Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (974)

Search Parameters:
Keywords = diagnostic equipment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1223 KiB  
Article
Point-of-Care Ultrasound (POCUS) in Pediatric Practice in Poland: Perceptions, Competency, and Barriers to Implementation—A National Cross-Sectional Survey
by Justyna Kiepuszewska and Małgorzata Gałązka-Sobotka
Healthcare 2025, 13(15), 1910; https://doi.org/10.3390/healthcare13151910 - 5 Aug 2025
Abstract
Background: Point-of-care ultrasound (POCUS) is gaining recognition as a valuable diagnostic tool in various fields of medicine, including pediatrics. Its application at the point of care enables real-time clinical decision-making, which is particularly advantageous in pediatric settings. Although global interest in POCUS is [...] Read more.
Background: Point-of-care ultrasound (POCUS) is gaining recognition as a valuable diagnostic tool in various fields of medicine, including pediatrics. Its application at the point of care enables real-time clinical decision-making, which is particularly advantageous in pediatric settings. Although global interest in POCUS is growing, many European countries—including Poland—still lack formal training programs for POCUS at both the undergraduate and postgraduate levels. Nevertheless, the number of pediatricians incorporating POCUS into their daily clinical practice in Poland is increasing. However, the extent of its use and perceived value among pediatricians remains largely unknown. This study aimed to evaluate the current level of POCUS utilization in pediatric care in Poland, focusing on pediatricians’ self-assessed competencies, perceptions of its clinical utility, and key barriers to its implementation in daily practice. Methods: This cross-sectional study was conducted between July and August 2024 using an anonymous online survey distributed to pediatricians throughout Poland via national professional networks, with a response rate of 7.3%. Categorical variables were analyzed using the chi-square test of independence to assess the associations between key variables. Quantitative data were analyzed using descriptive statistics, and qualitative data from open-ended responses were subjected to a thematic analysis. Results: A total of 210 pediatricians responded. Among them, 149 (71%) reported access to ultrasound equipment at their workplace, and 89 (42.4%) reported having participated in some form of POCUS training. Only 46 respondents (21.9%) reported frequently using POCUS in their clinical routine. The self-assessed POCUS competence was rated as low or very low by 136 respondents (64.8%). While POCUS was generally perceived as a helpful tool in facilitating and accelerating clinical decisions, the main barriers to implementation were a lack of formal training and limited institutional support. Conclusions: Although POCUS is perceived as clinically valuable by the surveyed pediatricians in Poland, its routine use remains limited due to training and systemic barriers. Future efforts should prioritize the development of a validated, competency-based training framework and the implementation of a larger, representative national study to guide the structured integration of POCUS into pediatric care. Full article
Show Figures

Figure 1

23 pages, 3087 KiB  
Article
MCMBAN: A Masked and Cascaded Multi-Branch Attention Network for Bearing Fault Diagnosis
by Peng Chen, Haopeng Liang and Alaeldden Abduelhadi
Machines 2025, 13(8), 685; https://doi.org/10.3390/machines13080685 - 4 Aug 2025
Abstract
In recent years, deep learning methods have made breakthroughs in the field of rotating equipment fault diagnosis, thanks to their powerful data analysis capabilities. However, the vibration signals usually incorporate fault features and background noise, and these features may be scattered over multiple [...] Read more.
In recent years, deep learning methods have made breakthroughs in the field of rotating equipment fault diagnosis, thanks to their powerful data analysis capabilities. However, the vibration signals usually incorporate fault features and background noise, and these features may be scattered over multiple frequency levels, which increases the complexity of extracting important information from them. To address this problem, this paper proposes a Masked and Cascaded Multi-Branch Attention Network (MCMBAN), which combines the Noise Mask Filter Block (NMFB) with the Multi-Branch Cascade Attention Block (MBCAB), and significantly improves the noise immunity of the fault diagnostic model and the efficiency of fault feature extraction. NMFB novelly combines a wide convolutional layer and a top k neighbor self-attention masking mechanism, so as to efficiently filter unnecessary high-frequency noise in the vibration signal. On the other hand, MBCAB strengthens the interaction between different layers by cascading the convolutional layers of different scales, thus improving the recognition of periodic fault signals and greatly enhancing the diagnosis accuracy of the model when processing complex signals. Finally, the time–frequency analysis technique is employed to explore the internal mechanisms of the model in depth, aiming to validate the effectiveness of NMFB and MBCAB in fault feature recognition and to improve the feature interpretability of the proposed modes in fault diagnosis applications. We validate the superior performance of the network model in dealing with high-noise backgrounds by testing it on a standard bearing dataset from Case Western Reserve University and a self-constructed composite bearing fault dataset, and the experimental results show that its performance exceeded six of the top current fault diagnosis techniques. Full article
(This article belongs to the Special Issue Fault Diagnosis and Fault Tolerant Control in Mechanical System)
Show Figures

Figure 1

12 pages, 472 KiB  
Communication
LAMPOX: A Portable and Rapid Molecular Diagnostic Assay for the Epidemic Clade IIb Mpox Virus Detection
by Anna Rosa Garbuglia, Mallory Draye, Silvia Pauciullo, Daniele Lapa, Eliana Specchiarello, Florence Nazé and Pascal Mertens
Diagnostics 2025, 15(15), 1959; https://doi.org/10.3390/diagnostics15151959 - 4 Aug 2025
Abstract
The global spread of Mpox virus (MPXV) underscores the urgent need for rapid, field-deployable diagnostic tools, especially in low-resource settings. We evaluated a loop-mediated isothermal amplification (LAMP) assay, termed LAMPOX, developed by Coris BioConcept. The assay was tested in three formats—two liquid versions [...] Read more.
The global spread of Mpox virus (MPXV) underscores the urgent need for rapid, field-deployable diagnostic tools, especially in low-resource settings. We evaluated a loop-mediated isothermal amplification (LAMP) assay, termed LAMPOX, developed by Coris BioConcept. The assay was tested in three formats—two liquid versions and a dried, ready-to-use version—targeting only the ORF F3L (Liquid V1) or both the ORF F3L and N4R (Liquid V2 and dried) genomic regions. Analytical sensitivity and specificity were assessed using 60 clinical samples from confirmed MPXV-positive patients. Sensitivity on clinical samples was 81.7% for Liquid V1 and 88.3% for Liquid V2. The dried LAMPOX assay demonstrated a sensitivity of 88.3% and a specificity of 100% in a panel of 112 negative controls, with most positive samples detected in under 7 min. Additionally, a simplified sample lysis protocol was developed to facilitate point-of-care use. While this method showed slightly reduced sensitivity compared to standard DNA extraction, it proved effective for samples with higher viral loads. The dried format offers key advantages, including ambient-temperature stability and minimal equipment needs, making it suitable for point-of-care testing. These findings support LAMPOX as a promising tool for rapid MPXV detection during outbreaks, especially in resource-limited settings where traditional PCR is impractical. Full article
Show Figures

Figure 1

28 pages, 2340 KiB  
Article
Determining the Operating Performance of an Isolated, High-Power, Photovoltaic Pumping System Through Sensor Measurements
by Florin Dragan, Dorin Bordeasu and Ioan Filip
Appl. Sci. 2025, 15(15), 8639; https://doi.org/10.3390/app15158639 (registering DOI) - 4 Aug 2025
Abstract
Modernizing irrigation systems (ISs) from traditional gravity methods to sprinkler and drip technologies has significantly improved water use efficiency. However, it has simultaneously increased electricity demand and operational costs. Integrating photovoltaic generators into ISs represents a promising solution, as solar energy availability typically [...] Read more.
Modernizing irrigation systems (ISs) from traditional gravity methods to sprinkler and drip technologies has significantly improved water use efficiency. However, it has simultaneously increased electricity demand and operational costs. Integrating photovoltaic generators into ISs represents a promising solution, as solar energy availability typically aligns with peak irrigation periods. Despite this potential, photovoltaic pumping systems (PVPSs) often face reliability issues due to fluctuations in solar irradiance, resulting in frequent start/stop cycles and premature equipment wear. The IEC 62253 standard establishes procedures for evaluating PVPS performance but primarily addresses steady-state conditions, neglecting transient regimes. As the main contribution, the current paper proposes a non-intrusive, high-resolution monitoring system and a methodology to assess the performance of an isolated, high-power PVPS, considering also transient regimes. The system records critical electrical, hydraulic and environmental parameters every second, enabling in-depth analysis under various weather conditions. Two performance indicators, pumped volume efficiency and equivalent operating time, were used to evaluate the system’s performance. The results indicate that near-optimal performance is only achievable under clear sky conditions. Under the appearance of clouds, control strategies designed to protect the system reduce overall efficiency. The proposed methodology enables detailed performance diagnostics and supports the development of more robust PVPSs. Full article
(This article belongs to the Special Issue New Trends in Renewable Energy and Power Systems)
Show Figures

Figure 1

18 pages, 4051 KiB  
Article
Chimeric Vesicular Stomatitis Virus Bearing Western Equine Encephalitis Virus Envelope Proteins E2-E1 Is a Suitable Surrogate for Western Equine Encephalitis Virus in a Plaque Reduction Neutralization Test
by Kerri L. Miazgowicz, Bailey E. Maloney, Melinda A. Brindley, Mattie Cassaday, Raegan J. Petch, Paul Bates, Aaron C. Brault and Amanda E. Calvert
Viruses 2025, 17(8), 1067; https://doi.org/10.3390/v17081067 - 31 Jul 2025
Viewed by 253
Abstract
In December 2023, infections of western equine encephalitis virus (WEEV) within Argentina were reported to the World Health Organization (WHO). By April 2024, more than 250 human infections, 12 of which were fatal, and 2500 equine infections were identified in South America. Laboratory [...] Read more.
In December 2023, infections of western equine encephalitis virus (WEEV) within Argentina were reported to the World Health Organization (WHO). By April 2024, more than 250 human infections, 12 of which were fatal, and 2500 equine infections were identified in South America. Laboratory diagnosis and surveillance in affected countries were hindered by a lack of facilities equipped with BSL-3 laboratories, as confirmatory serodiagnosis for WEEV requires live virus in the plaque reduction neutralization test (PRNT). To expand serodiagnosis for WEEV in the Americas, we developed a virus chimera composed of vesicular stomatitis virus (VSV) engineered to display the E2-E1 glycoproteins of WEEV (VSV/WEEV) in place of the VSV glycoprotein (G). PRNT90 and IC90 values of parental WEEV and VSV/WEEV were analogous using sera collected from mice, horses, and chickens. VSV/WEEV rapidly formed plaques with clear borders and reduced the assay readout time by approximately 8 h compared to the parental virus. Overall, we demonstrate that chimeric VSV/WEEV is a suitable surrogate for WEEV in a diagnostic PRNT. Use of chimeric VSV/WEEV in place of authentic WEEV will dramatically expand testing capacity by enabling PRNTs to be performed at BSL-2 containment, while simultaneously decreasing the health risk to testing personnel. Full article
(This article belongs to the Special Issue Mosquito-Borne Encephalitis Viruses)
Show Figures

Figure 1

5 pages, 628 KiB  
Interesting Images
Infrared Photography: A Novel Diagnostic Approach for Ocular Surface Abnormalities Due to Vitamin A Deficiency
by Hideki Fukuoka and Chie Sotozono
Diagnostics 2025, 15(15), 1910; https://doi.org/10.3390/diagnostics15151910 - 30 Jul 2025
Viewed by 252
Abstract
Vitamin A deficiency (VAD) remains a significant cause of preventable blindness worldwide, with ocular surface changes representing early manifestations that require prompt recognition and treatment. Conventional examination methods are capable of detecting advanced changes; however, subtle conjunctival abnormalities may be overlooked, potentially delaying [...] Read more.
Vitamin A deficiency (VAD) remains a significant cause of preventable blindness worldwide, with ocular surface changes representing early manifestations that require prompt recognition and treatment. Conventional examination methods are capable of detecting advanced changes; however, subtle conjunctival abnormalities may be overlooked, potentially delaying the administration of appropriate interventions. We herein present the case of a 5-year-old Japanese boy with severe VAD due to selective eating patterns. This case demonstrates the utility of infrared photography as a novel diagnostic approach for detecting and monitoring conjunctival surface abnormalities. The patient exhibited symptoms including corneal ulcers, night blindness, and reduced visual acuity. Furthermore, blood tests revealed undetectable levels of vitamin A (5 IU/dL), despite relatively normal physical growth parameters. Conventional slit-lamp examination revealed characteristic sandpaper-like conjunctival changes. However, infrared photography (700–900 nm wavelength) revealed distinct abnormal patterns of conjunctival surface folds and keratinization that were not fully appreciated on a routine examination. Following high-dose vitamin A supplementation (4000 IU/day), complete resolution of ocular abnormalities was achieved within 2 months, with infrared imaging objectively documenting treatment response and normalization of conjunctival surface patterns. This case underscores the potential for severe VAD in developed countries, particularly in the context of dietary restrictions, thereby underscoring the significance of a comprehensive dietary history and a meticulous ocular examination. Infrared photography provides a number of advantages, including the capacity for non-invasive assessment, enhanced visualization of subtle changes, objective monitoring of treatment response, and cost-effectiveness due to the use of readily available equipment. This technique represents an underutilized diagnostic modality with particular promise for screening programs and clinical monitoring of VAD-related ocular manifestations, potentially preventing irreversible visual loss through early detection and intervention. Full article
(This article belongs to the Collection Interesting Images)
Show Figures

Figure 1

21 pages, 716 KiB  
Review
Improving Hemorrhoid Outcomes: A Narrative Review and Best Practices Guide for Pharmacists
by Nardine Nakhla, Ashok Hospattankar, Kamran Siddiqui and Mary Barna Bridgeman
Pharmacy 2025, 13(4), 105; https://doi.org/10.3390/pharmacy13040105 - 30 Jul 2025
Viewed by 259
Abstract
Hemorrhoidal disease remains a prevalent yet often overlooked condition, affecting millions worldwide and imposing a substantial healthcare burden. Despite the availability of multiple treatment options, gaps persist in patient education, early symptom recognition, and optimal treatment selection. Recent advancements are evolving the pharmacist’s [...] Read more.
Hemorrhoidal disease remains a prevalent yet often overlooked condition, affecting millions worldwide and imposing a substantial healthcare burden. Despite the availability of multiple treatment options, gaps persist in patient education, early symptom recognition, and optimal treatment selection. Recent advancements are evolving the pharmacist’s role in hemorrhoid management beyond traditional over-the-counter (OTC) and prescription approaches. The 2024 American Society of Colon and Rectal Surgeons (ASCRS) guidelines introduce updates on the use of phlebotonics, a class of venoactive drugs gaining recognition for their role in symptom management, yet largely underutilized in U.S. clinical practice. In parallel, novel clinical tools are reshaping how pharmacists engage in assessment and care. The integration of digital decision-support platforms and structured evaluation algorithms now empowers them to systematically evaluate symptoms, identify red flag signs, and optimize patient triage. These tools reduce diagnostic variability and improve decision-making accuracy. Given their accessibility and trusted role in frontline healthcare, pharmacists are well-positioned to bridge these critical gaps by adopting emerging treatment recommendations, leveraging algorithm-driven assessments, and reinforcing best practices in patient education and referral. This narrative review aims to equip pharmacists with updated insights into evidence-based hemorrhoid management strategies and provide them with structured assessment algorithms to standardize symptom evaluation and treatment pathways. By integrating these innovations, pharmacists can enhance treatment outcomes, promote patient safety, and contribute to improved quality of life (QoL) for individuals suffering from hemorrhoidal disease. Full article
(This article belongs to the Section Pharmacy Practice and Practice-Based Research)
Show Figures

Graphical abstract

37 pages, 9111 KiB  
Article
Conformal On-Body Antenna System Integrated with Deep Learning for Non-Invasive Breast Cancer Detection
by Marwa H. Sharaf, Manuel Arrebola, Khalid F. A. Hussein, Asmaa E. Farahat and Álvaro F. Vaquero
Sensors 2025, 25(15), 4670; https://doi.org/10.3390/s25154670 - 28 Jul 2025
Viewed by 318
Abstract
Breast cancer detection through non-invasive and accurate techniques remains a critical challenge in medical diagnostics. This study introduces a deep learning-based framework that leverages a microwave radar system equipped with an arc-shaped array of six antennas to estimate key tumor parameters, including position, [...] Read more.
Breast cancer detection through non-invasive and accurate techniques remains a critical challenge in medical diagnostics. This study introduces a deep learning-based framework that leverages a microwave radar system equipped with an arc-shaped array of six antennas to estimate key tumor parameters, including position, size, and depth. This research begins with the evolutionary design of an ultra-wideband octagram ring patch antenna optimized for enhanced tumor detection sensitivity in directional near-field coupling scenarios. The antenna is fabricated and experimentally evaluated, with its performance validated through S-parameter measurements, far-field radiation characterization, and efficiency analysis to ensure effective signal propagation and interaction with breast tissue. Specific Absorption Rate (SAR) distributions within breast tissues are comprehensively assessed, and power adjustment strategies are implemented to comply with electromagnetic exposure safety limits. The dataset for the deep learning model comprises simulated self and mutual S-parameters capturing tumor-induced variations over a broad frequency spectrum. A core innovation of this work is the development of the Attention-Based Feature Separation (ABFS) model, which dynamically identifies optimal frequency sub-bands and disentangles discriminative features tailored to each tumor parameter. A multi-branch neural network processes these features to achieve precise tumor localization and size estimation. Compared to conventional attention mechanisms, the proposed ABFS architecture demonstrates superior prediction accuracy and interpretability. The proposed approach achieves high estimation accuracy and computational efficiency in simulation studies, underscoring the promise of integrating deep learning with conformal microwave imaging for safe, effective, and non-invasive breast cancer detection. Full article
Show Figures

Figure 1

23 pages, 8450 KiB  
Article
Spatio-Temporal Collaborative Perception-Enabled Fault Feature Graph Construction and Topology Mining for Variable Operating Conditions Diagnosis
by Jiaxin Zhao, Xing Wu, Chang Liu and Feifei He
Sensors 2025, 25(15), 4664; https://doi.org/10.3390/s25154664 - 28 Jul 2025
Viewed by 251
Abstract
Industrial equipment fault diagnosis faces dual challenges: significant data distribution discrepancies caused by diverse operating conditions impair generalization capabilities, while underutilized spatio-temporal information from multi-source data hinders feature extraction. To address this, we propose a spatio-temporal collaborative perception-driven feature graph construction and topology [...] Read more.
Industrial equipment fault diagnosis faces dual challenges: significant data distribution discrepancies caused by diverse operating conditions impair generalization capabilities, while underutilized spatio-temporal information from multi-source data hinders feature extraction. To address this, we propose a spatio-temporal collaborative perception-driven feature graph construction and topology mining methodology for variable-condition diagnosis. First, leveraging the operational condition invariance and cross-condition consistency of fault features, we construct fault feature graphs using single-source data and similarity clustering, validating topological similarity and representational consistency under varying conditions. Second, we reveal spatio-temporal correlations within multi-source feature topologies. By embedding multi-source spatio-temporal information into fault feature graphs via spatio-temporal collaborative perception, we establish high-dimensional spatio-temporal feature topology graphs based on spectral similarity, extending generalized feature representations into the spatio-temporal domain. Finally, we develop a graph residual convolutional network to mine topological information from multi-source spatio-temporal features under complex operating conditions. Experiments on variable/multi-condition datasets demonstrate the following: feature graphs seamlessly integrate multi-source information with operational variations; the methodology precisely captures spatio-temporal delays induced by vibrational direction/path discrepancies; and the proposed model maintains both high diagnostic accuracy and strong generalization capacity under complex operating conditions, delivering a highly reliable framework for rotating machinery fault diagnosis. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

19 pages, 1951 KiB  
Article
System for the Acquisition and Analysis of Maintenance Data of Railway Traffic Control Devices
by Mieczysław Kornaszewski, Waldemar Nowakowski and Roman Pniewski
Appl. Sci. 2025, 15(15), 8305; https://doi.org/10.3390/app15158305 - 25 Jul 2025
Viewed by 184
Abstract
A particularly important activity carried out by railway infrastructure managers to maintain railway devices in full working order is the diagnostic process. It increases the level of railway safety. The diagnostic process involves collecting information about the equipment through inspections, tests, functional trials, [...] Read more.
A particularly important activity carried out by railway infrastructure managers to maintain railway devices in full working order is the diagnostic process. It increases the level of railway safety. The diagnostic process involves collecting information about the equipment through inspections, tests, functional trials, parameter measurements, and analysis of the working environment, followed by comparing the obtained information with the required parameters or permissible conditions. This activity also enables the formulation of a technical diagnosis regarding the current ability of the devices to perform its intended functions, taking into account the impact of its technical condition on railway traffic safety. This is especially important in the case of railway traffic control devices, as these devices are largely responsible for ensuring railway traffic safety. The collection of data on the condition of railway traffic control devices in the form of Big Data sets and diagnostic inference is an effective factor in making operational decisions for such devices. It enables the acquisition of complete information about the actual course of the exploitation process and allows for obtaining reliable information necessary to manage this process, particularly in the areas of diagnostics forecasting of devices conditions, renewal, and organization of maintenance and repair facilities. To support this, a service data acquisition and analysis system for railway traffic control devices (SADEK) was developed. This system can serve as a software platform for maintenance needs in the railway sector. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

19 pages, 290 KiB  
Article
Artificial Intelligence in Primary Care: Support or Additional Burden on Physicians’ Healthcare Work?—A Qualitative Study
by Stefanie Mache, Monika Bernburg, Annika Würtenberger and David A. Groneberg
Clin. Pract. 2025, 15(8), 138; https://doi.org/10.3390/clinpract15080138 - 25 Jul 2025
Viewed by 254
Abstract
Background: Artificial intelligence (AI) is being increasingly promoted as a means to enhance diagnostic accuracy, to streamline workflows, and to improve overall care quality in primary care. However, empirical evidence on how primary care physicians (PCPs) perceive, engage with, and emotionally respond [...] Read more.
Background: Artificial intelligence (AI) is being increasingly promoted as a means to enhance diagnostic accuracy, to streamline workflows, and to improve overall care quality in primary care. However, empirical evidence on how primary care physicians (PCPs) perceive, engage with, and emotionally respond to AI technologies in everyday clinical settings remains limited. Concerns persist regarding AI’s usability, transparency, and potential impact on professional identity, workload, and the physician–patient relationship. Methods: This qualitative study investigated the lived experiences and perceptions of 28 PCPs practicing in diverse outpatient settings across Germany. Participants were purposively sampled to ensure variation in age, practice characteristics, and digital proficiency. Data were collected through in-depth, semi-structured interviews, which were audio-recorded, transcribed verbatim, and subjected to rigorous thematic analysis employing Mayring’s qualitative content analysis framework. Results: Participants demonstrated a fundamentally ambivalent stance toward AI integration in primary care. Perceived advantages included enhanced diagnostic support, relief from administrative burdens, and facilitation of preventive care. Conversely, physicians reported concerns about workflow disruption due to excessive system prompts, lack of algorithmic transparency, increased cognitive and emotional strain, and perceived threats to clinical autonomy and accountability. The implications for the physician–patient relationship were seen as double-edged: while some believed AI could foster trust through transparent use, others feared depersonalization of care. Crucial prerequisites for successful implementation included transparent and explainable systems, structured training opportunities, clinician involvement in design processes, and seamless integration into clinical routines. Conclusions: Primary care physicians’ engagement with AI is marked by cautious optimism, shaped by both perceived utility and significant concerns. Effective and ethically sound implementation requires co-design approaches that embed clinical expertise, ensure algorithmic transparency, and align AI applications with the realities of primary care workflows. Moreover, foundational AI literacy should be incorporated into undergraduate health professional curricula to equip future clinicians with the competencies necessary for responsible and confident use. These strategies are essential to safeguard professional integrity, support clinician well-being, and maintain the humanistic core of primary care. Full article
25 pages, 1696 KiB  
Article
Dual-Level Electric Submersible Pump (ESP) Failure Classification: A Novel Comprehensive Classification Bridging Failure Modes and Root Cause Analysis
by Mostafa A. Sobhy, Gehad M. Hegazy and Ahmed H. El-Banbi
Energies 2025, 18(15), 3943; https://doi.org/10.3390/en18153943 - 24 Jul 2025
Viewed by 302
Abstract
Electric submersible pumps (ESPs) are critical for artificial lift operations; however, they are prone to frequent failures, often resulting in high operational costs and production downtime. Traditional ESP failure classifications are limited by lack of standardization and the conflation of failure modes with [...] Read more.
Electric submersible pumps (ESPs) are critical for artificial lift operations; however, they are prone to frequent failures, often resulting in high operational costs and production downtime. Traditional ESP failure classifications are limited by lack of standardization and the conflation of failure modes with root causes. To address these limitations, this study proposes a new two-step integrated failure modes and root cause (IFMRC) classification system. The new framework clearly distinguishes between failure modes and root causes, providing a systematic, structured approach that enhances fault diagnosis and failure analysis and can lead to better failure prevention strategies. This methodology was validated using a case study of over 4000 ESP installations. The data came from Egypt’s Western Desert, covering a decade of operational data. The sources included ESP databases, workover records, and detailed failure investigation (DIFA) reports. The failure modes were categorized into electrical, mechanical, hydraulic, chemical, and operational types, while root causes were linked to environmental, design, operational, and equipment factors. Statistical analysis, in this case study, revealed that motor short circuits, low flow conditions, and cable short circuits were the most frequent failure modes, with excessive heat, scale deposition, and electrical grounding faults being the dominant root causes. This study underscores the importance of accurate root cause failure classification, robust data acquisition, and expanded failure diagnostics to improve ESP reliability. The proposed IFMRC framework addresses limitations in conventional taxonomies and facilitates ongoing enhancement of ESP design, operation, and maintenance in complex field conditions. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

15 pages, 1174 KiB  
Article
A New Incremental Learning Method Based on Rainbow Memory for Fault Diagnosis of AUV
by Ying Li, Yuxing Ye, Zhiwei Zhang and Long Wen
Sensors 2025, 25(15), 4539; https://doi.org/10.3390/s25154539 - 22 Jul 2025
Viewed by 211
Abstract
Autonomous Underwater Vehicles (AUVs) are gradually becoming some of the most important equipment in deep-sea exploration. However, in the dynamic nature of the deep-sea environment, any unplanned fault of AUVs would cause serious accidents. Traditional fault diagnosis models are trained in static and [...] Read more.
Autonomous Underwater Vehicles (AUVs) are gradually becoming some of the most important equipment in deep-sea exploration. However, in the dynamic nature of the deep-sea environment, any unplanned fault of AUVs would cause serious accidents. Traditional fault diagnosis models are trained in static and fixed datasets, making them difficult to adopt in new and unknown deep-sea environments. To address these issues, this study explores incremental learning to enable AUVs to continuously adapt to new fault scenarios while preserving previously learned diagnostic knowledge, named the RM-MFKAN model. First, the approach begins by employing the Rainbow Memory (RM) framework to analyze data characteristics and temporal sequences, thereby delineating boundaries between old and new tasks. Second, the model evaluates data importance to select and store key samples encapsulating critical information from prior tasks. Third, the RM is combined with the enhanced KAN network, and the stored samples are then combined with new task training data and fed into a multi-branch feature fusion neural network. The proposed RM-MFKAN model was conducted on the “Haizhe” dataset, and the experimental results have demonstrated that the proposed model achieves superior performance in fault diagnosis for AUVs. Full article
Show Figures

Figure 1

18 pages, 1587 KiB  
Article
Management of Mobile Resonant Electrical Systems for High-Voltage Generation in Non-Destructive Diagnostics of Power Equipment Insulation
by Anatolii Shcherba, Dmytro Vinnychenko, Nataliia Suprunovska, Sergy Roziskulov, Artur Dyczko and Roman Dychkovskyi
Electronics 2025, 14(15), 2923; https://doi.org/10.3390/electronics14152923 - 22 Jul 2025
Viewed by 244
Abstract
This research presents the development and management principles of mobile resonant electrical systems designed for high-voltage generation, intended for non-destructive diagnostics of insulation in high-power electrical equipment. The core of the system is a series inductive–capacitive (LC) circuit characterized by a high quality [...] Read more.
This research presents the development and management principles of mobile resonant electrical systems designed for high-voltage generation, intended for non-destructive diagnostics of insulation in high-power electrical equipment. The core of the system is a series inductive–capacitive (LC) circuit characterized by a high quality (Q) factor and operating at high frequencies, typically in the range of 40–50 kHz or higher. Practical implementations of the LC circuit with Q-factors exceeding 200 have been achieved using advanced materials and configurations. Specifically, ceramic capacitors with a capacitance of approximately 3.5 nF and Q-factors over 1000, in conjunction with custom-made coils possessing Q-factors above 280, have been employed. These coils are constructed using multi-core, insulated, and twisted copper wires of the Litzendraht type to minimize losses at high frequencies. Voltage amplification within the system is effectively controlled by adjusting the current frequency, thereby maximizing voltage across the load without increasing the system’s size or complexity. This frequency-tuning mechanism enables significant reductions in the weight and dimensional characteristics of the electrical system, facilitating the development of compact, mobile installations. These systems are particularly suitable for on-site testing and diagnostics of high-voltage insulation in power cables, large rotating machines such as turbogenerators, and other critical infrastructure components. Beyond insulation diagnostics, the proposed system architecture offers potential for broader applications, including the charging of capacitive energy storage units used in high-voltage pulse systems. Such applications extend to the synthesis of micro- and nanopowders with tailored properties and the electrohydropulse processing of materials and fluids. Overall, this research demonstrates a versatile, efficient, and portable solution for advanced electrical diagnostics and energy applications in the high-voltage domain. Full article
(This article belongs to the Special Issue Energy Harvesting and Energy Storage Systems, 3rd Edition)
Show Figures

Figure 1

10 pages, 1491 KiB  
Article
Development of a Point-of-Care Immunochromatographic Lateral Flow Strip Assay for the Detection of Nipah and Hendra Viruses
by Jianjun Jia, Wenjun Zhu, Guodong Liu, Sandra Diederich, Bradley Pickering, Logan Banadyga and Ming Yang
Viruses 2025, 17(7), 1021; https://doi.org/10.3390/v17071021 - 21 Jul 2025
Viewed by 387
Abstract
Nipah virus (NiV) and Hendra virus (HeV), which both belong to the genus henipavirus, are zoonotic pathogens that cause severe systemic, neurological, and/or respiratory disease in humans and a variety of mammals. Therefore, monitoring viral prevalence in natural reservoirs and rapidly diagnosing cases [...] Read more.
Nipah virus (NiV) and Hendra virus (HeV), which both belong to the genus henipavirus, are zoonotic pathogens that cause severe systemic, neurological, and/or respiratory disease in humans and a variety of mammals. Therefore, monitoring viral prevalence in natural reservoirs and rapidly diagnosing cases of henipavirus infection are critical to limiting the spread of these viruses. Current laboratory methods for detecting NiV and HeV include virus isolation, reverse transcription quantitative real-time PCR (RT-qPCR), and antigen detection via an enzyme-linked immunosorbent assay (ELISA), all of which require highly trained personnel and specialized equipment. Here, we describe the development of a point-of-care customized immunochromatographic lateral flow (ILF) assay that uses recombinant human ephrin B2 as a capture ligand on the test line and a NiV-specific monoclonal antibody (mAb) on the conjugate pad to detect NiV and HeV. The ILF assay detects NiV and HeV with a diagnostic specificity of 94.4% and has no cross-reactivity with other viruses. This rapid test may be suitable for field testing and in countries with limited laboratory resources. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

Back to TopTop