A New Incremental Learning Method Based on Rainbow Memory for Fault Diagnosis of AUV
Abstract
1. Introduction
- (1)
- A new application of Rainbow Memory-augmented incremental learning to AUV fault diagnosis, enabling continuous knowledge consolidation through strategically reintroduced historical samples while assimilating new operational data and mitigating catastrophic forgetting.
- (2)
- A new two-dimensional convolutional feature fusion network is developed to extract both global fault characteristics and local correlation features from AUV multi-sensor data, enabling effective feature-level integration.
- (3)
- The integration of the MFKAN model as the diagnostic backbone, which has been validated on the ‘Haizhe’ AUV benchmark dataset. The results demonstrate its superior multi-modal feature fusion capabilities compared to baseline architectures.
2. Related Work
2.1. AUV Fault Diagnosis
2.2. Incremental Learning-Based Fault Diagnosis
3. Methodology
3.1. Rainbow Memory Module
3.2. MFKAN Foundation Model
3.3. Loss Function
4. Experimental Study
4.1. AUV Dataset
4.2. Experimental Setup
4.3. Incremental Learning Performance
4.4. Ablation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Wu, Y.; Zhou, Y.; Hu, D. Fault-Tolerant Control of Autonomous Underwater Vehicle Actuators Based on Takagi and Sugeno Fuzzy and Pseudo-Inverse Quadratic Programming under Constraints. Sensors 2024, 24, 3029. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Gao, R.X.; He, Q.; Huang, Y.; Jiang, T.; Peng, Z.; Thévenaz, L.; Xiong, Y.; Zhong, S. New sensing technologies for monitoring machinery, structures, and manufacturing processes. J. Dyn. Monit. Diagn. 2023, 2, 69–88. [Google Scholar]
- Huang, R.; Xia, J.; Zhang, B.; Chen, Z.; Li, W. Compound fault diagnosis for rotating machinery: State-of-the-art, challenges, and opportunities. J. Dyn. Monit. Diagn. 2023, 2, 13–29. [Google Scholar] [CrossRef]
- Gebraeel, N.; Lei, Y.; Li, N.; Si, X.; Zio, E. Prognostics and remaining useful life prediction of machinery: Advances, opportunities and challenges. J. Dyn. Monit. Diagn. 2023, 2, 1–12. [Google Scholar]
- Ma, S.; Leng, J.; Zheng, P.; Chen, Z.; Li, B.; Li, W.; Liu, Q.; Chen, X. A digital twin-assisted deep transfer learning method towards intelligent thermal error modeling of electric spindles. J. Intell. Manuf. 2025, 36, 1659–1688. [Google Scholar] [CrossRef]
- Lin, H.; Huang, X.; Chen, Z.; He, G.; Xi, C.; Li, W. Matching pursuit network: An interpretable sparse time–frequency representation method toward mechanical fault diagnosis. IEEE Trans. Neural Netw. Learn. Syst. 2024, 36, 12377–12388. [Google Scholar] [CrossRef] [PubMed]
- Rebuffi, S.A.; Kolesnikov, A.; Sperl, G.; Lampert, C.H. icarl: Incremental classifier and representation learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2001–2010. [Google Scholar]
- Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized experience replay. arXiv 2015, arXiv:1511.05952. [Google Scholar]
- Cohen, M.B.; Lee, Y.T.; Musco, C.; Musco, C.; Peng, R.; Sidford, A. Uniform sampling for matrix approximation. In Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, Rehovot, Israel, 11–13 January 2015; pp. 181–190. [Google Scholar]
- Wu, Y.; Wang, A.; Zhou, Y.; Zhu, Z.; Zeng, Q. Fault diagnosis of autonomous underwater vehicle with missing data based on multi-channel full convolutional neural network. Machines 2023, 11, 960. [Google Scholar] [CrossRef]
- Xia, S.; Zhou, X.; Shi, H.; Li, S.; Xu, C. A fault diagnosis method based on attention mechanism with application in Qianlong-2 autonomous underwater vehicle. Ocean Eng. 2021, 233, 109049. [Google Scholar] [CrossRef]
- Pei, S.; Wang, H.; Han, T. Time-efficient neural architecture search for autonomous underwater vehicle fault diagnosis. IEEE Trans. Instrum. Meas. 2023, 72, 1–11. [Google Scholar] [CrossRef]
- Xia, S.; Zhou, X.; Shi, H.; Li, S. Hybrid feature adaptive fusion network for multivariate time series classification with application in AUV fault detection. Ships Offshore Struct. 2024, 19, 807–819. [Google Scholar] [CrossRef]
- Gao, S.; Liu, J.; Zhang, Z.; Feng, C.; He, B.; Zio, E. Physics-Guided Generative Adversarial Networks for fault detection of underwater thruster. Ocean Eng. 2023, 286, 115585. [Google Scholar] [CrossRef]
- Xu, X.; Huang, W.; Zhang, X.; Zhang, Z.; Liu, F.; Brunauer, G. An evidential reasoning-based information fusion method for fault diagnosis of ship rudder. Ocean Eng. 2025, 318, 120082. [Google Scholar] [CrossRef]
- Liu, J.; Yang, X.; Xie, Y.; Wu, M.; Li, Z.; Mu, W.; Liu, G. Multi-sensor cross-domain fault diagnosis method for leakage of ship pipeline valves. Ocean Eng. 2024, 299, 117211. [Google Scholar] [CrossRef]
- Pettirsch, A.; Garcia-Hernandez, A. Overcoming Data Scarcity in Roadside Thermal Imagery: A New Dataset and Weakly Supervised Incremental Learning Framework. Sensors 2025, 25, 2340. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Xu, H.; Fan, W.; Sun, F. Fault diagnosis of pressure relief valve based on improved deep Residual Shrinking Network. Measurement 2024, 224, 113752. [Google Scholar] [CrossRef]
- Xia, Y.; Gao, J.; Shao, X.; Wang, C.; Xiang, J.; Lin, H. Incremental rotating machinery fault diagnosis method based on multi-scale knowledge distillation and label smoothing. Meas. Sci. Technol. 2025, 36, 046208. [Google Scholar] [CrossRef]
- Wang, P.; Xiong, H.; He, H. Bearing fault diagnosis under various conditions using an incremental learning-based multi-task shared classifier. Knowl. Based Syst. 2023, 266, 110395. [Google Scholar] [CrossRef]
- Xu, X.; Bao, S.; Liang, P.; Qiao, Z.; He, C.; Shi, P. A broad learning model guided by global and local receptive causal features for online incremental machinery fault diagnosis. Expert Syst. Appl. 2024, 246, 123124. [Google Scholar] [CrossRef]
- Chen, B.; Ding, C.; Jiang, X.; Shi, J.; Huang, W.; Shen, C. Lifelong learning for bearing fault diagnosis with incremental fault types. In Proceedings of the 2022 IEEE International Conference on Prognostics and Health Management (ICPHM), Romulus, MI, USA, 06–08 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 114–120. [Google Scholar]
- Fu, Y.; Cao, H.; Chen, X.; Ding, J. Broad auto-encoder for machinery intelligent fault diagnosis with incremental fault samples and fault modes. Mech. Syst. Signal Process. 2022, 178, 109353. [Google Scholar] [CrossRef]
- Hayes, T.L.; Kafle, K.; Shrestha, R.; Acharya, M.; Kanan, C. Remind your neural network to prevent catastrophic forgetting. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 466–483. [Google Scholar]
- Douillard, A.; Cord, M.; Ollion, C.; Robert, T.; Valle, E. Podnet: Pooled outputs distillation for small-tasks incremental learning. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; part XX 16. Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 86–102. [Google Scholar]
- Chen, T.; Xiang, Y.; Wang, X. IFD-BiC: A Class-incremental Continual Learning Method for Diesel Engine Fault Diagnosis. Eng. Res. Express 2025, 7, 015419. [Google Scholar] [CrossRef]
- Fu, Y.; He, J.; Yang, L.; Luo, Z. Incremental Learning with Maximum Dissimilarity Sampling Based Fault Diagnosis for Rolling Bearings. In Proceedings of the International Conference on Bio-Inspired Computing: Theories and Applications, Changsha, China, 15–17 December 2023; Springer Nature: Singapore, 2023; pp. 213–226. [Google Scholar]
- Shen, C.; He, Z.; Chen, B.; Huang, W.; Li, L.; Wang, D. Dynamic branch layer fusion: A new continual learning method for rotating machinery fault diagnosis. Knowl. Based Syst. 2025, 313, 113177. [Google Scholar] [CrossRef]
- Yan, S.; Shao, H.; Wang, X.; Wang, J. Few-shot class-incremental learning for system-level fault diagnosis of wind turbine. IEEE/ASME Trans. Mechatron. 2024, 1–10. [Google Scholar] [CrossRef]
- Prabhu, A.; Torr, P.H.S.; Dokania, P.K. Gdumb: A simple approach that questions our progress in continual learning. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Part II 16. Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 524–540. [Google Scholar]
- Gal, Y.; Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In Proceedings of the International Conference on Machine Learning, New York City, NY, USA, 19–24 June 2016; PMLR: Cambridge, MA, USA, 2016; pp. 1050–1059. [Google Scholar]
- Bang, J.; Kim, H.; Yoo, Y.; Ha, J.-W.; Choi, J. Rainbow memory: Continual learning with a memory of diverse samples. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 8218–8227. [Google Scholar]
- Ding, N.; Qin, Y.; Yang, G.; Wei, F.; Yang, Z.; Su, Y.; Hu, S.; Chen, Y.; Chan, C.-M.; Chen, W.; et al. Parameter-efficient fine-tuning of large-scale pre-trained language models. Nat. Mach. Intell. 2023, 5, 220–235. [Google Scholar] [CrossRef]
- Castro, F.M.; Marín-Jiménez, M.J.; Guil, N.; Schmid, C.; Alahari, K. End-to-end incremental learning. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 233–248. [Google Scholar]
- Chefrour, A.; Labiba, S.M.; Difi, I.; Bakkouche, N. A novel incremental learning algorithm based on incremental vector support machina and incremental neural network learn++. Rev. D intelligence Artif. 2019, 33, 181–188. [Google Scholar] [CrossRef]
- French, R.M. Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 1999, 3, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Pan, X.; Loy, C.C.; Wang, Z.; Lin, D. Learning a unified classifier incrementally via rebalancing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 831–839. [Google Scholar]
- Li, Z.; Hoiem, D. Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 2935–2947. [Google Scholar] [CrossRef] [PubMed]
- Dhar, P.; Singh, R.V.; Peng, K.C.; Wu, Z.; Chellappa, R. Learning without memorizing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5138–5146. [Google Scholar]
- Zhu, W.; Guo, X.; Fang, Y.; Zhang, X. A path-integral-based reinforcement learning algorithm for path following of an autoassembly mobile robot. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 4487–4499. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, A.; Dokania, P.K.; Ajanthan, T.; Torr, P.H.S. Riemannian walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 532–547. [Google Scholar]
Name | Description | Name | Description |
---|---|---|---|
Time | Absolute time (s) | Yaw | Yaw angle (degree) |
PWM1-4 | Control time (ms) | a_x | Acceleration of X-axis (m/s2) |
Depth | Diving depth (ms) | a_y | Acceleration of Y-axis (m/s2) |
Press | Pressure value (Pa) | a_z | Acceleration of Z-axis (m/s2) |
Voltage | Supply voltage (V) | w_row | Row angular Acceleration (degree/s) |
Roll | Roll angle (degree) | w_pitch | Pitch angular Acceleration (degree/s) |
Pitch | Pitch angle (degree) | w_yaw | Yaw angular Acceleration (degree/s) |
Fault State | Label | Dataset | Train | Test |
---|---|---|---|---|
Normal | 0 | 182 | 146 | 36 |
Load increase | 1 | 268 | 214 | 54 |
Depth Sensor fault | 2 | 266 | 213 | 53 |
Slight damage to propeller | 3 | 260 | 208 | 52 |
Severe damage to propeller | 4 | 249 | 199 | 50 |
Hyperparameters | lr | Optimizer | Loss Function | Batch | Epochs |
---|---|---|---|---|---|
Set | 0.001 | Adam | Cross-entropy | 128 | 200 |
Inc 1 | Inc 2 | Inc 3 | ||||
---|---|---|---|---|---|---|
ACC (%) | Time (s) | ACC (%) | Time (s) | ACC (%) | Time (s) | |
Finetuning | 97.8 | 2.67 | 95.7 | 2.49 | 93.0 | 2.26 |
eeil | 97.8 | 2.58 | 88.3 | 2.43 | 64.1 | 2.28 |
Ewc | 97.8 | 2.38 | 97.2 | 2.35 | 96.3 | 2.32 |
Freezing | 97.8 | 2.59 | 97.3 | 2.48 | 96.0 | 2.43 |
Lucir | 100 | 3.45 | 95.7 | 2.68 | 87.2 | 2.38 |
Lwf | 97.8 | 2.68 | 86.9 | 2.59 | 80.4 | 2.52 |
path_integral | 97.8 | 2.72 | 92.9 | 2.66 | 88.8 | 2.46 |
RWalk | 97.8 | 2.69 | 96.8 | 2.63 | 94.6 | 2.58 |
Icarl | 97.8 | 2.54 | 96.3 | 2.47 | 89.5 | 2.34 |
RM-MFKAN | 100 | 2.32 | 98.1 | 2.24 | 96.6 | 2.16 |
Sampling Strategy | Inc 1 ACC (%) | Inc2 ACC (%) | Inc3 ACC (%) |
---|---|---|---|
Simple Random Sampling | 100 | 97.0 | 95.7 |
Reservoir Sampling | 100 | 96.7 | 95.0 |
Ring Buffer Sampling | 100 | 97.1 | 95.5 |
Rainbow Memory | 100 | 98.1 | 96.6 |
Random Seed for the Blurry Dataset | Inc 1 ACC (%) | Inc2 ACC (%) | Inc3 ACC (%) |
---|---|---|---|
Rnd_seed = 1 | 95.5 | 89.7 | 87.1 |
Rnd_seed = 2 | 100 | 98.1 | 96.6 |
Rnd_seed = 3 | 94.1 | 88.4 | 84.9 |
K | Inc 1 ACC (%) | Inc2 ACC (%) | Inc3 ACC (%) |
---|---|---|---|
100 | 77.1 | 62.8 | 59.2 |
200 | 97.1 | 93.4 | 90.6 |
300 | 98.1 | 95.3 | 92.6 |
400 | 99.0 | 96.5 | 93.4 |
500 | 100 | 98.1 | 96.6 |
600 | 100 | 97.3 | 95.5 |
Data Augmentation Methods | Inc 1 ACC (%) | Inc2 ACC (%) | Inc3 ACC (%) |
---|---|---|---|
None | 100 | 98.1 | 96.6 |
cotmix | 100 | 97.4 | 96.2 |
cutout | 100 | 97.9 | 96.6 |
Randaugment | 100 | 97.1 | 96.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Ye, Y.; Zhang, Z.; Wen, L. A New Incremental Learning Method Based on Rainbow Memory for Fault Diagnosis of AUV. Sensors 2025, 25, 4539. https://doi.org/10.3390/s25154539
Li Y, Ye Y, Zhang Z, Wen L. A New Incremental Learning Method Based on Rainbow Memory for Fault Diagnosis of AUV. Sensors. 2025; 25(15):4539. https://doi.org/10.3390/s25154539
Chicago/Turabian StyleLi, Ying, Yuxing Ye, Zhiwei Zhang, and Long Wen. 2025. "A New Incremental Learning Method Based on Rainbow Memory for Fault Diagnosis of AUV" Sensors 25, no. 15: 4539. https://doi.org/10.3390/s25154539
APA StyleLi, Y., Ye, Y., Zhang, Z., & Wen, L. (2025). A New Incremental Learning Method Based on Rainbow Memory for Fault Diagnosis of AUV. Sensors, 25(15), 4539. https://doi.org/10.3390/s25154539