1), 140; https://doi.org/10.3390/s26010140 - 25 Dec 2025
Viewed by 284
Abstract
Alternating-current poling (ACP) is becoming a mainstream method because of its stronger ability in promoting the piezoelectric performance of ferroelectric single crystals than that of direct-current poling (DCP). A novel approach was developed by incorporating alternating-current poling and direct-current poling as modified alternating-current [...] Read more.
Alternating-current poling (ACP) is becoming a mainstream method because of its stronger ability in promoting the piezoelectric performance of ferroelectric single crystals than that of direct-current poling (DCP). A novel approach was developed by incorporating alternating-current poling and direct-current poling as modified alternating-current poling (MACP). According to the comparison of performance differences between AC-poled and DC-poled single crystals, the properties of MACP single crystals under specific conditions were systematically investigated. The improvement of single crystal performance by MACP is manifested by the multi-peak increase in piezoelectric coefficient (d33) and relative dielectric permittivity (ε33T/ε0), and the coupling factor (kt) value under higher DC bias is higher than that under DC polarization, rather than a direct superposition of DCP and ACP. Two optimal polarization windows were found: 0.2–0.25 kV/mm and 0.35–0.6 kV/mm. Compared with DCP, MACP increases the d33, ε33T/ε0 and kt, of single crystals by up to 45.67%, 21.62%, and 24.54%, respectively. This significant performance improvement, combined with its complexity, provides a new direction for customizing the performance of single crystals. Full article
(This article belongs to the Special Issue Advanced Acoustic Sensing Technology)
Show Figures

Figure 1

19 pages, 6370 KB  
Article
Enhanced Dielectric Properties of In + Ta Co-Doped TiO2 Ceramics Synthesized via a Green Egg White Route: Low-Temperature Sintering and Microstructural Insights
by Unchista Wongpratat, Nutthakritta Phromviyo, Jurimart Wongsricha, Sirion Srilarueang, Narong Chanlek, Atchara Khamkongkaeo and Prasit Thongbai
Sci 2025, 7(4), 150; https://doi.org/10.3390/sci7040150 - 27 Oct 2025
Viewed by 813
Abstract
Giant dielectric oxides are attractive for next-generation capacitors and related applications, but their practical use is limited by high loss tangent (tanδ), strong temperature dependence of dielectric permittivity (ε′), and the need for energy-intensive high-temperature sintering. To address these challenges, this study focuses [...] Read more.
Giant dielectric oxides are attractive for next-generation capacitors and related applications, but their practical use is limited by high loss tangent (tanδ), strong temperature dependence of dielectric permittivity (ε′), and the need for energy-intensive high-temperature sintering. To address these challenges, this study focuses on the development of (In0.5Ta0.5)xTi1−xO2 (ITTO, x = 0.02–0.06) ceramics via a green egg-white solution route, targeting high dielectric performance at reduced processing temperatures. The as-calcined powders exhibited the anatase TiO2 phase with particle sizes of ~20–50 nm. These powders promoted densification at a sintering temperature of 1300 °C, significantly lower than those of conventional co-doped TiO2 systems. The resulting ceramics exhibited refined grains, high relative density, and homogeneous dopant incorporation, as confirmed by XRD, SEM/TEM, EDS mapping, and XPS. Complementary density functional theory calculations were performed to examine the stability of In3+/Ta5+ defect clusters and their role in electron-pinned defect dipoles (EPDDs). The optimized ceramic (x = 0.06, 1300 °C) achieved a high ε′ of 6.78 × 103, a low tanδ of 0.038, and excellent thermal stability with Δε′ < 3.9% from 30 to 200 °C. These results demonstrate that the giant dielectric response originates primarily from EPDDs associated with Ti3+ species and oxygen vacancies, in agreement with both experimental and theoretical evidence. These findings emphasize the potential of eco-friendly synthesis routes combined with rational defect engineering to deliver high-performance dielectric ceramics with reliable thermal stability at reduced sintering temperatures. Full article
Show Figures

Figure 1

20 pages, 13277 KB  
Article
Dielectric Properties of Co-Doped TiO2 with Mg and Nb for Energy Storage Applications
by L. Ferchaud, J. P. F. Carvalho, S. R. Gavinho, F. Amaral, L. I. Toderascu, G. Socol, L. C. Costa, R. Benzerga and S. Soreto Teixeira
Nanomaterials 2025, 15(21), 1632; https://doi.org/10.3390/nano15211632 - 26 Oct 2025
Viewed by 790
Abstract
Titanium dioxide is attractive for energy storage due to its abundance, stability, non-toxicity, low cost, and favorable electronic/optical properties. Colossal permittivity (CP) in co-doped TiO2 is mainly linked to defect structures rather than intrinsic bulk behavior. This work studies the dielectric properties [...] Read more.
Titanium dioxide is attractive for energy storage due to its abundance, stability, non-toxicity, low cost, and favorable electronic/optical properties. Colossal permittivity (CP) in co-doped TiO2 is mainly linked to defect structures rather than intrinsic bulk behavior. This work studies the dielectric properties of TiO2 co-doped with niobium and magnesium, synthesized by solid-state reaction. Grain size effects were examined by varying ball milling parameters of (½Mg½Nb)0.05Ti0.95O2 and then were correlated with structure, morphology, and dielectric response. X-ray diffraction (XRD), infrared spectroscopy (FTIR), scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS), and impedance spectroscopy (IS) (40 Hz–106 Hz, 150–370 K) were employed for structural, morphological, and electrical characterization. XRD confirmed the rutile phase. For co-doped samples, larger grains yielded higher dielectric constants, reaching high permittivity (ε′ = 429, T = 300 K, f = 10 kHz at 500 rpm for 2 h). Lower loss tangent (tan δ = 0.11, T = 300 K, f = 10 kHz at 200 rpm for 2 h) is linked to Mg segregation at grain boundaries. The most conductive sample showed the highest dielectric constant, suggesting an IBLC polarization mechanism driven by grain boundary effects. XPS confirmed Nb and Mg incorporation, with Ti4+ dominant and minor Ti3+ from oxygen vacancies and surface hydroxylation/defects. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

20 pages, 3925 KB  
Article
Elucidation of Electrical Characteristics for Apples (Malus domestica) Using Electrochemical Impedance Spectroscopy
by Shubhra Shekhar, Francisco J. Trujillo, Shubhpreet Kaur and Kamlesh Prasad
NDT 2025, 3(4), 25; https://doi.org/10.3390/ndt3040025 - 19 Oct 2025
Viewed by 892
Abstract
Dielectric characterization offers valuable insights into fruit structure, ripening, and storage stability. However, systematic studies on apples are still limited. This work elucidates the electrical and physicochemical properties of a specific variety of apples, Malus domestica, using Electrochemical Impedance Spectroscopy (EIS), a [...] Read more.
Dielectric characterization offers valuable insights into fruit structure, ripening, and storage stability. However, systematic studies on apples are still limited. This work elucidates the electrical and physicochemical properties of a specific variety of apples, Malus domestica, using Electrochemical Impedance Spectroscopy (EIS), a non-destructive, fast and cost-effective technique, suitable for real-time quality assessments. The apple samples were analyzed over the frequency range of 20 Hz–120 MHz at 25 °C, and impedance data were modeled using equivalent circuits and dielectric relaxation models. Physicochemical analyses confirmed a high moisture content (84%, wwb), pH 4.81, TSS 14.58 °Brix, and acidity 0.64%, which is typical of fresh Red Delicious apples. Impedance spectra revealed semicircular and Warburg elements in Nyquist plots, indicating resistive, capacitive, and diffusive processes. Equivalent circuit fitting with the proposed R-C-Warburg impedance model outperformed (R2 = 0.9946 and RMSE = 6.610) the classical Cole and Double-Shell models. The complex permittivity (ε) represented a frequency-dependent ionic diffusion, space-charge polarization, and dipolar relaxation decay, while electrical modulus analysis highlighted polarization and charge carrier dynamics. The translational hopping of charge carriers was confirmed through AC conductivity following Jonscher’s power law with an exponent of ƞ = 0.627. These findings establish a comprehensive dielectric profile and advanced circuit fitting for biological tissues, highlighting a promising non-invasive approach using EIS for real-time monitoring of fruit quality, with direct applications in post-harvest storage, supply chain management, and non-destructive quality assurance in the food industry. Full article
(This article belongs to the Special Issue Non-Destructive Testing and Evaluation in Food Engineering)
Show Figures

Figure 1

20 pages, 2923 KB  
Article
Synthesis and Integration of an Fe(II) Coordination Compound into Green Resin Matrices for Multifunctional Dielectric, Piezoelectric, Energy Harvesting, and Storage Applications
by Anastasios C. Patsidis, Ioanna Th. Papageorgiou and Zoi G. Lada
Polymers 2025, 17(18), 2509; https://doi.org/10.3390/polym17182509 - 17 Sep 2025
Viewed by 698
Abstract
Polymer-based hybrid composites have emerged as promising platforms for multifunctional energy applications, combining structural versatility with tunable dielectric behavior. In this study, synthesized [Fe(bpy)3]SO4; (tris(2,2′-bipyridine)iron(II) sulfate) coordination compound was incorporated into a green epoxy resin matrix to fabricate nanocomposites [...] Read more.
Polymer-based hybrid composites have emerged as promising platforms for multifunctional energy applications, combining structural versatility with tunable dielectric behavior. In this study, synthesized [Fe(bpy)3]SO4; (tris(2,2′-bipyridine)iron(II) sulfate) coordination compound was incorporated into a green epoxy resin matrix to fabricate nanocomposites aimed at enhancing dielectric permittivity (ε′), piezoelectric coefficient (d33, pC/N), energy-storage efficiency (nrel, %), and mechanical strength (σ, MPa). The integration of the Fe(II) complex via Scanning Electron Microscopy (SEM) confirmed a homogeneous dispersion within the matrix. Broadband Dielectric Spectroscopy (BDS) revealed the presence of three relaxation processes in the spectra of the tested systems, demonstrating enhanced dielectric permittivity with increasing Fe(II) content. Under progressively shorter relaxation times (τ, s), key processes such as interfacial polarization, the polymer matrix’s transition from a glassy to a rubbery state, and the dynamic reorganization of polar side groups along the polymer backbone are activated. The ability to store and retrieve electric energy was confirmed by varying filler content under direct current (dc) conditions. The nanocomposite with 10 phr (mass parts/100 mass parts of resin) filler achieved a piezoelectric coefficient of d33 = 5.1 pC/N, an energy-storage efficiency of nrel = 44%, and a tensile strength of σ = 55.5 MPa, all of which surpass values reported for conventional epoxy-based composites. These results confirm the ability of the system to store and retrieve electric energy under direct current (dc) fields, while maintaining mechanical robustness and thermal stability due to synergistic interactions between the epoxy matrix and the Fe(II) complex. The multifunctional behavior of the composites underscores their potential as advanced materials for integrated dielectric, piezoelectric, and energy storage and harvesting applications. Full article
Show Figures

Graphical abstract

16 pages, 18679 KB  
Article
Ka-Band Reflectarray with Cylindrical Dielectric Unit Cells: Optimized Additive Manufacturing and High-Permittivity Material Characterization
by Michele Beccaria, Andrea Massaccesi, Mauro Lumia, Giuseppe Addamo, Angelo Freni and Paola Pirinoli
Sensors 2025, 25(17), 5480; https://doi.org/10.3390/s25175480 - 3 Sep 2025
Cited by 2 | Viewed by 1088
Abstract
This paper discusses the design, manufacturing, and experimental characterization of a Ka-band fully dielectric reflectarray realized using Zetamix ε 7.5 ceramic material and additive manufacturing. Properly tuning the infill during the manufacturing process, it is possible to control the permittivity of the material, [...] Read more.
This paper discusses the design, manufacturing, and experimental characterization of a Ka-band fully dielectric reflectarray realized using Zetamix ε 7.5 ceramic material and additive manufacturing. Properly tuning the infill during the manufacturing process, it is possible to control the permittivity of the material, which can therefore be considered, to all intents and purposes, an additional degree of freedom for optimizing the unit cell and consequently the reflectarray performance. The optimal values of εr are determined through numerical analysis of the unit cell and experimental characterization of bricks manufactured with different printing parameters. Then, the unit cell is used to design a medium-sized reflectarray with an aperture of 207.4λ02 and a thickness of 0.44λ0, at the design frequency f0=30 GHz. The full-wave simulations of the designed RA and experimental measurements of a prototype confirm the excellent performance of the antenna, which exhibits a broadband flat response from 28 to 31 GHz and an aperture efficiency exceeding 50%. Full article
(This article belongs to the Special Issue Design and Application of Millimeter-Wave/Microwave Antenna Array)
Show Figures

Figure 1

14 pages, 3251 KB  
Communication
Design and Optimization of a Miniaturized Wireless Power Transfer System Using Matching Media for Efficiency Enhancement at 1.6 GHz
by Aftab Ahmad, Ashfaq Ahmad and Dong-You Choi
Electronics 2025, 14(14), 2918; https://doi.org/10.3390/electronics14142918 - 21 Jul 2025
Viewed by 1089
Abstract
This paper presents the design and performance analysis of a compact wireless power transfer (WPT) system operating at 1.6 GHz. The transmitter (Tx) structure consists of a circular slot and a circular radiating element, excited from the backside of the substrate, while the [...] Read more.
This paper presents the design and performance analysis of a compact wireless power transfer (WPT) system operating at 1.6 GHz. The transmitter (Tx) structure consists of a circular slot and a circular radiating element, excited from the backside of the substrate, while the receiver (Rx) comprises a slotted patch antenna miniaturized using two vertical vias. The initial power transfer efficiency (PTE), represented by the transmission coefficient S21, was measured to be −31 dB with a 25 mm separation between Tx and Rx. To enhance the efficiency of the system, a dielectric matching media (MM) was introduced between the transmitter and receiver. Through the implementation of the MM, the PTE improved significantly, with S21 increasing to −24 dB. A parametric study was conducted by varying the thickness of the MM from 1 mm to 10 mm and the relative permittivity (εr) from 5 to 30. The results demonstrate that both the thickness and dielectric constant of the MM play a crucial role in improving the coupling and overall efficiency of the WPT system. The optimal configuration was achieved with a matching media thickness of 10 mm and a relative permittivity of 25, which yielded the best improvement in transmission performance. This work offers a practical approach to enhance near-field WPT efficiency using simple matching structures and is particularly relevant for compact and low-profile energy transfer applications. Full article
(This article belongs to the Special Issue Advances in Low Power Circuit and System Design and Applications)
Show Figures

Figure 1

22 pages, 7169 KB  
Article
Thermodielectric Properties of Polyurethane Composites with Aluminium Nitride and Wurtzite Boron Nitride Microfillers: Analysis Below and near Percolation Threshold
by Alexey Gunya, Jozef Kúdelčík, Štefan Hardoň and Marián Janek
Sensors 2025, 25(13), 4055; https://doi.org/10.3390/s25134055 - 29 Jun 2025
Viewed by 904
Abstract
This study explores microcomposites’ thermodielectric properties—thermal conductivity (keff) and dielectric permittivity (εr)—across filler concentrations from 1 wt% (φ0.0035) to 60 wt% (φ0.45) spanning the pre- (φ<0.16 [...] Read more.
This study explores microcomposites’ thermodielectric properties—thermal conductivity (keff) and dielectric permittivity (εr)—across filler concentrations from 1 wt% (φ0.0035) to 60 wt% (φ0.45) spanning the pre- (φ<0.16) and within-percolation threshold (0.16φ0.29). Thermal measurements were conducted using a newly designed, cost-effective thermal measurement setup. The setup utilised a transient heat pulse methodology with a heater and NTC thermistors, with a precision better than ±0.01m1·K1. Dielectric properties were measured using a three-electrode system over a broad frequency and temperature range. The measurements demonstrate an effective thermal conductivity keff of 0.72 W·m1·K1 for AlN at φ=0.36 and 0.65 W·m1·K1 for wBN already at φ=0.12. Although theoretical models suggest that, considering interfacial Kapitza resistance, it can yield a keff corresponding to approximately 1–3% of the conductivity of pure material filler, the experimental measurements indicate a maximum of around 0.5%. Dielectric measurements show that in comparison to pure polyurethane, the presence of 60% AlN or 40% wBN at 60 °C decreased the loss tangent by 20 times in the condition of a quasistatic electric field. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

21 pages, 11213 KB  
Article
Assessing the Compaction Quality of Dolomitic Asphalt Pavements Using Ground Penetrating Radar
by Enas Abdelsamei, Diaa Sheishah, Zalán Tobak, Ahmed M. Ali, Károly Barta, Abdelouahed Fannakh, Gergő Magyar, Viktória Blanka-Végi and György Sipos
Appl. Sci. 2025, 15(5), 2501; https://doi.org/10.3390/app15052501 - 26 Feb 2025
Viewed by 1374
Abstract
The quality of newly constructed pavement depends mostly on compaction, which is essential for ensuring the pavement’s longevity and performance. Traditional methods of evaluating pavement compaction and density, such as core sampling and nuclear gauge measurements, are often time-consuming and invasive and provide [...] Read more.
The quality of newly constructed pavement depends mostly on compaction, which is essential for ensuring the pavement’s longevity and performance. Traditional methods of evaluating pavement compaction and density, such as core sampling and nuclear gauge measurements, are often time-consuming and invasive and provide only a limited amount of data at a low spatial resolution on the potential air void content of the asphalt layers. The present study aimed to assess the specific gravity (Gmb) of a dolomitic asphalt mixture at different degrees of compaction using GPR techniques. Relative density (RD) maps were generated to visualize the spatial homogeneity of the asphalt density. Nuclear density gauging was applied for the calibration, and cores were used to validate the results. The survey was conducted on two recently paved roads in Szeged, Hungary. After testing various approaches, it was found that applying horn antennas and the surface reflection (SR) method is the most feasible way to obtain reliable and accurate dielectric permittivity (ε) data. Based on the measurements, clear relationships were found between dielectric constants, Gmb, and aggregate size. The findings highlight that it is possible to indirectly determine the Gmb of asphalts composed of dolomite and limestone aggregates using GPR, with aggregate sizes ranging from 11 mm to 25 mm and Gmb values between 2.43 and 2.57 g/cm3. Consequently, a robust function was developed, which can be applied to other asphalts with similar compositions. Full article
(This article belongs to the Special Issue Ground Penetrating Radar (GPR): Theory, Methods and Applications)
Show Figures

Figure 1

22 pages, 16223 KB  
Article
Sustainable Insulating Materials for High-Voltage Equipment: Dielectric Properties of Green Synthesis-Based Nanofluids from Vegetable Oils
by Abubakar Siddique, Muhammad Usama Shahid, Waseem Aslam, Shahid Atiq, Mohammad R. Altimania, Hafiz Mudassir Munir, Ievgen Zaitsev and Vladislav Kuchanskyy
Sustainability 2025, 17(4), 1740; https://doi.org/10.3390/su17041740 - 19 Feb 2025
Cited by 7 | Viewed by 2974
Abstract
This study aimed to develop a cost-effective, environmentally sustainable, and technologically advanced dielectric fluid by utilizing the beneficial properties of natural ester-based vegetable oils, offering a promising alternative for transformer insulation and cooling applications. The novelty of this research lies in the formulation [...] Read more.
This study aimed to develop a cost-effective, environmentally sustainable, and technologically advanced dielectric fluid by utilizing the beneficial properties of natural ester-based vegetable oils, offering a promising alternative for transformer insulation and cooling applications. The novelty of this research lies in the formulation of a nanofluid that combines three distinct vegetable oils—castor, flaxseed, and blackseed—creating a unique base fluid. SiO2 nanoparticles were incorporated into the fluid to leverage their multiple advantageous characteristics. Extensive experiments were conducted to evaluate the superior properties of the proposed nanofluid, focusing on key dielectric properties, such as relative permittivity (εr) and the dielectric dissipation factor (tan δ). Comparative analyses with conventional mineral oil, which was used as a benchmark, demonstrated the significant advantages of the vegetable oil-based nanofluid. The novel formulation outperformed all other tested samples, highlighting its exceptional performance. Additionally, three preparation methods were examined, with the green synthesis technique producing the nanofluid with better dielectric properties. Through a detailed presentation of empirical data and compelling arguments, this study confirms the potential of natural ester-based vegetable oil nanofluids as a highly promising alternative, driven by their intrinsic properties and the environmentally friendly synthesis method employed. Full article
Show Figures

Figure 1

22 pages, 6031 KB  
Article
Investigation of the Electrical Properties of Polycrystalline Crednerite CuMn1−xMgxO2 (x = 0–0.06)-Type Materials in a Low-Frequency Field
by Iosif Malaescu, Maria Poienar and Catalin N. Marin
Crystals 2025, 15(2), 184; https://doi.org/10.3390/cryst15020184 - 14 Feb 2025
Cited by 2 | Viewed by 1134
Abstract
CuMn1−xMgxO2 (x = 0–0.06) polycrystalline samples were prepared using the hydrothermal method at T = 100 °C for 24 h in Teflon-line stainless steel autoclaves. The samples were crystallized, forming crednerite structures (C2/m space group), and the Mg [...] Read more.
CuMn1−xMgxO2 (x = 0–0.06) polycrystalline samples were prepared using the hydrothermal method at T = 100 °C for 24 h in Teflon-line stainless steel autoclaves. The samples were crystallized, forming crednerite structures (C2/m space group), and the Mg2+ substitution onto the Mn3+ site induced small changes in the unit cell parameters and volume. Based on complex impedance measurements made between 20 Hz and 2 MHz, at different concentrations of Mg ions (x), the electrical conductivity (σ), the electric modulus (M), and the complex dielectric permittivity (ε) were determined. The conductivity spectrum, σ(f, x), follows the Jonscher universal law and enables the determination of the static conductivity (σDC) of the samples. The results showed that, when increasing the concentration x from 0 to 6%, σDC varied from 15.36 × 10−5 S/m to 16.42 × 10−5 S/m, with a minimum of 4.85 × 10−5 S/m found at a concentration of x = 4%. Using variable range hopping (VRH) and correlated barrier hopping (CBH) theoretical models, the electrical mechanism in the samples was explained. The band gap energy (Wm), charge carrier mobility (μ), number density (NC) of effective charge carriers, and hopping frequency (ωh) were evaluated at different concentrations (x) of substitution with Mg. In addition, using measurements of the temperature dependence of σDC(T) between 300 and 400 K, the thermal activation energy (EA) of the samples was evaluated. Additionally, the dielectric behavior of the samples was explained by the interfacial relaxation process. This knowledge of the electrical properties of the CuMn1−xMgxO2 (x = 0–0.06) polycrystalline crednerite is of interest for their use in photocatalytic, electronic, or other applications. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

14 pages, 3637 KB  
Article
Conducting Rubber Anisotropy of Electrophysical and Mechanical Properties
by Stanislav Makhno, Xianpeng Wan, Oksana Lisova, Petro Gorbyk, Dongxing Wang, Hao Tang, Yuli Shi, Mykola Kartel, Kateryna Ivanenko, Sergii Hozhdzinskyi, Galyna Zaitseva, Maksym Stetsenko and Yurii Sementsov
Polymers 2025, 17(4), 492; https://doi.org/10.3390/polym17040492 - 14 Feb 2025
Cited by 3 | Viewed by 1458
Abstract
The aim of this work was to determine the anisotropy of the electrophysical and mechanical properties of rubber reinforced with a hybrid filler CNTs&CB (carbon nanotubes and carbon black) as a function of CNT content and the technological parameters of the production process. [...] Read more.
The aim of this work was to determine the anisotropy of the electrophysical and mechanical properties of rubber reinforced with a hybrid filler CNTs&CB (carbon nanotubes and carbon black) as a function of CNT content and the technological parameters of the production process. A significant difference in electrical conductivity (σ) and dielectric permittivity (ε) in three perpendicular directions was found for CNT concentrations ranging from 0 to 0.007 in volume fraction. The highest values of σ and ε were observed in the calendering direction, with slightly lower values in the perpendicular direction. This effect was attributed to the orientation of polymer molecules and CNTs along the direction of movement during calendering, as well as the disruption of the cluster structure in the transverse direction. Although the calculated percolation threshold values of the investigated system differed slightly, a correlation was observed between the mechanical and electrophysical properties of CNTs&CB rubber. This correlation enables rubber products to be designed with optimal properties tailored to the desired direction. Full article
(This article belongs to the Special Issue Polymer Composites: Structure, Properties and Processing, 2nd Edition)
Show Figures

Figure 1

Back to TopTop