Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (194)

Search Parameters:
Keywords = diagnostic NGS panel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1246 KiB  
Case Report
Synchronous Ovarian Sertoli–Leydig Cell and Clear Cell Papillary Renal Cell Tumors: A Rare Case Without Mutations in Cancer-Associated Genes
by Manuela Macera, Simone Morra, Mario Ascione, Daniela Terracciano, Monica Ianniello, Giovanni Savarese, Carlo Alviggi, Giuseppe Bifulco, Nicola Longo, Annamaria Colao, Paola Ungaro and Paolo Emidio Macchia
Curr. Oncol. 2025, 32(8), 429; https://doi.org/10.3390/curroncol32080429 - 30 Jul 2025
Viewed by 31
Abstract
(1) Background: Sertoli–Leydig cell tumors (SLCTs) are rare ovarian neoplasms that account for less than 0.5% of all ovarian tumors. They usually affect young women and often present with androgenic symptoms. We report a unique case of a 40-year-old woman diagnosed with both [...] Read more.
(1) Background: Sertoli–Leydig cell tumors (SLCTs) are rare ovarian neoplasms that account for less than 0.5% of all ovarian tumors. They usually affect young women and often present with androgenic symptoms. We report a unique case of a 40-year-old woman diagnosed with both SLCT and clear cell papillary renal cell carcinoma (CCP-RCC), a rare tumor association with unclear pathogenesis. (2) Methods: Both tumors were treated surgically. The diagnostic workup included hormonal testing, imaging studies, and extensive genetic testing, including DICER1 mutation analysis and multiplex ligation-dependent probe amplification (MLPA), as well as the examination of a next-generation sequencing (NGS) panel covering ~280 cancer-related genes. (3) Results: Histopathologic examination confirmed a well-differentiated SLCT and CCP-RCC. No pathogenic variants in DICER1 were identified by WES or MLPA. No clinically relevant changes were found in the extended NGS panel either, so a known hereditary predisposition could be ruled out. The synchronous occurrence of both tumors without genomic alterations could indicate a sporadic event or as yet unidentified mechanisms. (4) Conclusions: This case highlights the importance of a multidisciplinary approach in the management of rare tumor compounds. The exclusion of DICER1 mutations and the absence of genetic findings adds new evidence to the limited literature and underscores the importance of long-term surveillance and further research into potential shared oncogenic pathways. Full article
(This article belongs to the Section Gynecologic Oncology)
Show Figures

Figure 1

18 pages, 3187 KiB  
Article
Real-World Evaluation of Microsatellite Instability Detection via Targeted NGS Panels in Routine Molecular Diagnostics
by Petra Škerl, Vesna Vogrič, Vida Stegel, Vita Šetrajčič Dragoš, Olga Blatnik, Gašper Klančar and Srdjan Novaković
Int. J. Mol. Sci. 2025, 26(15), 7138; https://doi.org/10.3390/ijms26157138 - 24 Jul 2025
Viewed by 214
Abstract
Microsatellite instability (MSI) is a clinically important biomarker for predicting responses to immune checkpoint inhibitors and identifying individuals with Lynch syndrome. Although MSI detection has been incorporated into Illumina’s next-generation tumor sequencing workflows, interpretation of the results remains challenging due to the absence [...] Read more.
Microsatellite instability (MSI) is a clinically important biomarker for predicting responses to immune checkpoint inhibitors and identifying individuals with Lynch syndrome. Although MSI detection has been incorporated into Illumina’s next-generation tumor sequencing workflows, interpretation of the results remains challenging due to the absence of standardized thresholds and reporting criteria. In this retrospective study, we assessed the performance of MSI detection using Illumina’s targeted NGS panels—TruSight Tumor 170 and TruSight Oncology 500. The NGS-based MSI results were compared to those obtained by the reference method, MSI-PCR, across multiple tumor types in a real-world cohort of 331 cancer patients. The NGS method demonstrated high concordance overall (AUC = 0.922), though sensitivity was lower in colorectal cancers (AUC = 0.867) due to broader score variability and overlapping distributions. Our findings support the clinical utility of Illumina’s NGS-derived MSI scores for identifying MSI-H tumors, with a recommended MSI score cut-off value of ≥13.8%. Additionally, a borderline group was introduced, defined by an MSI score ranging from ≥8.7% to <13.8%. Within this range, the integration of TMB into the MSI classification workflow significantly improves diagnostic accuracy. For samples that remain inconclusive, orthogonal confirmation using MSI-PCR is advised to ensure accurate MSI classification. Full article
Show Figures

Figure 1

12 pages, 1202 KiB  
Article
Evaluating Liquid Biopsy for Circulating Tumor DNA (ctDNA) Detection as a Complementary Diagnostic Tool in Thyroid Cancer Among Ecuadorian Women
by Santiago Cadena-Ullauri, Viviana A. Ruiz-Pozo, Elius Paz-Cruz, Rafael Tamayo-Trujillo, Patricia Guevara-Ramírez, Oscar Jaramillo-Calvas, Cristhian García, Mikaela García, Ana Pérez, Maritza Ochoa-Castro, Fausto Zaruma-Torres, Favian Bayas-Morejón, Lenín Guamán-Herrera and Ana Karina Zambrano
Int. J. Mol. Sci. 2025, 26(14), 6987; https://doi.org/10.3390/ijms26146987 - 21 Jul 2025
Viewed by 376
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy, with a rising global incidence. In Ecuador, TC rates are among the highest worldwide. Generally, fine-needle aspiration (FNA) remains the standard diagnostic tool; however, due to its limitations, alternative or complementary approaches are required. [...] Read more.
Thyroid cancer (TC) is the most common endocrine malignancy, with a rising global incidence. In Ecuador, TC rates are among the highest worldwide. Generally, fine-needle aspiration (FNA) remains the standard diagnostic tool; however, due to its limitations, alternative or complementary approaches are required. In this context, liquid biopsy, particularly circulating tumor DNA (ctDNA), offers a promising, minimally invasive option for tumor genotyping. Objective: This study evaluated the concordance between genetic variants identified in ctDNA and tumor tissue. Thirty-six women with papillary thyroid cancer were included. Tumor tissue and blood samples were collected, and DNA was extracted. Next-Generation Sequencing (NGS) using the TruSight Tumor 15 panel identified genetic variants in both ctDNA and tumor DNA. Variant pathogenicity was assessed following ACMG guidelines. Genetic ancestry was determined using Ancestry Informative Markers (AIMs). A total of 71 cancer-associated variants were detected, with 81.69% concordance between tumor DNA and ctDNA. TP53 was the most frequently mutated gene. While most pathogenic variants were found in tumor tissue, some variants appeared exclusively in ctDNA samples on specific patients, suggesting tumor heterogeneity. Ancestry analysis revealed a predominant Native American component (62.4%). Liquid biopsy demonstrates high concordance with tumor tissue analysis and holds potential as a complementary diagnostic tool for thyroid cancer. However, challenges such as low ctDNA yield and underrepresentation in genetic databases highlight the need for improved protocols and increased inclusion of admixed populations in genomic studies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 860 KiB  
Article
Identification of Genetic Variants Using Next-Generation Sequencing in Pediatric Myelodysplastic Syndrome: From Disease Biology to Clinical Applications
by Viviane Lamim Lovatel, Gerson Moura Ferreira, Beatriz Ferreira da Silva, Rayane de Souza Torres, Rita de Cássia Barbosa da Silva Tavares, Ana Paula Silva Bueno, Eliana Abdelhay and Teresa de Souza Fernandez
Int. J. Mol. Sci. 2025, 26(14), 6907; https://doi.org/10.3390/ijms26146907 - 18 Jul 2025
Viewed by 204
Abstract
This study aimed to identify genetic variants using a customized next-generation sequencing (NGS) panel for pediatric myelodysplastic syndrome (pMDS) and to explore their associations with cytogenetic and clinical characteristics. Cytogenetic analyses were conducted using G-banding and fluorescence in situ hybridization. NGS was performed [...] Read more.
This study aimed to identify genetic variants using a customized next-generation sequencing (NGS) panel for pediatric myelodysplastic syndrome (pMDS) and to explore their associations with cytogenetic and clinical characteristics. Cytogenetic analyses were conducted using G-banding and fluorescence in situ hybridization. NGS was performed with the Ion Torrent Personal Genome Machine for the following genes: GATA2, RUNX1, CEBPA, ANKRD26, ETV6, SAMD9, SAMD9L, PTPN11, NRAS, SETBP1, DDX41, TP53, FLT3, SRP72, and JAK3. Analyses were performed with Ion Reporter 5.20.8.0 software. Genetic variants were classified using the dbSNP, 1000 Genomes, COSMIC, and Varsome databases. We analyzed 25 cases of pMDS; 15 presented abnormal karyotypes, and 19 showed genetic variants. Among the 29 variants identified across 12/15 genes, 27% were pathogenic and 14% were likely pathogenic, with NRAS and GATA2 most frequently associated with disease progression. A new somatic variant of uncertain significance in SETBP1 was detected in seven patients showing heterogeneous clinical outcomes. Genetic variants were found in 7/10 patients with normal karyotypes, indicating that submicroscopic alterations can shed light on disease biology. Our results highlight the critical role of a targeted NGS panel in identifying molecular alterations associated with pMDS pathogenesis, thereby enhancing diagnostic precision, prognosis, and aiding in treatment selection. Full article
Show Figures

Figure 1

14 pages, 1713 KiB  
Article
Clinical Application of a Customized Gene Panel for Identifying Autism Spectrum Disorder-Associated Variants
by Vittoria Greco, Donatella Greco, Simone Treccarichi, Maria Bottitta, Pinella Failla, Antonino Musumeci, Carla Papa, Valeria Chiavetta, Francesco Calì and Mirella Vinci
Medicina 2025, 61(7), 1273; https://doi.org/10.3390/medicina61071273 - 14 Jul 2025
Viewed by 303
Abstract
Background and Objectives: Autism spectrum disorder (ASD) is a neurodevelopmental disorder that belong to genetic and epigenetic mechanism. Despite the recent advantages in next-generation sequencing (NGS) technology, ASD etiology is still unclear. Materials and Methods: In this study, we tested a [...] Read more.
Background and Objectives: Autism spectrum disorder (ASD) is a neurodevelopmental disorder that belong to genetic and epigenetic mechanism. Despite the recent advantages in next-generation sequencing (NGS) technology, ASD etiology is still unclear. Materials and Methods: In this study, we tested a customized target genetic panel consisting of 74 genes in a cohort of 53 ASD individuals. The tested panel was designed from the SFARI database. Results: Among 53 patients analyzed using a targeted genetic panel, 102 rare variants were identified, with nine individuals carrying likely pathogenic or pathogenic variants considered genetically “positive.” We identified six de novo variants across five genes (POGZ 2 variants, NCOR1, CHD2, ADNP, and GRIN2B), including two variants of uncertain significance in POGZ p.Thr451Met and NCOR1 p.Glu1137Lys, one likely pathogenic variant in GRIN2B p.Leu714Gln, and three pathogenic variants in POGZ p.Leu775Valfs32, CHD2 p.Thr1108Metfs8, and ADNP p.Pro5Argfs*2. Conclusions: This study presents a comprehensive characterization of the targeted gene panel used for genetic analysis, while critically evaluating its diagnostic limitations within the context of contemporary genomic approaches. A pivotal accomplishment of this study was the ClinVar submission of novel de novo variants which expands the documented mutational spectrum of ASD-associated genes and enhances future diagnostic interpretation. Full article
(This article belongs to the Section Genetics and Molecular Medicine)
Show Figures

Figure 1

10 pages, 763 KiB  
Article
Diagnostic Yield of Next-Generation Sequencing for Rare Pediatric Genetic Disorders: A Single-Center Experience
by Milena Stoyanova, Dinnar Yahya, Mari Hachmeriyan and Mariya Levkova
Med. Sci. 2025, 13(2), 75; https://doi.org/10.3390/medsci13020075 - 9 Jun 2025
Viewed by 781
Abstract
Background: Next-generation sequencing (NGS), particularly whole-exome sequencing (WES), has become a powerful diagnostic tool for rare genetic conditions. However, its success rate varies based on the underlying genetic etiology and the population studied. Methods: This retrospective study evaluated the diagnostic yield of [...] Read more.
Background: Next-generation sequencing (NGS), particularly whole-exome sequencing (WES), has become a powerful diagnostic tool for rare genetic conditions. However, its success rate varies based on the underlying genetic etiology and the population studied. Methods: This retrospective study evaluated the diagnostic yield of NGS in a cohort of 137 pediatric patients with suspected rare genetic disorders in Bulgaria, a setting where such testing is not reimbursed and must be self-funded. The patients underwent either WES or targeted gene panel testing based on clinical presentation, family history, and genetic evaluation. Results: The overall diagnostic yield was 45.99%, with WES achieving 51.25% and targeted testing achieving 38.60%. The highest yield was observed in patients presenting with both dysmorphic features and neurodevelopmental delays (62.5%), while the lowest was observed among those with isolated neurodevelopmental issues (10%). A significant portion of the identified variants (35.9%) were novel. Eight patients were diagnosed with copy number variants (CNVs) detected only through WES. Conclusions: Our findings illustrate the value of WES as a first-line test and highlight the impact of deep phenotyping on diagnostic success. This study also emphasizes the need for a population-specific reference genome and equal access to genomic diagnostics in all European countries. Full article
Show Figures

Figure 1

12 pages, 1862 KiB  
Article
A Novel Recurrent 200 kb CRYL1 Deletion Underlies DFNB1A Hearing Loss in Patients from Northwestern Spain
by Guadalupe A. Cifuentes, Marta Diñeiro, Alicia R. Huete, Raquel Capín, Adrián Santiago, Alberto A. R. Vargas, Dido Carrero, Esther López Martínez, Beatriz Aguiar, Anja Fischer, Roland Rad, María Costales, Rubén Cabanillas and Juan Cadiñanos
Genes 2025, 16(6), 670; https://doi.org/10.3390/genes16060670 - 30 May 2025
Viewed by 1022
Abstract
Background/Objectives: Pathogenic recessive GJB2 variants are the main genetic cause of non-syndromic sensorineural hearing loss. However, following GJB2 testing, a significant proportion of deaf patients are only found to be heterozygous carriers of pathogenic GJB2 alleles. Five large deletions not affecting GJB2 but [...] Read more.
Background/Objectives: Pathogenic recessive GJB2 variants are the main genetic cause of non-syndromic sensorineural hearing loss. However, following GJB2 testing, a significant proportion of deaf patients are only found to be heterozygous carriers of pathogenic GJB2 alleles. Five large deletions not affecting GJB2 but encompassing a minimal common 62 kb region within the neighbouring CRYL1 gene have been described to cause loss of cis GJB2 expression and, as a result, produce hearing loss when in trans with pathogenic GJB2 variants. We describe the identification and characterization of a novel deletion of this type in deaf patients from northwestern Spain. Methods: We used panel NGS sequencing to detect the deletion, MLPA to validate it, whole-genome sequencing to map its breakpoints, PCR + Sanger sequencing to finely characterize it and triple-primer PCR to screen for it. Results: We identified a novel 200 kb deletion spanning the whole CRYL1 gene in two unrelated deaf patients from Asturias (in northwestern Spain) who were heterozygous for the pathogenic GJB2 c.35delG variant. Although the large deletion was absent from gnomAD v4.1.0 and 2052 local control alleles, screening for it in 20 additional deaf carriers of monoallelic pathogenic GJB2 variants detected it in another patient from Galicia (also in northwestern Spain). The novel deletion, termed del(200 kb)insATTATA, explained hearing loss in 3/43 (7%) deaf patients from our cohort that were otherwise heterozygous for pathogenic GJB2 variants. Conclusions: This work highlights the importance of comprehensively testing all genomic regions known to be clinically relevant for a given genetic condition, including thorough CRYL1 CNV screening for DFNB1A diagnostics. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

19 pages, 768 KiB  
Article
From Sanger to Oxford Nanopore MinION Technology: The Impact of Third-Generation Sequencing on Genetic Hematological Diagnosis
by María José Larráyoz, Pablo Luri-Martin, Amagoia Mañu, Oihane Churruca, Natalia Gordillo, Irache Erdozain, Ada Esteban-Figuerola, Carlos de Miguel, Diego Robles, María García-Fortes, José Rifón Roca, Ana Alfonso-Pierola, Felipe Prósper, Beñat Ariceta and María José Calasanz
Cancers 2025, 17(11), 1811; https://doi.org/10.3390/cancers17111811 - 29 May 2025
Viewed by 747
Abstract
Background: Sanger sequencing remains the gold standard for characterizing genetic variants in short DNA fragments (<700 bp). However, the increasing demand for short TATs and high sensitivities in variant detection, particularly in oncohematology, is driving the need for more efficient methods. Next-generation sequencing [...] Read more.
Background: Sanger sequencing remains the gold standard for characterizing genetic variants in short DNA fragments (<700 bp). However, the increasing demand for short TATs and high sensitivities in variant detection, particularly in oncohematology, is driving the need for more efficient methods. Next-generation sequencing (NGS) has improved sensitivity and allows for the simultaneous analysis of multiple genes, but it is still costly and time-consuming. Consequently, Sanger sequencing continues to be widely used. In this study, we have compared Sanger sequencing with Oxford Nanopore technology (ONT), which offers enhanced sensitivity and faster sequencing, delivering diagnostic results within 24 h. Methods: This study involves 164 samples (for a total of 174 analyzed regions of interest) previously characterized using either Sanger sequencing or a next-generation sequencing (NGS) panel, categorized by their genetic alterations. Validation was conducted on 15 genes crucial for the diagnosis, prognosis, or identification of drug resistance in myeloproliferative neoplasms (MPN), myelodysplastic syndromes (MDS), acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). The primary objective was to assess whether MinION could identify the same variants previously detected in these patients. Results and Conclusions: With a 99.43% concordance observed in our comparison, our results support the implementation of MinION technology in routine variant detection in MPN, MDS, AML, and CML cases due to its significant advantages over Sanger sequencing. Full article
(This article belongs to the Special Issue Long-Read Sequencing in Cancer)
Show Figures

Figure 1

19 pages, 3901 KiB  
Article
Clinical Application of Next-Generation Sequencing for Molecular Classification in the Management of Endometrial Cancer: An Observational Cohort Study
by Sabrina Paratore, Angela Russo, Giusi Blanco, Katia Lanzafame, Eliana Giurato, Giovanni Bartoloni, Marco D’Asta, Mirella Sapienza, Valeria Solarino, Valentina Vinci, Giulia Maria Bonanno, Giuseppe Ettore and Roberto Bordonaro
Cancers 2025, 17(11), 1806; https://doi.org/10.3390/cancers17111806 - 28 May 2025
Viewed by 779
Abstract
Background/Objectives: Endometrial cancer (EC) is the most common malignancy of the female genital tract. In 2013, The Cancer Genome Atlas analyzed the molecular profile of endometrial tumors identifying four risk classes (POLE ultramutated, mismatch repair-deficient, copy-number low-microsatellite stable, and copy-number high-serous-like. This classification [...] Read more.
Background/Objectives: Endometrial cancer (EC) is the most common malignancy of the female genital tract. In 2013, The Cancer Genome Atlas analyzed the molecular profile of endometrial tumors identifying four risk classes (POLE ultramutated, mismatch repair-deficient, copy-number low-microsatellite stable, and copy-number high-serous-like. This classification is reshaping the current understanding of EC, enabling more refined risk stratification and uncovering potential therapeutic targets tailored to specific molecular subgroups. In the context of these four categories, it is possible to identify different molecular alterations that correlate with different prognoses. Methods and Results: We retrospectively analyzed tissue samples from eighty-five EC patients, performing multigene profiling using a 50-gene next-generation sequencing (NGS) panel to categorize them into distinct molecular subtypes; we observed the following distribution: 5.9% POLE, 25.8% mismatch repair-deficient/microsatellite instability (MMRd/MSI), 11.8% p53abn/TP53mut, and 56.5% NSMP. A favorable concordance (97.6%) was shown in MSI NGS-based analysis and MMR IHC results, and the agreement rate of p53 IHC and TP53 mutation was 92.3%. When we analyzed the correlation between molecular subtypes and clinicopathological features, we found that molecular subtypes significantly differentiated by grade, FIGO stage, and lymphovascular invasion (LVSI). These findings seem to support the effectiveness of our NGS-based classifier and its reliability in distinguishing both MSI and TP53 mutated cancers. This study also explored mutations in PIK3CA, PTEN, KRAS, ERBB2, and ESR1 genes, noting their potential as targets for treatments. PIK3CA mutations were linked to favorable features, such as early disease stage and absence of LVSI. Conclusions: Our study highlights the potential of a medium-complexity NGS panel for supporting the molecular classification of endometrial cancer, complementing the existing diagnostic algorithms. By identifying additional biomarkers, we provided valuable insights into the genomic landscape of EC. However, further exploration of the molecular profiles is needed to validate these findings and improve the identification of patients at a higher risk of unfavorable outcomes. Full article
Show Figures

Figure 1

17 pages, 547 KiB  
Article
Impact of Genetic Testing Using Gene Panels, Exomes, and Genome Sequencing in Romanian Children with Epilepsy
by Iulia Maria Sabau, Iuliu Stefan Bacos-Cosma, Ioana Streata, Bogdan Dragulescu, Maria Puiu and Adela Chirita-Emandi
Int. J. Mol. Sci. 2025, 26(10), 4843; https://doi.org/10.3390/ijms26104843 - 19 May 2025
Viewed by 612
Abstract
Epilepsy is a prevalent neurological condition, having a wide range of phenotypic traits, which complicate the diagnosis process. Next-generation sequencing (NGS) techniques have improved the diagnostics for unexplained epilepsies. Our goal was to evaluate the utility and impact of genetic testing in the [...] Read more.
Epilepsy is a prevalent neurological condition, having a wide range of phenotypic traits, which complicate the diagnosis process. Next-generation sequencing (NGS) techniques have improved the diagnostics for unexplained epilepsies. Our goal was to evaluate the utility and impact of genetic testing in the clinical management of pediatric epilepsies. In addition, we aimed to identify clinical factors that could predict a genetic diagnosis. This was a retrospective study of 140 pediatric patients with epilepsy with or without other neurological conditions that underwent NGS testing (multigene panel, WES = whole exome sequencing and/or WGS = whole genome sequencing). A comparison between genetically diagnosed versus non-diagnosed children was performed based on different clinical features. Univariate and multivariate logistic regression analysis was performed to identify clinical predictors of a positive genetic diagnosis. Most children underwent gene panel testing, while 30 had exome sequencing and 3 had genome sequencing. The overall diagnostic yield of genetic testing was 28.6% (40/140) for more than 28 genes. The most frequently identified genes with causative variants were SCN1A (n = 4), SCN2A (n = 3), STXBP1 (n = 3), MECP2 (n = 2), KCNQ2 (n = 2), PRRT2 (n = 2), and NEXMIF (n = 2). Significant predictors from the logistic regression model were a younger age at seizure onset (p = 0.015), the presence of intellectual disability (p = 0.021), and facial dysmorphism (p = 0.049). A genetic diagnosis led to an impact on the choice or duration of medication in 85% (34/40) of the children, as well as the recommendation for screening of comorbidities or multidisciplinary referrals in 45% (18/40) of children. Epilepsy is a highly heterogeneous disorder, both genetically and phenotypically. Less than one third of patients had a genetic diagnosis identified using panels, exomes, and/or genomes. An early onset and syndromic features (including global developmental delay) were more likely to receive a diagnosis and benefit from optimized disease management. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

15 pages, 1917 KiB  
Article
Clinical Relevance of IFT140 Loss-of-Function Variants in Development of Renal Cysts
by Carlotta Pia Cristalli, Sara Calabrese, Luca Caramanna, Andrea Pietra, Giulia Vitetta, Bianca De Nicolo, Elena Bonora, Giulia Severi, Soara Menabò, Simona Ferrari, Francesca Ciurli, Valeria Aiello, Irene Capelli, Andrea Pasini, Irene Alberici, Roberto Pillon, Claudio La Scola, Cesare Rossi, Francesca Montanari and Claudio Graziano
Genes 2025, 16(5), 472; https://doi.org/10.3390/genes16050472 - 22 Apr 2025
Viewed by 581
Abstract
Background: Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease, affecting approximately 1 in 1000 individuals. This genetically heterogeneous condition is primarily caused by monoallelic pathogenic or likely pathogenic variants in the PKD1 and PKD2 genes, accounting for 78% [...] Read more.
Background: Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease, affecting approximately 1 in 1000 individuals. This genetically heterogeneous condition is primarily caused by monoallelic pathogenic or likely pathogenic variants in the PKD1 and PKD2 genes, accounting for 78% and 15% of typical cases, respectively. Recently, the application of NGS methods has led to the identification of additional genes associated with ADPKD, which have been incorporated into routine diagnostic testing for detecting phenocopies of the disease. Methods: In this study, targeted NGS (tNGS) analysis of the main cystogenes associated with classic and atypical ADPKD was performed in a cohort of 218 patients clinically diagnosed with cystic nephropathies. Results: Genetic testing identified variants in 175 out of 218 cases (80.3%). Among these, 133 probands (76%) harbored likely pathogenic or pathogenic variants in one or more genes of the panel, while 42 individuals (24%) had a variant of unknown significance (VUS). Specifically, one or more class 4/5 variants in PKD1, PKD2, or both were identified in 111 (83.5%) probands. Remarkably, a pathogenic variant in the IFT140 gene was identified in 14 index cases (8% of positive individuals, 6.4% of the global cohort): 10 distinct loss-of-function (LoF) variants were identified (including four frameshift variants, four nonsense variants, and two splice site defects); one individual carried a second IFT140 missense variant classified as VUS. Furthermore, five affected family members were found to carry a P/LP LoF variant in IFT140. Conclusions: Our data support that IFT140 heterozygous IFT140 LoF variants result in an atypical, mild form of ADPKD, consisting of bilateral kidney cysts and renal functional decline at older ages. Furthermore, we describe the second pediatric patient with a mild form of ADPKD due to an IFT140 variant and discuss hyperuricemia as a previously unappreciated feature of this condition. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

21 pages, 375 KiB  
Review
Current Evidence Supporting the Role of miRNA as a Biomarker for Lung Cancer Diagnosis Through Exhaled Breath Condensate Collection: A Narrative Review
by Paolo Albino Ferrari, Cosimo Bruno Salis and Antonio Macciò
Life 2025, 15(5), 683; https://doi.org/10.3390/life15050683 - 22 Apr 2025
Viewed by 982
Abstract
Lung cancer, the leading cause of cancer-related mortality, has brought exhaled breath condensate (EBC) into focus as a promising non-invasive sample for detecting molecular biomarkers, particularly microRNAs, which regulate gene expression and contribute to tumorigenesis. Ten key studies encompassing approximately 866 subjects consistently [...] Read more.
Lung cancer, the leading cause of cancer-related mortality, has brought exhaled breath condensate (EBC) into focus as a promising non-invasive sample for detecting molecular biomarkers, particularly microRNAs, which regulate gene expression and contribute to tumorigenesis. Ten key studies encompassing approximately 866 subjects consistently demonstrated distinct patterns of miRNA dysregulation in lung cancer. Notably, several reported panels achieved diagnostic sensitivity and specificity exceeding 75% through the identification of distinct miRNA signatures in EBC, with oncogenic miRNAs (e.g., miR-21) upregulated and tumor-suppressor miRNAs (e.g., miR-486) downregulated in lung cancer patients. Analytical advancements, including next-generation sequencing (NGS), have improved miRNA detection sensitivity and specificity, addressing prior limitations of low yield and variability. NGS enabled the identification of novel miRNAs and proved especially effective in overcoming the low RNA yield associated with EBC samples. However, challenges persist regarding standardization of collection, sample dilution, and potential contamination. Moreover, the reproducibility of miRNA signatures across diverse patient populations remains a critical issue. Large-scale, multicenter validation studies are needed to establish robust diagnostic algorithms integrating EBC-derived miRNAs with existing clinical tools. The potential of EBC miRNA profiling to support current screening strategies could significantly improve early lung cancer detection and patient outcomes. Nevertheless, its clinical transition requires further methodological optimization and biomarker validation. This review critically evaluates current evidence on miRNA detection in EBC for lung cancer diagnosis. Full article
(This article belongs to the Special Issue Enhancements in Screening Pathways for Early Detection of Lung Cancer)
18 pages, 2729 KiB  
Article
Genetic Features of Tumours Arising in the Context of Suspected Hereditary Cancer Syndromes with RAD50, RAD51C/D, and BRIP1 Germline Mutations, Results of NGS-Reanalysis of BRCA/MMR-Negative Families
by Mónica Arranz-Ledo, Mar Infante, Enrique Lastra, Amaya Olaverri, Marta Orozco, Lucia C. Mateo, Noemí Martínez, Lara Hernández and Mercedes Durán
Genes 2025, 16(4), 458; https://doi.org/10.3390/genes16040458 - 16 Apr 2025
Cited by 1 | Viewed by 1301
Abstract
Background and Objectives: Despite the well-established role of the BRCA and mismatch repair (MMR) genes in DNA damage repair pathways, a substantial proportion of familial cancer cases still lack pathogenic variants in those genes. Next Generation Sequencing (NGS) panels have emerged as a [...] Read more.
Background and Objectives: Despite the well-established role of the BRCA and mismatch repair (MMR) genes in DNA damage repair pathways, a substantial proportion of familial cancer cases still lack pathogenic variants in those genes. Next Generation Sequencing (NGS) panels have emerged as a powerful tool to identify hereditary cancer at-risk individuals and subsequently provide them with accurate management. Materials and Methods: Families harbouring PVs in RAD50, RAD51C, RAD51D, and BRIP1 were identified by analysing a cancer-predisposing genes panel using Ion S5 system technology. A retrospective cohort of 155 families tested only for the BRCAs of MMR genes were reanalysed, prompted by an increase in familial cases or new cancer diagnoses among index cases. Results: We identified 40 families through molecular reanalysis (33 with Hereditary Breast and Ovarian Cancer (HBOC) and 7 with Lynch Syndrome (LS)), with positive test results among 155 families lacking BRCA or MMR mutations. The most frequently mutated genes after ATM and CHEK2 were BRIP1, RAD51D, and RAD51C with 16, 13, and 9 positive families, respectively. The phenotype–genotype correlations not only revealed ovarian and HER-negative breast cancer predispositions but also other cancer types, particularly lung and gastric, and individuals with a second or third distinct cancer episode. Conclusions: Broader ranges of malignancies, including gastric, lung, and bladder, have been identified among BRIP1, RAD51D, and RAD51C positive families. The results generated using NGS provide a comprehensive genetic landscape in each patient that could explain the diversity of phenotypes shown in PV families that, combined with non-genetic factors, might enable accurate surveillance and personalized treatments. NGS reanalysis doubled our diagnostic yield and was a good strategy to identify hereditary cancer families that would otherwise be overlooked. Full article
Show Figures

Figure 1

13 pages, 1894 KiB  
Article
Retinoblastoma: Molecular Evaluation of Tumor Samples, Aqueous Humor, and Peripheral Blood Using a Next-Generation Sequence Panel
by Thais Biude Mendes, Indhira Dias Oliveira, Francine Tesser Gamba, Fernanda Teresa Lima, Bruna Fernanda Silva Cardoso Morales, Carla Renata Donato Macedo, Luiz Fernando Teixeira and Silvia Regina Caminada de Toledo
Int. J. Mol. Sci. 2025, 26(8), 3523; https://doi.org/10.3390/ijms26083523 - 9 Apr 2025
Viewed by 669
Abstract
Retinoblastoma was one of the first malignant tumors to be described as a genetic disease and its development occurs from the loss of function of the retinoblastoma gene (RB1). The difficulty in accessing the tumor during diagnosis highlights the need for non-invasive diagnostic [...] Read more.
Retinoblastoma was one of the first malignant tumors to be described as a genetic disease and its development occurs from the loss of function of the retinoblastoma gene (RB1). The difficulty in accessing the tumor during diagnosis highlights the need for non-invasive diagnostic methods. Studies have shown that liquid biopsy, obtained from any fluid material in the body, for example blood, contains free tumor cells and free and circulating DNA or RNA, making it a convenient tool for diagnosis and prognosis during cancer treatment without the need for invasive procedures. Taking advantage of these events, given this situation, we investigated molecular alterations in samples from retinoblastoma cases, using the NGS strategy as a powerful tool for characterization and aid in diagnosis and prognosis. Genomic data from 76 patients diagnosed with retinoblastoma, comprising 162 samples, tumor (TU), aqueous humor (AH), and peripheral blood (PB), were analyzed using the Oncomine Childhood Cancer Research Panel (OCCRA®). A total of 22 altered genes were detected, and 54 variants. Of the 76 cases, 29 included paired tumor (TU), aqueous humor (AH), and peripheral blood (PB) samples from the same patient. Alterations in the RB1 gene were detected in 16 of these 29 cases, with concordant alterations identified across all three sample types in three patients. In 12 out of 29 patients, the same genetic alteration was found in both TU and AH. In conclusion, the OCCRA panel enabled the detection, in different samples, of molecular alterations in the RB1 gene, as well as CNAs in the MYCN, ABL2, and MDM4 genes. Limitations of AH were observed, primarily due to the small volume of material available and the consequently low concentration of cell-free DNA (cfDNA). However, as AH provides a viable alternative for analyzing tumors, inaccessible to traditional biopsy methods, liquid biopsy holds significant potential to improve diagnostic accuracy and guide treatment strategies in retinoblastoma cases. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

14 pages, 2404 KiB  
Article
Innovative qPCR Algorithm Using Platelet-Derived RNA for High-Specificity and Cost-Effective Ovarian Cancer Detection
by Eunyong Ahn, Se Ik Kim, Sungmin Park, Sarah Kim, Hyunjung Kim, Hyejin Lee, Heeyeon Kim, Eun Ji Song, TaeJin Ahn and Yong-Sang Song
Cancers 2025, 17(7), 1251; https://doi.org/10.3390/cancers17071251 - 7 Apr 2025
Viewed by 1119
Abstract
Background/Objectives: Ovarian cancer (OC) remains one of the most lethal gynecologic malignancies, largely due to the challenges of early detection. While next-generation sequencing (NGS) has been explored for screening, its high cost limits large-scale implementation. To develop a more accessible diagnostic solution, [...] Read more.
Background/Objectives: Ovarian cancer (OC) remains one of the most lethal gynecologic malignancies, largely due to the challenges of early detection. While next-generation sequencing (NGS) has been explored for screening, its high cost limits large-scale implementation. To develop a more accessible diagnostic solution, we designed a qPCR-based algorithm optimized for early OC detection, with a focus on high-grade serous ovarian cancer (HGSOC), the most aggressive subtype. Methods: Peripheral blood samples from 19 ovarian cancer patients, 37 benign tumor patients, and 34 asymptomatic controls were analyzed using RNA sequencing to identify splice junction-based biomarkers with minimal expression in benign samples but elevated in OC. Results: A final panel of 10 markers was validated via qPCR, demonstrating strong agreement with sequencing data (R2 = 0.44–0.98). The classification algorithm achieved 94.1% sensitivity and 94.4% specificity (AUC = 0.933). Conclusions: By leveraging platelet RNA profiling, this approach offers high specificity, accessibility, and potential for early OC detection. Future studies will focus on expanding histologic diversity and refining biomarker panels to further enhance diagnostic performance. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

Back to TopTop