Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = deuterium-excess

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 19879 KB  
Article
Geochemical Genesis and Acid Production Potential Assessment of Acid Mine Drainage in Abandoned Mine Sites: An Integrated Study Based on Geochemical Static Tests and Mineralogical Analysis
by Xiaohui Zhang, Qiang Wu, Di Zhao, Zhonghong Du, Wei Zhang, Qingjun Zhu and Fawang Zhang
Appl. Sci. 2026, 16(1), 240; https://doi.org/10.3390/app16010240 - 25 Dec 2025
Viewed by 262
Abstract
The oxidation of sulfide minerals in the presence of oxygen and water, facilitated by microbes, is the principal cause of acid mine drainage (AMD). Static testing for the quantitative assessment of the acidic potential and acid-neutralizing capacity of mineral samples has been thoroughly [...] Read more.
The oxidation of sulfide minerals in the presence of oxygen and water, facilitated by microbes, is the principal cause of acid mine drainage (AMD). Static testing for the quantitative assessment of the acidic potential and acid-neutralizing capacity of mineral samples has been thoroughly investigated; the extent of its accuracy remains uncertain. This study involved 329 ore samples from 34 drill holes from abandoned mining sites and conducted laboratory static tests and mineralogical analysis. Static testing and mineralogical characterization identified a significant positive correlation between total sulfur and net acid generation (NAG), confirming that sulfide oxidation is the dominant mechanism for acid production. Furthermore, the strong positive correlation between calcium content and acid-neutralizing capacity (ANC) demonstrates that the buffering capacity stems mainly from carbonate dissolution, with negligible contribution from silicate weathering. The effectiveness of a detailed acid-generating potential discrimination chart was also assessed. Through the examination of acid drainage samples and groundwater from the research area, with their stable isotope and Deuterium excess (D-excess) properties, hydrochemical classifications were established, and sources of acid drainage were evaluated. This comprehensive method pinpoints the main “acid-generating sources” in the abandoned mining sites, elucidating the geochemical origins of acid drainage in the research area. It offers a case study and analytical framework for employing static test findings from abandoned mining sites to evaluate acid-generating potential in those areas. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

17 pages, 3818 KB  
Article
Water and Soil Salinization Mechanism in the Arid Barkol Inland Basin in NW China
by Ziyue Wang, Chaoyao Zan, Yajing Zhao, Bo Xu, Rui Long, Xiaoyong Wang, Jun Zhang and Tianming Huang
Water 2025, 17(24), 3462; https://doi.org/10.3390/w17243462 - 5 Dec 2025
Viewed by 663
Abstract
Identifying the dominant mechanisms of water and soil salinization in arid and semi-arid endorheic basins is fundamental for our understanding of basin-scale water–salt balance and supports water resources management. In many inland basins, mineral dissolution, evaporation, and transpiration govern salinization, but disentangling these [...] Read more.
Identifying the dominant mechanisms of water and soil salinization in arid and semi-arid endorheic basins is fundamental for our understanding of basin-scale water–salt balance and supports water resources management. In many inland basins, mineral dissolution, evaporation, and transpiration govern salinization, but disentangling these processes remains difficult. Using the Barkol Basin in northwestern China as a representative endorheic system, we sampled waters and soils along a transect from the mountain front through alluvial fan springs and rivers to the terminal lake. We integrated δ18O–δ2H with hydrochemical analyses, employing deuterium excess (d-excess) to partition salinity sources and quantify contributions. The results showed that mineral dissolution predominated, contributing 65.8–81.8% of groundwater salinity in alluvial fan settings and ~99.7% in the terminal lake, whereas direct evapoconcentration was minor (springs and rivers ≤ 4%; lake ≤ 0.2%). Water chemistry types evolved from Ca-HCO3 in mountainous runoff, to Ca·Na-HCO3·SO4 in groundwater and groundwater-fed rivers, and finally to Na-SO4·Cl in the terminal lake. The soil profiles showed that groundwater flow and vadose-zone water–salt transport control spatial patterns: surface salinity rises from basin margins (<1 mg/g) to the lakeshore and is extremely high near the lake (23.85–244.77 mg/g). In spring discharge belts and downstream wetlands, the sustained evapotranspiration of groundwater-supported soil moisture drives surface salt accumulation, making lakeshores and wetlands into terminal sinks. The d-excess-based method can robustly separate the salinization processes despite its initial isotopic variability. Full article
Show Figures

Figure 1

20 pages, 3264 KB  
Article
The Crucial Role of Data Quality Control in Hydrochemical Studies: Reevaluating Groundwater Evolution in the Jiangsu Coastal Plain, China
by Claudio E. Moya, Konstantin W. Scheihing and Mauricio Taulis
Earth 2025, 6(3), 62; https://doi.org/10.3390/earth6030062 - 29 Jun 2025
Viewed by 740
Abstract
A vital step for any hydrochemical assessment is properly carrying out quality assurance and quality control (QA/QC) techniques to evaluate data confidence before performing the assessment. Understanding the processes governing groundwater evolution in coastal aquifers is critical for managing freshwater resources under increasing [...] Read more.
A vital step for any hydrochemical assessment is properly carrying out quality assurance and quality control (QA/QC) techniques to evaluate data confidence before performing the assessment. Understanding the processes governing groundwater evolution in coastal aquifers is critical for managing freshwater resources under increasing anthropogenic and climatic pressures. This study reassesses the hydrochemical and isotopic data from the Deep Confined Aquifer System (DCAS) in the Jiangsu Coastal Plain, China, by firstly applying QA/QC protocols. Anomalously high Fe and Mn concentrations in several samples were identified and excluded, yielding a refined dataset that enabled a more accurate interpretation of hydrogeochemical processes. Using hierarchical cluster analysis (HCA), principal component analysis (PCA), and stable and radioactive isotope data (δ2H, δ18O, 3H, and 14C), we identify three dominant drivers of groundwater evolution: water–rock interaction, evaporation, and seawater intrusion. In contrast to earlier interpretations, we present clear evidence of active seawater intrusion into the DCAS, supported by salinity patterns, isotopic signatures, and local hydrodynamics. Furthermore, inconsistencies between tritium- and radiocarbon-derived residence times—modern recharge indicated by 3H versus Pleistocene ages from 14C—highlight the unreliability of previous paleoclimatic reconstructions based on unvalidated datasets. These findings underscore the crucial role of robust QA/QC and integrated tracer analysis in groundwater studies. Full article
Show Figures

Figure 1

18 pages, 4318 KB  
Article
The Genesis and Hydrochemical Formation Mechanism of Karst Springs in the Central Region of Shandong Province, China
by Yuanqing Liu, Le Zhou, Xuejun Ma, Dongguang Wen, Wei Li and Zheming Shi
Water 2025, 17(12), 1805; https://doi.org/10.3390/w17121805 - 17 Jun 2025
Viewed by 880
Abstract
With the intensification of human activities, the water resource environment in the karst mountainous area of central Shandong has undergone significant changes, directly manifested in the cessation of karst spring flows and the occurrence of karst collapses within the spring basin in the [...] Read more.
With the intensification of human activities, the water resource environment in the karst mountainous area of central Shandong has undergone significant changes, directly manifested in the cessation of karst spring flows and the occurrence of karst collapses within the spring basin in the Laiwu Basin. To support the scientific development and management of karst water, this study utilizes comprehensive analysis and deuterium-oxygen isotope test data from surveys and sampling of 20 typical karst springs conducted between 2016 and 2018. By integrating mathematical statistics, correlation analysis, and ion component ratio methods, the study analyzes the genesis, hydrochemical ion component sources, and controlling factors of typical karst springs in the Laiwu Basin. The results indicate that the genesis of karst springs in the Laiwu Basin is controlled by three factors: faults, rock masses, and lithology, and can be classified into four types: water resistance controlled by lithology, by faults, by basement, and by rock mass. The karst springs are generally weakly alkaline freshwater, with the main ion components being HCO3 and Ca2+, accounting for approximately 55.02% and 71.52% of the anion and cation components, respectively; about 50% of the sampling points have a hydrochemical type of HCO3·SO4-Ca·Mg. Stable isotope (δ18O and δD) results show that atmospheric precipitation is the primary recharge source for karst springs in the Laiwu Basin. There are varying degrees of evaporative fractionation and water–rock interaction during the groundwater flow process, resulting in significantly higher deuterium excess (d-excess) in the sampling points on the southern side of the basin compared to the northern side, indicating clear differentiation. The hydrochemical composition of the karst groundwater system is predominantly governed by water–rock interactions during flow processes and anthropogenic influences. Carbonate dissolution (primarily calcite) serves as the principal source of HCO3, SO42−, Ca2+, and Mg2+, while evaporite dissolution and reverse cation exchange contribute to the slight enrichment of Ca2+ and Mg2+ alongside depletion of Na+ and K+ in spring waters. Saturation indices (SI) reveal that spring waters are saturated with respect to gypsum, aragonite, calcite, and dolomite, but undersaturated for halite. The mixing of urban domestic sewage, agricultural planting activities, and the use of manure also contributes to the formation of Cl and NO3 ions in karst springs. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

22 pages, 5318 KB  
Article
Energy Release in Deuterium–Constantan Interactions
by Dimiter Alexandrov
Energies 2025, 18(4), 856; https://doi.org/10.3390/en18040856 - 12 Feb 2025
Cited by 2 | Viewed by 1395
Abstract
A significant energy release over a short time is achieved in replicable experiments involving the interaction of deuterium gas with constantan specimens. The experiments were carried out in a gas chamber where the injected deuterium interacted with heated specimens: (i) Many replicable experiments [...] Read more.
A significant energy release over a short time is achieved in replicable experiments involving the interaction of deuterium gas with constantan specimens. The experiments were carried out in a gas chamber where the injected deuterium interacted with heated specimens: (i) Many replicable experiments were performed at initial temperatures in the range of 666–681 °C. The temperatures of the specimens began to increase ~8 s after the beginning of deuterium injection as additional increases of 358–382 °C reached after ~30 s. The released excess power was in the range of 183–209 W, its density ranged from ~114–130 W/g, and the ratio of (output power)/(input power) was ≈ 3.76–3.91. (ii) Several replicable experiments were performed at initial temperatures of 950 °C. In all these experiments, explosive evaporation of the wires occurred immediately after the beginning of deuterium injection. The released excess momentary power was greater than 3400 W, its density was 2280 W/g, and the ratio of (output power)/(input power) was ≈ 16 and greater. The outcomes found were as follows: (a) the released excess power was not of electrical origin; (b) the released excess power of chemical origin was less than ~0.18% of the total released excess power; (c) the significant density of the released excess power; and (d) helium release, correlating with the energy release, was observed. The conclusion that the released energy is of nuclear origin was drawn. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

19 pages, 2132 KB  
Article
An Experimental Study on Deuterium Production from Titanium Hydride Powders Subjected to Thermal Cycles
by Luca Gamberale and Giovanni Modanese
Symmetry 2024, 16(11), 1542; https://doi.org/10.3390/sym16111542 - 18 Nov 2024
Viewed by 1917
Abstract
An extensive multi-year experimental study was conducted to investigate the potential production of deuterium from titanium hydride TiHx powders subjected to specific thermal cycles. Mass spectrometry was performed, focusing on the variation in signal intensities at m/z = 2, 3, [...] Read more.
An extensive multi-year experimental study was conducted to investigate the potential production of deuterium from titanium hydride TiHx powders subjected to specific thermal cycles. Mass spectrometry was performed, focusing on the variation in signal intensities at m/z = 2, 3, 4, 18, 19, 20, and 21, corresponding to fragments primarily involving deuterium, during the degassing of titanium hydride powders as the sample temperature was raised from room temperature to approximately 1100 °C. The results reveal an anomaly in the deuterium-to-hydrogen ratios, with the analysis indicating an increase in deuterium concentration by a factor of approximately 280 compared to its natural concentration on Earth. Three independent methods confirmed the excess deuterium. Simultaneously, flow calorimetry was performed during the degassing process, which did not show any measurable excess heat produced in the configuration used. This study was motivated by our novel theoretical predictions, based on the standard electroweak theory with gauge symmetry, suggesting the generation of slow neutrons within metal hydrides when exposed to coherent excitations. Our findings align with direct measurements of neutron emission by TiHx powders under cavitation in liquid water, as recently published by Fomitchev-Zamilov. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

13 pages, 12964 KB  
Article
Isotopic and Geophysical Investigations of Groundwater in Laiyuan Basin, China
by Weiqiang Wang, Zilong Meng, Chenglong Wang and Jianye Gui
Sensors 2024, 24(21), 7001; https://doi.org/10.3390/s24217001 - 31 Oct 2024
Cited by 1 | Viewed by 1235
Abstract
Due to the complex intersection and control of multiple structural systems, the hydrogeological conditions of the Laiyuan Basin in China are complex. The depth of research on the relationship between geological structure and groundwater migration needs to be improved. The supply relationship of [...] Read more.
Due to the complex intersection and control of multiple structural systems, the hydrogeological conditions of the Laiyuan Basin in China are complex. The depth of research on the relationship between geological structure and groundwater migration needs to be improved. The supply relationship of each aquifer is still uncertain. This paper systematically conducts research on the characteristics of hydrogen and oxygen isotopes, and combines magnetotelluric impedance tensor decomposition and two-dimensional fine inversion technology to carry out fine exploration of the strata and structures in the Laiyuan Basin, as well as comprehensive characteristics of groundwater migration and replenishment. The results indicate the following: (i) The hydrogen and oxygen values all fall near the local meteoric water line, indicating that precipitation is the main groundwater recharge source. (ii) The excess deuterium decreased gradually from karst mountain to basin, and karst water and pore water experienced different flow processes. (iii) The structure characteristics of three main runoff channels are described by MT fine processing and inversion techniques. Finally, it is concluded that limestone water moved from the recharge to the discharge area, mixed with the deep dolomite water along the fault under the control of fault F2, and eventually rose to the surface of the unconsolidated sediment blocked by fault F1 to emerge into an ascending spring. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

15 pages, 10032 KB  
Article
Volcanic Glass as a Proxy for Paleotopography Suggests New Features in Late-Miocene Oregon
by Julian Cohen, John Bershaw and Richard Hugo
Atmosphere 2024, 15(5), 561; https://doi.org/10.3390/atmos15050561 - 30 Apr 2024
Cited by 3 | Viewed by 2198
Abstract
Volcanic glass has been used extensively as a paleoaltimeter. Deuterium (2H) concentrations in glass have been found to be stable over geologic timescales, making δ2H (also known as δD) a reliable proxy for ancient water chemistry. However, continued work [...] Read more.
Volcanic glass has been used extensively as a paleoaltimeter. Deuterium (2H) concentrations in glass have been found to be stable over geologic timescales, making δ2H (also known as δD) a reliable proxy for ancient water chemistry. However, continued work revolves around better understanding how different factors affect preserved water in volcanic ash. Here, we analyze δD in the Rattlesnake Tuff (RST), a widespread ca. 7 Ma ash-flow tuff, and create a paleoisoscape to assess variations in δD across Oregon during that time. To this end, 16 ash samples were collected across central and eastern Oregon from various flow units within the RST. Samples were analyzed for δD using a temperature conversion elemental analyzer (TC/EA) connected to a mass spectrometer and elemental composition using a scanning electron microscope (SEM). We compared the isotopic results to modern water and published ancient water proxy data to better constrain changes in climate and topography across Oregon throughout the Neogene. We also estimated wt. % H2O by calculating excess (non-stoichiometric) oxygen from SEM elemental data. We did not observe significant variations in δD among the flow units from single locations, nor was there a significant relationship between the prepared glass shard composition and wt. % H2O or δD, supporting the use of volcanic glass as a reliable paleoenvironmental indicator. Our results show significant spatial variation in δDwater values of RST, ranging from −107‰ to −154‰. δD values of ancient glass were similar to modern water near the Cascade Mountains but became relatively negative to the east near the inferred eruptive center of the RST, suggesting that a significant topographic feature existed in the vicinity of the RST eruptive center that has since subsided. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

18 pages, 8267 KB  
Article
Characteristics of Runoff Components in the Mingyong Glacier Basin, Meili Snow Mountains
by Zichen Zhang, Lihua Wu, Jun Feng, Zhiwen Dong, Xiong Zhao, Yi Sun, Xiping Cheng, Liqin Dong and Tingting Liu
Water 2024, 16(7), 937; https://doi.org/10.3390/w16070937 - 24 Mar 2024
Cited by 4 | Viewed by 1952
Abstract
As an important hydrological ecosystem component, the glacier basin has great significance for climate and environment, and it is also linked to regional water sustainability. In this paper, the sampling and isotope analysis of glacial ice, ice-melt water, river water (river midstream and [...] Read more.
As an important hydrological ecosystem component, the glacier basin has great significance for climate and environment, and it is also linked to regional water sustainability. In this paper, the sampling and isotope analysis of glacial ice, ice-melt water, river water (river midstream and river downstream), groundwater (spring), and precipitation were carried out in a hydrological year of the Mingyong Glacier basin, which is located at the Meili Snow Mountains, Southeastern Tibetan Plateau. At the same time, the hydrograph separation of the recharge sources of the lower mountain pass is studied. The results show that the range of δD, δ18O, and d-excess (deuterium excess) in natural water bodies are significantly different, and the precipitation is the most obvious. The high values of δD and δ18O in the water samples all appeared in spring and summer, and the low values appeared in autumn and winter, while glacial ice showed opposite trends. Meanwhile, the local meteoric water line (LMWL) of the Mingyong Glacier basin is δD = 8.04δ18O + 13.06. The End-Member Mixing Analysis (EMMA) was adopted to determine the sources proportion of river water (river downstream) according to the δD, δ18O, and d-excess ratio relationships. The results showed that the proportion of ice-melt water, groundwater, and precipitation in the ablation period was 80.6%, 17.2%, and 2.2% as well as 19.2%, 73.1%, and 7.7% in the accumulation period, respectively. Ice-melt water has a higher conversion recharge rate to groundwater and indirectly recharges river water, especially in nonmonsoon seasons. In other words, the main recharge source of river water in the lower reaches of the Mingyong Glacier basin during the ablation period is ice-melt water. In the accumulation period, the main recharge source of river water in the lower reaches of the Mingyong Glacier basin is groundwater, while nearly half of the recharge of groundwater comes from ice-melt water. Therefore, regardless of the ablation period or the accumulation period, ice-melt water is sustainable and important to this region. Full article
(This article belongs to the Topic Hydrology and Water Resources Management)
Show Figures

Figure 1

17 pages, 2266 KB  
Article
An Assessment of Six Years of Precipitation Stable Isotope and Tritium Activity Concentration Records at Station Sv. Urban, Eastern Slovenia
by Polona Vreča, Tjaša Kanduč, Marko Štrok, Klara Žagar, Matteo Nigro and Michele Barsanti
Water 2024, 16(3), 469; https://doi.org/10.3390/w16030469 - 31 Jan 2024
Cited by 6 | Viewed by 2719
Abstract
We present data from six years (January 2016–December 2021) of monitoring the isotope composition of precipitation at the Sv. Urban station in Eastern Slovenia. The 68 precipitation samples were collected as a monthly composite. The complete dataset (193 data pints) includes information on [...] Read more.
We present data from six years (January 2016–December 2021) of monitoring the isotope composition of precipitation at the Sv. Urban station in Eastern Slovenia. The 68 precipitation samples were collected as a monthly composite. The complete dataset (193 data pints) includes information on the stable isotope composition of hydrogen (δ2H) and oxygen (δ18O) and tritium activity concentration (A), obtained using isotope ratio mass spectrometry (IRMS) and liquid scintillation counting (LSC) following electrolytic enrichment (EE), respectively. The isotope data, together with meteorological data, are reported. Calculations of the deuterium excess (d-excess), monthly, seasonal, and annual unweighted and precipitation-weighted means and local meteoric water lines (LMWLs) were conducted. The mean values for δ2H, δ18O, d-excess, and A, weighted by precipitation, were −59.9‰, −8.81‰, 10.6‰, and 7.7 TU. The disparities between unweighted and precipitation-weighted δ2H, δ18O, d-excess, A, and LMWLs underscore the significance of non-uniformly distributed precipitation. Annual variations in slope and intercept of the LMWLs emphasize the importance of longer data records (48+ months) to capture consistent trends, while combining data over longer periods may distort accuracy due to distinct isotope differences between individual years related to the variability of climate conditions typical for Slovenia. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

17 pages, 5018 KB  
Article
Isotopic and Remote Sensing-Based Characterisation of a Rainfall Event over Western Sierra de Gádor (Spain): Implications for Carbonate Aquifer Recharge
by Santiago García-López, Mercedes Vélez-Nicolás, Marcia Salazar-Rojas, Verónica Ruiz-Ortiz and Ángel Sánchez-Bellón
Water 2023, 15(24), 4252; https://doi.org/10.3390/w15244252 - 12 Dec 2023
Cited by 1 | Viewed by 2367
Abstract
Stable water isotopes are widely recognised as essential tools to trace processes within the hydrological cycle and to disentangle complex phenomena, such as regional–local atmospheric patterns, infer water balances or characterise the aquifer recharge. In this work, we characterised two post-summer precipitation events [...] Read more.
Stable water isotopes are widely recognised as essential tools to trace processes within the hydrological cycle and to disentangle complex phenomena, such as regional–local atmospheric patterns, infer water balances or characterise the aquifer recharge. In this work, we characterised two post-summer precipitation events over the western sector of Sierra de Gádor through the analysis of the rainwater δ18O and δ2H ratios, ionic composition and, complementarily, remote sensing products to define the atmospheric circulation during the rainfall episodes. This information enabled us to discern the moisture source, formation conditions and orographic influence on the rain episodes, and to better define the origin of the groundwater recharge and its dynamics in the study area. Although the samples share a common moisture source (W Mediterranean), they display substantial differences in their isotopic compositions. Such differences are attributable to sub-cloud evaporation processes that mask their Mediterranean origin, and to the strong influence of the orography on the hydrochemical and isotopic characteristics of the rainfall at the local level. The groundwater presents a very stable isotopic content and is strongly depleted in heavy isotopes, evidencing that most of the aquifer recharge takes place at very high altitudes and primarily during winter, when the influence of evaporation is attenuated. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

26 pages, 4011 KB  
Article
Stable Isotopes and Water Level Monitoring Integrated to Characterize Groundwater Recharge in the Pra Basin, Ghana
by Evans Manu, Marco De Lucia, Thomas Tetteh Akiti and Michael Kühn
Water 2023, 15(21), 3760; https://doi.org/10.3390/w15213760 - 27 Oct 2023
Cited by 8 | Viewed by 3938
Abstract
In the Pra Basin of Ghana, groundwater is increasingly becoming the alternative water supply due to the continual pollution of surface water resources through illegal mining and indiscriminate waste discharges into rivers. However, our understanding of hydrogeology and the dynamics of groundwater quality [...] Read more.
In the Pra Basin of Ghana, groundwater is increasingly becoming the alternative water supply due to the continual pollution of surface water resources through illegal mining and indiscriminate waste discharges into rivers. However, our understanding of hydrogeology and the dynamics of groundwater quality remains inadequate, posing challenges for sustainable water resource management. This study aims to characterize groundwater recharge by determining its origin and mechanism of recharge prior to entering the saturated zone and to provide spatial estimates of groundwater recharge using stable isotopes and water level measurements relevant to groundwater management in the basin. Ninety (90) water samples (surface water and groundwater) were collected to determine stable isotope ratios of oxygen (δ18O) and hydrogen (δ2H) and chloride concentration. In addition, ten boreholes were installed with automatic divers to collect time series data on groundwater levels for the 2022 water year. The Chloride Mass Balance (CMB) and the Water Table Fluctuation (WTF) methods were employed to estimate the total amount and spatial distribution of groundwater recharge for the basin. Analysis of the stable isotope data shows that the surface water samples in the Pra Basin have oxygen (δ18O) and hydrogen (δ2H) isotope ratios ranging from −2.8 to 2.2‰ vrs V-SMOW for δ18O and from −9.4 to 12.8‰ vrs V-SMOW for δ2H, with a mean of −0.9‰ vrs V-SMOW and 0.5‰ vrs V-SMOW, respectively. Measures in groundwater ranges from −3.0 to −1.5‰ vrs V-SMOW for δ18O and from −10.4 to −2.4‰ vrs V-SMOW for δ2H, with a mean of −2.3 and −7.0‰ vrs V-SMOW, respectively. The water in the Pra Basin originates from meteoric source. Groundwater has a relatively depleted isotopic signature compared to surface water due to the short residence time of infiltration within the extinction depth of evaporation in the vadose zone. Estimated evaporative losses in the catchment range from 51 to 77%, with a mean of 62% for surface water and from 55 to 61% with a mean of 57% for groundwater, respectively. Analysis of the stable isotope data and water level measurements suggests a potential hydraulic connection between surface water and groundwater. This hypothesis is supported by the fact that the isotopes of groundwater have comparatively lower values than surface water. Furthermore, the observation that the groundwater level remains constant in months with lower rainfall further supports this conclusion. The estimated annual groundwater recharge in the catchment ranges from 9 to 667 mm (average 165 mm) and accounts for 0.6% to 33.5% (average 10.7%) of mean annual precipitation. The total estimated mean recharge for the study catchment is 228 M m3, higher than the estimated total surface water use for the entire Pra Basin of 144 M m3 for 2010, indicating vast groundwater potential. Overall, our study provides a novel insight into the recharge mechanism and spatial quantification of groundwater recharge, which can be used to constrain groundwater flow and hydrogeochemical evolution models, which are crucial for effective groundwater management within the framework of the Pra Basin’s Integrated Water Resources Management Plan. Full article
(This article belongs to the Special Issue The Use of Environmental Isotopes in Hydrogeology)
Show Figures

Figure 1

15 pages, 4959 KB  
Article
Exploring the Deuterium Excess of Cretaceous Arctic Paleoprecipitation Using Stable Isotope Composition of Clay Minerals from the Prince Creek Formation (Maastrichtian) in Northern Alaska
by Kate Andrzejewski, Greg Ludvigson, Marina Suarez, Paul McCarthy and Peter Flaig
Geosciences 2023, 13(9), 273; https://doi.org/10.3390/geosciences13090273 - 10 Sep 2023
Cited by 1 | Viewed by 2469
Abstract
We report estimated stable isotope compositions of Artic paleoprecipitation using phyllosilicates sampled from three paleosols and two bentonites in the Prince Creek Formation (Maastrichtian) in northern Alaska. Previous studies reported a deuterium excess in estimates of Arctic paleoprecipitation from the Late Cretaceous by [...] Read more.
We report estimated stable isotope compositions of Artic paleoprecipitation using phyllosilicates sampled from three paleosols and two bentonites in the Prince Creek Formation (Maastrichtian) in northern Alaska. Previous studies reported a deuterium excess in estimates of Arctic paleoprecipitation from the Late Cretaceous by combining hydrogen and oxygen proxy sources, including pedogenic minerals, dinosaurian tooth enamel phosphates, pedogenic siderites, and n-alkane biomarkers. The new dataset produced in this study removes uncertainty on possible explanations (photosynthetic and transpiration) of the deuterium excess by producing stable hydrogen and oxygen isotopic signatures from the same source material. The δD of the phyllosilicates range from −171‰ to −72‰ VSMOW and δ18O ranges from 5.0 to 11.8‰ VSMOW. By assuming a MAT of 6.3 °C and calculating uniquely derived fractionation equations for each phyllosilicate, we report estimated isotopic composition of Late Cretaceous paleoprecipitation with an average δD value of −133‰ VSMOW, corresponding to an average δ18O value of −20.3‰ VSMOW. The estimates of Late Cretaceous paleoprecipitation do not intersect the Global Meteoric Water Line and reveal a reported deuterium excess ranging from 7 to 46 per mil. These results confirm the presence of a deuterium excess in Late Cretaceous Arctic paleoprecipitation and provide new insight to assessing possible explanations for this phenomenon. Full article
Show Figures

Figure 1

21 pages, 6492 KB  
Article
Characteristics of Hydrogen and Oxygen Isotope Composition in Precipitation, Rivers, and Lakes in Wuhan and the Ecological Environmental Effects of Lakes
by Ao Zhang, Xinwen Zhao, Jun He, Xuan Huang, Xingyuezi Zhao and Yongbo Zhao
Water 2023, 15(16), 2996; https://doi.org/10.3390/w15162996 - 19 Aug 2023
Cited by 2 | Viewed by 2571
Abstract
Wuhan has a dense network of rivers and lakes. Due to the city’s development, the water system has been fragmented, the degradation of lakes is becoming increasingly severe, and the eco-environment has been significantly damaged. By collecting samples of the central surface water [...] Read more.
Wuhan has a dense network of rivers and lakes. Due to the city’s development, the water system has been fragmented, the degradation of lakes is becoming increasingly severe, and the eco-environment has been significantly damaged. By collecting samples of the central surface water bodies in Wuhan, including Yangtze River water, Han River water, lake water, and precipitation, and by utilizing hydrogen and oxygen isotopes and multivariate statistical methods, the hydraulic connectivity and ecological environmental effects between the Yangtze River, the Han River, and the lakes were revealed. The results indicated the following: (1) The local meteoric water Line (LMWL) in the Wuhan area was δD = 7.47δ18O + 1.77. The river water line equation was approximately parallel to the atmospheric precipitation line in the Wuhan area. The intercept and slope of the lake waterline equation were significantly smaller. The enrichment degree of δ18O and δD was Yangtze River < Hanjiang River < lake water. (2) The cluster analysis showed that the lakes could be divided into two types, i.e., inner-flow degraded (IFD) lakes and outer-flow ecological (OFE) lakes. Urban expansion has resulted in fragmentation of the IFD lakes, changing the connectivity between rivers and lakes and weakening the exchange of water bodies between the Yangtze River and lakes. Simultaneously, evaporation has caused hydrogen and oxygen isotope fractionation, resulting in the relative enrichment of isotopes. The IFD lakes included the Taizi Lake, Yehu Lake, and the Shenshan Lake. The OFE lakes and the Yangtze River were active, evaporation was weak, and the hydrogen and oxygen isotopes were relatively depleted, mainly including the Huangjia Lake, the East Lake, the Tangxun Lake, etc. (3) The excessive deuterium (d-excess) parameter values in the Yangtze River and the Han River water were positive. In contrast, the d values in the lakes were mainly negative. In the case of a weakened water cycle, the effect of evaporation enrichment on lake water δ18O and δD had a significant impact. It is suggested that the water system connection project of “North Taizi Lake-South Taizi Lake-Yangtze River” and the small lakes connecting to large lakes project of “Wild Lake-Shenshan Lake-Tangxun Lake” should be implemented in time to restore the water eco-environment. Full article
Show Figures

Figure 1

14 pages, 3849 KB  
Article
Isotope-Based Early-Warning Model for Monitoring Groundwater–Leachate Contamination Phenomena: First Quantitative Assessments
by Giuseppe Sappa, Maurizio Barbieri and Francesca Andrei
Water 2023, 15(14), 2646; https://doi.org/10.3390/w15142646 - 21 Jul 2023
Cited by 12 | Viewed by 3561
Abstract
Groundwater contamination due to municipal solid waste landfills’ leachate is a serious environmental threat. Deuterium (2H) and oxygen (18O) isotopes have been successfully applied to identify groundwater contamination processes, due to interactions with municipal solid waste landfills’ leachate, including [...] Read more.
Groundwater contamination due to municipal solid waste landfills’ leachate is a serious environmental threat. Deuterium (2H) and oxygen (18O) isotopes have been successfully applied to identify groundwater contamination processes, due to interactions with municipal solid waste landfills’ leachate, including significant organic amounts. A parameter influencing the isotope content of deuterium and oxygen18 is the deuterium excess (d or d-excess). This paper presents a d-isotope-based model, defined early-warning model, depending on the assessment of the deuterium excess variations in groundwater samples. The isotopic results are corroborated with the trace elements’ concentrations (Fe, Mn, Ni, Co and Zn), suggesting that the methanogenic activity diminished under trace element limitation. This model provides the determination of an index, F, as the percentage variation of d-excess, which makes it possible to define an alert level system to assess and check groundwater contamination by leachate. The procedure shows that values of F index higher than 1.1 highlight possible contamination phenomena of groundwater due to leachate and, therefore, actions by the municipal solid waste landfill management are required. This early-warning model is presented by the application to a case study in Central Italy in order to evaluate innovative aspects and opportunities to optimize the model. The application of the procedure to the case study highlighted anomalous values of the F index for the samples AD16 (Fmax = 2.069) and AD13 (Fmax = 1.366) in January, April, July and October surveys as well as the boundary values (1 ≤ F ≤ 1.1) for samples AD73 (F = 1.229) and AD68 (F = 1.219) in the April survey. The proposed model can be a useful management tool for monitoring the potential contamination process of groundwater due to the presence of landfills with municipal solid waste, including a significant organic component. Full article
Show Figures

Figure 1

Back to TopTop