Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = desert riparian vegetation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9453 KiB  
Article
Evolution of Vegetation Landscape Pattern Dynamics in Ejina Delta, Northwest China—Before and After Ecological Water Diversion
by Jingru Dong, Chaoyang Du and Jingjie Yu
Remote Sens. 2025, 17(11), 1843; https://doi.org/10.3390/rs17111843 - 25 May 2025
Viewed by 544
Abstract
As a typical desert oasis ecosystem in the arid region of Northwest China, the Ejina Delta plays a crucial role in regional ecological security through its vegetation dynamics and landscape pattern changes. Based on Landsat remote sensing images (1990–2020), runoff data, and vegetation [...] Read more.
As a typical desert oasis ecosystem in the arid region of Northwest China, the Ejina Delta plays a crucial role in regional ecological security through its vegetation dynamics and landscape pattern changes. Based on Landsat remote sensing images (1990–2020), runoff data, and vegetation landscape surveys, this study investigated the evolutionary patterns and driving mechanisms of vegetation degradation and restoration processes using Normalized Difference Vegetation Index (NDVI), landscape metrics, and Land Use Transition Matrix (LUTM) methods. The following key findings were obtained: (1) Since the implementation of the Ecological Water Diversion Project (EWDP) in the Heihe River Basin (HRB) in 2000, a significant recovery in vegetation coverage has been observed, with an NDVI growth rate of 0.0187/10 yr, which is five times faster than that in the pre-diversion period. The areas of arbor vegetation, shrubland, and grassland increased to 356.8, 689.5, and 2192.6 km2, respectively. However, there is a lag of about five years for the recovery of arbor and shrub compared to grass. (2) The implementation of EWDP has effectively reversed the trend of vegetation degradation, transforming the previously herb-dominated fragmented landscape into a more integrated pattern comprising multiple vegetation types. During the degradation period (1990–2005), the landscape exhibited a high degree of fragmentation, with an average number of patches (NP) reaching 45,875. In the subsequent recovery phase (2005–2010), fragmentation was significantly reduced, with the average NP dropping to 30,628. (3) Stronger vegetation growth and higher NDVI values were observed along the riparian zone, with the West River demonstrating greater restoration effectiveness compared to the East River. This study revealed that EWDP serves as the key factor driving vegetation recovery. To enhance oasis stability, future ecological management strategies should optimize spatiotemporal water allocation while considering differential vegetation responses. Full article
Show Figures

Figure 1

23 pages, 5834 KiB  
Article
Evapotranspiration Partitioning of the Populus euphratica Forest Ecosystem in the Drylands of Northwestern China
by Qi Zhang, Qi Feng, Yonghong Su and Cuo Jian
Plants 2025, 14(5), 680; https://doi.org/10.3390/plants14050680 - 22 Feb 2025
Viewed by 659
Abstract
The comprehension of seasonal patterns of evapotranspiration (ET), as well as the interactive response to environmental factors, holds paramount importance for illuminating the intricate interaction within the carbon–water cycle of desert riparian forest ecosystems. Nonetheless, the driving mechanism behind ET changes is complex, [...] Read more.
The comprehension of seasonal patterns of evapotranspiration (ET), as well as the interactive response to environmental factors, holds paramount importance for illuminating the intricate interaction within the carbon–water cycle of desert riparian forest ecosystems. Nonetheless, the driving mechanism behind ET changes is complex, and different components show significant differences in response to the same factor. Moreover, water resources are scarce in the region, and sustainable water resources management in arid regions usually aims to maximize transpiration (T) and minimize evaporation (E); therefore, reasonable calculation of ET components is urgent to effectively assess water resources consumption and improve water use efficiency. This discussion assessed the suitability and reliability of different methods for partitioning ET within the desert oasis in Northwestern China, calculated water use efficiency (WUE), and explored the differences in the response patterns of ET, transpiration (T), and WUE to environmental elements of constructive Populus euphratica forests in this region during the growing season. Continuous measurements of meteorological, soil, and vegetation factors were collected from 2014 to 2021 to facilitate this investigation. This study demonstrated that the underlying water use efficiency (uWUE) method effectively partitions ET into vegetation T and soil evaporation (E). Seasonal variations in ET and T were predominantly driven by temperature (Ta), radiation (Rn), soil moisture, and leaf area index (LAI). In addition, the exchange of water and carbon across different scales was governed by distinct regulatory mechanisms, where canopy-level WUE (WUEc) primarily depended on climatic conditions, while ecosystem-level WUE (WUEe) was more strongly influenced by vegetation structural characteristics. This study provided valuable insights into the ET characteristics, influencing factors, and water–carbon consumption mechanisms of desert vegetation in arid regions, and the conclusions of the discussion may provide theoretical insights for policymakers and ecosystem managers interested in preserving the ecological balance of arid regions. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

20 pages, 18176 KiB  
Article
Estimation of Water Demand for Riparian Forest Vegetation Based on Sentinel-2 Data: A Case Study of the Kokyar River Basin
by Xianhe Liu, Yilinuer Alifujiang, Abdugheni Abliz, Halidan Asaiduli, Panqing Ye and Buasi Nurahmat
Forests 2024, 15(10), 1749; https://doi.org/10.3390/f15101749 - 4 Oct 2024
Cited by 2 | Viewed by 1105
Abstract
In recent years, due to the shortage of water resources and the fragile ecological environment in arid areas, the relationship between vegetation and water resources has been relatively close. The unreasonable allocation of water resources and the excessive demand for ecological water use [...] Read more.
In recent years, due to the shortage of water resources and the fragile ecological environment in arid areas, the relationship between vegetation and water resources has been relatively close. The unreasonable allocation of water resources and the excessive demand for ecological water use have led to ecological and environmental problems such as river interruption, land desertification, and the extensive withering of vegetation in arid areas; therefore, rapid, accurate estimation of the vegetation ecological water demand has become a hot research topic in related fields. In this study, we classified the land use types in the lower reaches of the Kokyar River Basin based on Sentinel-2A data and calculated the water requirements of each type of vegetation using a combination of the area quota method and improved Penman–Monteith (PM) based on different vegetation coverage levels. The results revealed that in 2020, the water demand of planted woodlands within 0–2 km of the watershed will be the highest, and the water demand of naturally growing arboreal woodlands will be the lowest, and the water demand of the surrounding desert riparian vegetation forests will be very small in relation to the ecological base flow and will not affect the downstream water use for agriculture, industry, and domestic use for the time being. The ecological water demand of the vegetation in the study area can be accurately estimated using Sentinel-2A data, and the research results provide technical support and a theoretical basis for rapid estimation of the ecological water demand of vegetation in typical riparian forests in arid areas and for the allocation of water resources. Full article
Show Figures

Figure 1

24 pages, 5994 KiB  
Article
Mapping Natural Populus euphratica Forests in the Mainstream of the Tarim River Using Spaceborne Imagery and Google Earth Engine
by Jiawei Zou, Hao Li, Chao Ding, Suhong Liu and Qingdong Shi
Remote Sens. 2024, 16(18), 3429; https://doi.org/10.3390/rs16183429 - 15 Sep 2024
Cited by 3 | Viewed by 1497
Abstract
Populus euphratica is a unique constructive tree species within riparian desert areas that is essential for maintaining oasis ecosystem stability. The Tarim River Basin contains the most densely distributed population of P. euphratica forests in the world, and obtaining accurate distribution data in [...] Read more.
Populus euphratica is a unique constructive tree species within riparian desert areas that is essential for maintaining oasis ecosystem stability. The Tarim River Basin contains the most densely distributed population of P. euphratica forests in the world, and obtaining accurate distribution data in the mainstream of the Tarim River would provide important support for its protection and restoration. We propose a new method for automatically extracting P. euphratica using Sentinel-1 and 2 and Landsat-8 images based on the Google Earth Engine cloud platform and the random forest algorithm. A mask of the potential distribution area of P. euphratica was created based on prior knowledge to save computational resources. The NDVI (Normalized Difference Vegetation Index) time series was then reconstructed using the preferred filtering method to obtain phenological parameter features, and the random forest model was input by combining the phenological parameter, spectral index, textural, and backscattering features. An active learning method was employed to optimize the model and obtain the best model for extracting P. euphratica. Finally, the map of natural P. euphratica forests with a resolution of 10 m in the mainstream of the Tarim River was obtained. The overall accuracy, producer’s accuracy, user’s accuracy, kappa coefficient, and F1-score of the map were 0.96, 0.98, 0.95, 0.93, and 0.96, respectively. The comparison experiments showed that simultaneously adding backscattering and textural features improved the P. euphratica extraction accuracy, while textural features alone resulted in a poor extraction effect. The method developed in this study fully considered the prior and posteriori information and determined the feature set suitable for the P. euphratica identification task, which can be used to quickly obtain accurate large-area distribution data of P. euphratica. The method can also provide a reference for identifying other typical desert vegetation. Full article
Show Figures

Figure 1

17 pages, 13162 KiB  
Article
Impact of Ecological Water Transfer Project on Vegetation Recovery in Dried-Up Kongque River, Northwest China
by Zhen Wang, Liangxin Fan, Jingxuan Su and Zhijun Wang
Forests 2024, 15(3), 487; https://doi.org/10.3390/f15030487 - 5 Mar 2024
Cited by 4 | Viewed by 1862
Abstract
The ecological water transfer project (EWTP) plays a pivotal role in reinstating the flow of dried-up rivers in arid regions, promoting river connectivity and vegetation resurgence. An essential facet in ensuring the efficacious execution of the EWTP lies in determining the optimal duration [...] Read more.
The ecological water transfer project (EWTP) plays a pivotal role in reinstating the flow of dried-up rivers in arid regions, promoting river connectivity and vegetation resurgence. An essential facet in ensuring the efficacious execution of the EWTP lies in determining the optimal duration of irrigation to facilitate vegetation recovery. Nevertheless, comprehensive reports concerning the EWTP process in arid river ecosystems are scarce. Here, we leverage remote sensing imagery to assess changes in surface water and vegetation dynamics before and after the implementation of the EWTP in a dried-up river. The results show that before the EWTP (1987–2016), riparian vegetation’s mean normalized difference vegetation index (NDVI) decreased from 0.181 to 0.066. After EWTP (2017–2022), the river’s flow was restored for a distance of 347 km. This restoration resulted in the formation of 81.47 km2 of intermittent water bodies along the river. The mean NDVI increased from 0.065 to 0.093. As irrigation duration increased, the NDVI growth rate exhibited an initial rise followed by a subsequent decline, reaching its peak growth rate by irrigating for 18 days per year. The regions showing increased NDVI values exhibited a pronounced spatial correlation with the areas subjected to water transfer. These improvements in NDVI were predominantly concentrated on both sides of the river within a 550 m range. Interestingly, as moves farther away from the river, the growth rate of NDVI exhibited an initial increase followed by a subsequent decline. The pinnacle of NDVI growth rate materialized at a distance of 40–50 m from the river. These findings reveal the response characteristics of desert riparian vegetation to EWTP, providing valuable insights for selecting appropriate water transfer timing in future EWTP. Full article
(This article belongs to the Section Forest Hydrology)
Show Figures

Figure 1

18 pages, 4003 KiB  
Article
Drought Resistance of Desert Riparian Forests: Vegetation Growth Index and Leaf Physiological Index Approach
by Aishajiang Aili, Hailiang Xu, Abdul Waheed, Tao Lin, Wanyu Zhao and Xinfeng Zhao
Sustainability 2024, 16(2), 532; https://doi.org/10.3390/su16020532 - 8 Jan 2024
Cited by 3 | Viewed by 1966
Abstract
The Hotan River, the sole river traversing the Taklimakan Desert in northwest China, sustains a critical desert riparian ecosystem dominated by Populus euphratica. This riparian habitat is integral to biodiversity maintenance. However, global climate change and anthropogenic disturbances have profoundly impacted the [...] Read more.
The Hotan River, the sole river traversing the Taklimakan Desert in northwest China, sustains a critical desert riparian ecosystem dominated by Populus euphratica. This riparian habitat is integral to biodiversity maintenance. However, global climate change and anthropogenic disturbances have profoundly impacted the Taklimakan desert landscape, leading to fragmentation and reduced environmental heterogeneity. Consequently, there has been a notable decline in P. euphratica populations. This study aimed to assess the physiological resilience of P. euphratica under harsh conditions and analyze the vegetation distribution patterns along the desert riparian zone. Laboratory tests were employed to determine the physiological indexes including Relative Water Content (RWC), Chlorophyll (Chl), Soluble Sugar (SS), Free Proline (Pro), and Peroxidase Activity (POD) of P. euphratica, providing insights into its capacity to endure challenging environmental conditions. Quadrat surveys were conducted at varying distances from the riverbed to examine vegetation distribution patterns. Plant growth indexes were analyzed to unveil the resistance of the desert riparian forest to drought. The study identified 45 shrubs and herbs belonging to 17 families in the Hotan River understory, with P. euphratica exhibiting the highest abundance. In river flats, annual herbs dominated due to favorable water conditions, while shrub grasslands displayed a relatively complete community structure with trees, crowns, and grasses. As the distance increased from the river channel, more perennial herb and shrub species prevailed, leading to a decline in overall species richness as annual herbs diminished. Physiological assessments revealed that P. euphratica in a medium growth grade (VS3) exhibited the highest physiological indexes, indicating its adaptability to environmental changes. The findings underscore the significance of water conditions in the growth and development of vegetation in desert riparian forests, particularly highlighted by the physiological indexes of P. euphratica. This research contributes valuable insights that can inform the preservation and restoration of desert riparian forests, providing a scientific basis and technical guidance for conservation efforts. Full article
Show Figures

Figure 1

19 pages, 26073 KiB  
Article
Influence of Climate, Topography, and Hydrology on Vegetation Distribution Patterns—Oasis in the Taklamakan Desert Hinterland
by Lei Peng, Yanbo Wan, Haobo Shi, Abudureyimu Anwaier and Qingdong Shi
Remote Sens. 2023, 15(22), 5299; https://doi.org/10.3390/rs15225299 - 9 Nov 2023
Cited by 12 | Viewed by 3913
Abstract
Vegetation in natural desert hinterland oases is an important component of terrestrial ecosystems. Determining how desert vegetation responds to natural variability is critical for a better understanding of desertification processes and their future development. The aim of this study is to characterize the [...] Read more.
Vegetation in natural desert hinterland oases is an important component of terrestrial ecosystems. Determining how desert vegetation responds to natural variability is critical for a better understanding of desertification processes and their future development. The aim of this study is to characterize the spatial distribution of vegetation in the natural desert hinterland and to reveal how different environmental factors affect vegetation changes. Taking a Taklamakan Desert hinterland oasis as our research object, we analyzed the effects of different environmental factors on desert vegetation using a time-series normalized difference vegetation index (NDVI) combined with meteorological, topographic, and hydrological data, including surface water and groundwater data. Vegetation was distributed in areas with high surface water frequency, shallow groundwater levels, relatively flat terrain, and dune basins. NDVI datasets show greening trends in oasis areas over the past 20 years. The frequency of surface water distribution influences water accessibility and effectiveness and shapes topography, thus affecting the spatial distribution pattern of vegetation. In this study, areas of high surface water frequency corresponded with vegetation distribution. The spatial distribution of groundwater depth supports the growth and development of vegetation, impacting the pattern of vegetation growth conditions. Vegetation is most widely distributed in areas where the groundwater burial depth is 3.5–4.5 m. This study provides data for restoring riparian vegetation, ecological water transfer, and sustainable development. Full article
Show Figures

Graphical abstract

23 pages, 9396 KiB  
Article
Random Forest Classification of Multitemporal Landsat 8 Spectral Data and Phenology Metrics for Land Cover Mapping in the Sonoran and Mojave Deserts
by Madeline Melichar, Kamel Didan, Armando Barreto-Muñoz, Jennifer N. Duberstein, Eduardo Jiménez Hernández, Theresa Crimmins, Haiquan Li, Myles Traphagen, Kathryn A. Thomas and Pamela L. Nagler
Remote Sens. 2023, 15(5), 1266; https://doi.org/10.3390/rs15051266 - 25 Feb 2023
Cited by 12 | Viewed by 6180
Abstract
Geospatial data and tools evolve as new technologies are developed and landscape change occurs over time. As a result, these data may become outdated and inadequate for supporting critical habitat-related work across the international boundary in the Sonoran and Mojave Deserts Bird Conservation [...] Read more.
Geospatial data and tools evolve as new technologies are developed and landscape change occurs over time. As a result, these data may become outdated and inadequate for supporting critical habitat-related work across the international boundary in the Sonoran and Mojave Deserts Bird Conservation Region (BCR 33) due to the area’s complex vegetation communities and the discontinuity in data availability across the United States (US) and Mexico (MX) border. This research aimed to produce the first 30 m continuous land cover map of BCR 33 by prototyping new methods for desert vegetation classification using the Random Forest (RF) machine learning (ML) method. The developed RF classification model utilized multitemporal Landsat 8 Operational Land Imager spectral and vegetation index data from the period of 2013–2020, and phenology metrics tailored to capture the unique growing seasons of desert vegetation. Our RF model achieved an overall classification F-score of 0.80 and an overall accuracy of 91.68%. Our results portrayed the vegetation cover at a much finer resolution than existing land cover maps from the US and MX portions of the study area, allowing for the separation and identification of smaller habitat pockets, including riparian communities, which are critically important for desert wildlife and are often misclassified or nonexistent in current maps. This early prototyping effort serves as a proof of concept for the ML and data fusion methods that will be used to generate the final high-resolution land cover map of the entire BCR 33 region. Full article
(This article belongs to the Special Issue Fifty Years of Landsat)
Show Figures

Figure 1

17 pages, 5119 KiB  
Article
The Photosynthesis of Populus euphratica Oliv. Is Not Limited by Drought Stress in the Hyper-Arid Zone of Northwest China
by Guanlong Gao, Qi Feng, Xiande Liu, Tengfei Yu and Rongxin Wang
Forests 2022, 13(12), 2096; https://doi.org/10.3390/f13122096 - 8 Dec 2022
Cited by 7 | Viewed by 1900
Abstract
The Ejin Oasis is located in the lower reaches of the Heihe River Basin of northwestern China. It is one of the most arid regions in the world, and Populus euphratica Oliv. is the foundation species of the desert riparian forests there. The photosynthesis [...] Read more.
The Ejin Oasis is located in the lower reaches of the Heihe River Basin of northwestern China. It is one of the most arid regions in the world, and Populus euphratica Oliv. is the foundation species of the desert riparian forests there. The photosynthesis of P. euphratica is one of the first physiological processes that is most likely to be affected by the extremely arid climate conditions. The factors impacting photosynthesis can be divided into stomatal and non-stomatal limitations. In order to investigate whether the photosynthesis of P. euphratica was limited and, if so, whether this limitation was caused by drought stress in the P. euphratica Forest Reserve on the Ejin River, we analyzed stomatal, non-stomatal, and relative stomatal limitations (reflecting the relative importance of the stoma in controlling the processes of photosynthesis) of photosynthesis. The results show that, at the beginning of the midday depression of photosynthesis, the values of stomatal limitation of photosynthesis (Ls) peaked, with its predominance being supported by sub-stomatal CO2 concentrations (Ci) being at a minimum. Thereafter, Ls decreased and non-stomatal limitation (Ci/stomatal conductance (gs)) increased sharply, indicating that the non-stomatal limitation of photosynthesis was predominant. Both Ls and relative stomatal limitation of photosynthesis increased in the morning, and then decreased, whereas Ci/gs showed the opposite trend. We concluded that P. euphratica did not experience drought stress by analyzing leaf water potential, groundwater table, and the decoupling coefficient (a parameter characterizing the coupling degree between vegetation canopy and atmospheric water vapor flux); however, the Ls values of P. euphratica were much greater than those of other species. This was likely because P. euphratica has a relatively conservative water use strategy even when growing under favorable water conditions. Extremely high temperatures caused the closure of the stoma to reduce transpiration, resulting in more intense stomatal limitations of photosynthesis. Full article
(This article belongs to the Special Issue Tree Water Physiology and Ecology - Xylem Structure and Function)
Show Figures

Figure 1

17 pages, 4269 KiB  
Article
Monitoring the Dynamics of Ephemeral Rivers from Space: An Example of the Kuiseb River in Namibia
by Cassandra Normandin, Philippe Paillou, Sylvia Lopez, Eugene Marais and Klaus Scipal
Water 2022, 14(19), 3142; https://doi.org/10.3390/w14193142 - 6 Oct 2022
Cited by 2 | Viewed by 6661
Abstract
Ephemeral rivers are characterized by brief episodic flood events, which recharge subterraean alluvial aquifers that sustain humans, riparian vegetation, and wildlife in the hyper-arid Namib Desert. Yet we only have a poor understanding of the dynamics and feedback mechanisms in these hydrological systems [...] Read more.
Ephemeral rivers are characterized by brief episodic flood events, which recharge subterraean alluvial aquifers that sustain humans, riparian vegetation, and wildlife in the hyper-arid Namib Desert. Yet we only have a poor understanding of the dynamics and feedback mechanisms in these hydrological systems as arid and semi-arid zones are typically poorly equipped with reliable in situ monitoring stations to provide necessary information. The main objective of our study is to show the potential of satellite data to monitor the dynamics of ephemeral rivers, such as the Kuiseb located in Namibia, since remotesensing offers the advantage of adapted spatial and temporal resolutions. For this study, multi-spectral imagery (Sentinel-2), Synthetic Aperture Radar (SAR, Sentinel-1), and SAR interferometry (Sentinel-1) data were used to produce Normalized Difference Vegetation Index (NDVI) maps, backscattering maps (as σ0), and interferograms, respectively. These parameters provide information on the hydrologic and vegetation dynamics of the river. Strong variations in NDVI, σ0, and interferograms are observed during March–April 2017 and June–July 2018 in a tributary of the Kuiseb in the central Namib Desert. In those years, rain events caused the reactivation of the tributary. However, during a major flood in 2021, when no rain occured, no variations in NDVI were detected in this tributary, unlike the σ0 and interferogram anomalies after the flood. Thus, these variations cannot be explained by rains, which were non-existent during this period, but seem to be linked to the dynamics of the aquifer of the Kuiseb River, wherein floods recharge the alluvial aquifers and the rising water table levels produce a signal that is measurable by satellite radar sensors. All these results present a preliminary work that might be used by water resource managers to automate the processing and methods used to create an ephemeral river monitoring tool. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

19 pages, 5021 KiB  
Article
Eco-Hydrological Response of Water Conveyance in the Mainstream of the Tarim River, China
by Ayong Jiao, Zikang Wang, Xiaoya Deng, Hongbo Ling and Fulong Chen
Water 2022, 14(17), 2622; https://doi.org/10.3390/w14172622 - 25 Aug 2022
Cited by 12 | Viewed by 2686
Abstract
Desert riparian vegetation forms an ecological corridor in extremely arid environments, and ecological water conveyance is an important measure of vegetation restoration and biodiversity conservation in desert riparian zones. Studying the responses of vegetation to ecological water conveyance and changes in this process [...] Read more.
Desert riparian vegetation forms an ecological corridor in extremely arid environments, and ecological water conveyance is an important measure of vegetation restoration and biodiversity conservation in desert riparian zones. Studying the responses of vegetation to ecological water conveyance and changes in this process in arid desert riparian zones and assessing the comprehensive benefits of ecological water conveyance are highly significant for ecological conservation and restoration in addition to the formulation of water transfer policies. Previous studies mainly used a single indicator to evaluate the ecological restoration of the mainstream Tarim River in Northwest China; thus, systematic and comprehensive assessments based on multiple indicators have not been conducted. In the present study, remote sensing data and field surveys were used to analyze the ecological restoration status of the Tarim River during 2015–2021 in terms of hydrological responses, vegetation responses, and ecological water conveyance benefits. The results showed that groundwater levels and soil moisture in the mainstream area of the Tarim River increased significantly from 2015 to 2021. The amount of groundwater storage also increased. Ecological water conveyance has created good hydrological conditions for groundwater recharge and ecological restoration on both sides of the mainstream area of the Tarim River. Desert forest ecosystems, mainly comprising Populus euphratica and Tamarix ramosissima, have been saved and rejuvenated in water conveyance areas. After ecological water conveyance, the Simpson and Shannon–Wiener indices increased significantly, but the diversity level began to decline and then stabilize with the increase in water conveyance frequency. The overall habitat status improved and the quality of the ecological environment below the Wusiman section of the middle reaches of the Tarim River improved significantly. Full article
Show Figures

Figure 1

15 pages, 1865 KiB  
Article
Characteristics of Plant Community and Its Relationship with Groundwater Depth of the Desert Riparian Zone in the Lower Reaches of the Ugan River, Northwest China
by Tianju Zhang, Yaning Chen, Wanrui Wang, Yongjin Chen and Xigang Liu
Water 2022, 14(10), 1663; https://doi.org/10.3390/w14101663 - 23 May 2022
Cited by 4 | Viewed by 2715
Abstract
The vegetation in the desert riparian zone represents a critical barrier in the maintenance of the ecosystem’s balance. However, in recent years, the vegetation degradation of the riparian zone has seriously hindered economic development and ecological environment conservation. Based on a field investigation [...] Read more.
The vegetation in the desert riparian zone represents a critical barrier in the maintenance of the ecosystem’s balance. However, in recent years, the vegetation degradation of the riparian zone has seriously hindered economic development and ecological environment conservation. Based on a field investigation and literature, the mechanisms of vegetation degradation in the lower reaches of the Ugan River are discussed in this study through the analysis of plant coverage, diversity, substitution rate, distribution pattern, grey correlation analysis, and the relationship with groundwater depth. The results showed that the vegetation coverage in this region is relatively low when the water depth exceeds 4 m. Furthermore, the Shannon–Wiener index, the Simpson index, and the Pielou index all decreased with increases in water depth. Woody plants are the main species maintaining the ecological balance of the region with an aggregation distribution pattern. The degradation of vegetation is the result of the lack of water sources and the intense water consumption caused by human activities (especially agricultural). To promote ecological balance and vegetation restoration, the relative optimal water depth range should be maintained within 2 to 5 m as well as proper control of human activities. In addition, the degraded vegetation can gradually be restored using point and surface (i.e., flowering in the center and spreading to the surrounding areas). The results can provide a scientific basis for vegetation restoration and ecological conservation in the lower reaches of China’s Ugan River. Full article
(This article belongs to the Special Issue Advances in Studies on Ecohydrological Processes in the Arid Area)
Show Figures

Figure 1

17 pages, 137145 KiB  
Article
Influence of Surface Water on Desert Vegetation Expansion at the Landscape Scale: A Case Study of the Daliyabuyi Oasis, Taklamakan Desert
by Hao Li, Qingdong Shi, Yanbo Wan, Haobo Shi and Bilal Imin
Sustainability 2021, 13(17), 9522; https://doi.org/10.3390/su13179522 - 24 Aug 2021
Cited by 11 | Viewed by 3145
Abstract
Surface water is an important factor affecting vegetation change in desert areas. However, little research has been conducted on the effects of surface water on vegetation expansion. In this study, the annual spatial distribution range of vegetation and surface water in the Daliyabuyi [...] Read more.
Surface water is an important factor affecting vegetation change in desert areas. However, little research has been conducted on the effects of surface water on vegetation expansion. In this study, the annual spatial distribution range of vegetation and surface water in the Daliyabuyi Oasis from 1990 to 2020 was extracted using Landsat time-series images. Based on multi-temporal and multi-scale remote sensing images, several plots were selected to demonstrate the process of landform change and vegetation expansion, and the influence of surface water on vegetation expansion was analyzed. The results show that the vegetation distribution and surface water coverage have increased from 1990 to 2020; and surface water is a critical factor that drives the expansion of vegetation. On the one hand, surface water in the study area was essential for reshaping the riparian landform, driving the transformation of dunes into floodplains, and increasing the potential colonization sites for vegetation. However, landform changes ultimately changed the redistribution of surface water, ensuring that enough water and nutrients provided by sediment were available for plant growth. Our study provides a critical reference for the restoration of desert vegetation and the sustainable development of oases. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

14 pages, 1709 KiB  
Article
Using Bioacoustics to Examine Vocal Phenology of Neotropical Migratory Birds on a Wild and Scenic River in Arizona
by Heather L. Bateman, Sidney B. Riddle and Erin S. Cubley
Birds 2021, 2(3), 261-274; https://doi.org/10.3390/birds2030019 - 2 Aug 2021
Cited by 7 | Viewed by 5577
Abstract
Passive acoustic recorders have been used successfully as automated survey tools to detect terrestrial wildlife. However, few studies have monitored Neotropical migratory bird use of riparian forest habitat using this technology. Within dryland ecosystems, the forests along rivers support high bird diversity. Many [...] Read more.
Passive acoustic recorders have been used successfully as automated survey tools to detect terrestrial wildlife. However, few studies have monitored Neotropical migratory bird use of riparian forest habitat using this technology. Within dryland ecosystems, the forests along rivers support high bird diversity. Many bird species of conservation concern require these floodplain forest habitats for foraging, migration stop-overs, and breeding. Few studies have explored the use of acoustic records in riverine systems designated for conservation for their natural resource value via the Wild and Scenic Rivers Act in the USA. Using acoustic recorders, we document vocal activity of four riparian-obligate species (Bell’s Vireo, Vireo bellii; Summer Tanager, Piranga rubra; Yellow Warbler, Setophaga petechial; and Yellow-billed Cuckoo, Coccyzus americanus) to determine species occurrence along a Wild and Scenic River. We established three study reaches along the perennial Lower Verde River, in the Sonoran Desert of central Arizona, USA. Nine acoustic recorders were used over the period of 80–120 days during the summer of 2018. We measured vegetation composition and structure in 100 m2 plots paired with acoustic recorders. Visualizing vocal activity showed that three species were calling and singing at each reach; whereas, one species, the cuckoo, had fewer recordings and occurred later in the summer. We demonstrate the utility of acoustic monitoring even when applied to rare birds in complex riparian habitats. This information is important for land management and conservation efforts concerning these species of interest and identifying important habitat features in Southwestern US riparian woodlands. Full article
(This article belongs to the Special Issue Feature Papers of Birds 2021)
Show Figures

Figure 1

13 pages, 1963 KiB  
Article
Variation in Temperature, Precipitation, and Vegetation Greenness Drive Changes in Seasonal Variation of Avian Diversity in an Urban Desert Landscape
by Fábio Suzart de Albuquerque, Heather L. Bateman, Cameron Boehme, Daniel C. Allen and Luis Cayuela
Land 2021, 10(5), 480; https://doi.org/10.3390/land10050480 - 3 May 2021
Cited by 7 | Viewed by 5557
Abstract
Previous studies in urban desert ecosystems have reported a decline in avian diversity. Herein, we expand and improve these studies by disentangling the effect of land-use and land-cover (LULC) types (desert, riparian desert, urban, riparian urban, agriculture), vegetation greenness (normalized difference vegetation index—NDVI), [...] Read more.
Previous studies in urban desert ecosystems have reported a decline in avian diversity. Herein, we expand and improve these studies by disentangling the effect of land-use and land-cover (LULC) types (desert, riparian desert, urban, riparian urban, agriculture), vegetation greenness (normalized difference vegetation index—NDVI), climate, and their interactions on avian seasonal variation abundance and richness. Avian community data were collected seasonally (winter and spring) from 2001 to 2016. We used generalized linear mixed models (GLMM) and multimodel inference to investigate how environmental predictors explain patterns of avian richness and abundance. Avian abundance and richness oscillated considerably among the years. GLMM indicated that LULC was the most important predictor of avian abundance and richness. Avian abundance was highest in urban riparian and urban LULC types, followed by agriculture. In contrast, avian richness was the highest in riparian environments (urban and desert), followed by agriculture, urban, and desert. NDVI was also strongly related to avian abundance and richness, whereas the effect of temperature and precipitation was moderate. The importance of environmental predictors is, however, dependent on LULC. The importance of LULC, vegetation cover, and climate in influencing the seasonal patterns of avian distribution highlights birds’ sensitivity to changes in land use and cover and temperature. Full article
(This article belongs to the Section Urban Contexts and Urban-Rural Interactions)
Show Figures

Graphical abstract

Back to TopTop