Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,489)

Search Parameters:
Keywords = depth ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1108 KB  
Article
Scattering Coefficient Estimation Using Thin-Film Phantoms with a Spectral-Domain Dental OCT System
by H. M. S. S. Herath, Nuwan Madusanka, Eun Seo Choi, Song Woosub, RyungKee Chang, GyuHyun Lee, Myunggi Yi, Jae Sung Ahn and Byeong-il Lee
Sensors 2026, 26(3), 815; https://doi.org/10.3390/s26030815 - 26 Jan 2026
Abstract
This study introduces a framework for estimating the optical scattering properties of thin-film phantoms using a custom-built Spectral-Domain Dental Optical Coherence Tomography (DEN-OCT) system operating within the 780–900 nm spectral range. The purpose of this work was to assess the performance of this [...] Read more.
This study introduces a framework for estimating the optical scattering properties of thin-film phantoms using a custom-built Spectral-Domain Dental Optical Coherence Tomography (DEN-OCT) system operating within the 780–900 nm spectral range. The purpose of this work was to assess the performance of this system. The system exhibited high depth-resolved imaging performance with an axial resolution of approximately 16.30 µm, a signal-to-noise ratio of about 32.4 dB, and a 6 dB sensitivity roll-off depth near 2 mm, yielding an effective imaging range of 2.5 mm. Thin-film phantoms with controlled optical characteristics were fabricated and analyzed using Beer–Lambert and diffusion approximation models to evaluate attenuation behavior. Samples representing different tissue analogs demonstrated distinct scattering responses: one sample showed strong scattering similar to hard tissues, while the others exhibited lower scattering and higher transmission, resembling soft-tissue properties. Spectrophotometric measurements at 840 nm supported these trends through characteristic transmittance and reflectance profiles. While homogeneous samples conformed to analytical models, the highly scattering sample deviated due to structural non-uniformity, requiring Monte Carlo simulation to accurately describe photon transport. OCT A-scan analyses fitted with exponential decay models produced attenuation coefficients consistent with spectrophotometric data, confirming the dominance of scattering over absorption. The integration of OCT imaging, optical modeling, and Monte Carlo simulation establishes a reliable methodology for quantitative scattering estimation and demonstrates the potential of the developed DEN-OCT system for advanced dental and biomedical imaging applications. The innovation of this work lies in the integration of phantom-based optical calibration, multi-model scattering analysis, and depth-resolved OCT signal modeling, providing a validated pathway for quantitative parameter extraction in dental OCT applications. Full article
(This article belongs to the Special Issue Application of Optical Imaging in Medical and Biomedical Research)
21 pages, 4150 KB  
Article
Multi-Scale Optimization of Volcanic Scoria Lightweight Aggregate Concrete via Synergistic Incorporation of Styrene-Acrylic Emulsion, Foaming Agent, and Straw Fibers
by Jinhong Zhang, Rong Li and Guihua Xu
Buildings 2026, 16(3), 492; https://doi.org/10.3390/buildings16030492 - 25 Jan 2026
Abstract
Volcanic Scoria Lightweight Aggregate Concrete (VSLAC) has been identified as a material with considerable potential for use in carbon-neutral construction; however, its application is often hindered by two main issues. Firstly, the low density of scoria often results in aggregate segregation and stratification. [...] Read more.
Volcanic Scoria Lightweight Aggregate Concrete (VSLAC) has been identified as a material with considerable potential for use in carbon-neutral construction; however, its application is often hindered by two main issues. Firstly, the low density of scoria often results in aggregate segregation and stratification. Secondly, its high hygroscopicity can lead to shrinkage cracking. In order to address the aforementioned issues, this study proposes a multi-scale modification strategy. The cementitious matrix was first strengthened using a binary blend of Fly Ash and Ground Granulated Blast Furnace Slag (GGBS), followed by the incorporation of a ternary admixture system containing Styrene-Acrylic Emulsion (SAE), a foaming agent (FA), and alkali-treated Straw Fibres (SF) to enhance workability and durability. The findings of this study demonstrate that a mineral admixture comprising 10% Fly Ash and 10% GGBS results in a substantial enhancement of matrix compactness, culminating in a 20% increase in compressive strength. An orthogonal test was conducted to identify the optimal formulation (D13), which was found to contain 4% SAE, 0.1% FA, and 5% SF. This formulation yielded a compressive strength of 35.2 MPa, a flexural strength of 7.5 MPa, and reduced water absorption to 8.0%. A comparative analysis was conducted between the mineral admixture mix ratio (Control group) and the Optimal mix ratio (Optimization group). The results of this analysis reveal that the Optimization group exhibited superior durability and thermal characteristics. Specifically, the water penetration depth of the optimized composite was successfully restricted to within 3.18 mm, while its thermal insulation performance demonstrated a significant enhancement of 12.3%. In the context of freeze–thaw cycles, the modified concrete demonstrated notable durability, exhibiting a 51.4% reduction in strength loss and a marginal 0.64% restriction in mass loss. SEM analysis revealed that the interaction between SAE and the FA resulted in the densification of the Interfacial Transition Zone (ITZ). In addition, the 3D network formed by SF redistributed internal stresses, thereby shifting the failure mode from brittle fracture to ductile deformation. The findings demonstrate that modifying VSLAC at both micro- and macro-levels can effectively balance structural integrity with thermal efficiency for sustainable construction applications. Full article
(This article belongs to the Special Issue Sustainable Approaches to Building Repair)
Show Figures

Figure 1

27 pages, 6028 KB  
Article
A Comparative Study and Introduction of a New Heat Source Model for the Macro-Scale Numerical Simulation of Selective Laser Melting Technology
by Hao Zhang, Shuai Wang, Junjie Wang and Zhiqiang Yan
Materials 2026, 19(3), 480; https://doi.org/10.3390/ma19030480 - 25 Jan 2026
Abstract
Selective Laser Melting (SLM), as a common metal additive manufacturing (AM) technology, achieves high-precision complex part formation by layer-by-layer melting of metal powder using a laser. However, the dynamic behavior of the melt pool during the SLM process is influenced by the heat [...] Read more.
Selective Laser Melting (SLM), as a common metal additive manufacturing (AM) technology, achieves high-precision complex part formation by layer-by-layer melting of metal powder using a laser. However, the dynamic behavior of the melt pool during the SLM process is influenced by the heat source model, which is crucial for suppressing porosity defects and optimizing process parameters, directly determining the reliability of numerical simulations. To address the issue of traditional surface heat source models overestimating the melt pool width and volume heat source models underestimating the melt pool depth, this study constructs a three-dimensional transient heat conduction finite element model based on ANSYS Parametric Design Language (APDL) to simulate the evolution of the temperature field and melt pool geometry under different laser parameters. First, the temperature fields and melt pool morphology and dimensions of four heat source models—Gaussian surface heat source, volumetric heat source models (rotating Gaussian volumetric heat source, double ellipsoid heat source), and a combined heat source model—were investigated. Subsequently, a dynamic heat source model was proposed, combining a Gaussian surface heat source with a rotating volumetric heat source. By dynamically allocating the laser energy absorption ratio between the powder surface layer and the substrate depth, the influence of this heat source model on melt pool size was explored and compared with other heat source models. The results show that under the dynamic heat source, the melt pool width and depth are 128.6 μm and 63.13 μm, respectively. The melt pool width is significantly larger compared to other heat source models, and the melt pool depth is about 17% greater than that of the combined heat source model. At the same time, the predicted melt pool width and depth under this heat source model have relative errors of 1.0% and 5.5% compared to the experimental measurements, indicating that this heat source model has high accuracy in predicting the melt pool’s lateral dimensions and can effectively reflect the actual melt pool morphology during processing. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

20 pages, 6620 KB  
Article
Study of Fecal Microbiota Transplantation Ameliorates Colon Morphology and Microbiota Function in High-Fat Diet Mice
by Xinyu Cao, Lu Zhou, Yuxia Ding, Chaofan Ma, Qian Chen, Ning Li, Hao Ren, Ping Yan and Jianlei Jia
Vet. Sci. 2026, 13(2), 116; https://doi.org/10.3390/vetsci13020116 - 25 Jan 2026
Abstract
This study investigates whether fecal microbiota transplantation (FMT) can alleviate gut microbiota dysbiosis induced by a high-fat diet (HFD) through modulation of fatty acid metabolism, competition for nutrients, production of short-chain fatty acids (SCFAs), and restoration of mucus layer integrity. To elucidate the [...] Read more.
This study investigates whether fecal microbiota transplantation (FMT) can alleviate gut microbiota dysbiosis induced by a high-fat diet (HFD) through modulation of fatty acid metabolism, competition for nutrients, production of short-chain fatty acids (SCFAs), and restoration of mucus layer integrity. To elucidate the mechanisms by which FMT regulates colonic microbial function and host metabolic responses, 80 male Bal b/c mice were randomly assigned to four experimental groups (n = 20 per group): Normal Diet Group (NDG), High-Fat Diet Group (HDG), Restrictive Diet Group (RDG), and HDG recipients of NDG-derived fecal microbiota (FMT group). The intervention lasted for 12 weeks, during which body weight was monitored biweekly. At the end of the experiment, tissue and fecal samples were collected to assess digestive enzyme activities, intestinal histomorphology, gene expression related to gut barrier function, and gut microbiota composition via 16S rRNA gene sequencing. Results showed that mice in the HDG exhibited significantly higher final body weight and greater weight gain compared to those in the NDG and RDG (p < 0.05). Notably, FMT treatment markedly attenuated HFD-induced weight gain (p < 0.05), reducing it to levels comparable with the NDG (p > 0.05). While HFD significantly elevated the activities of α-amylase and trypsin (p < 0.05), FMT supplementation effectively suppressed these enzymatic activities (p < 0.05). Moreover, FMT ameliorated HFD-induced intestinal architectural damage, as evidenced by significant increases in villus height and the villus height-to-crypt depth ratio (V/C) (p < 0.05). At the molecular level, FMT significantly downregulated the expression of pro-inflammatory cytokines (IL-1β, IL-1α, TNF-α) and upregulated key tight junction proteins (Occludin, Claudin-1, ZO-1) and mucin-2 (MUC2) relative to the HDG (p < 0.05). 16S rRNA analysis demonstrated that FMT substantially increased the abundance of beneficial genera such as Lactobacillus and Bifidobacterium while reducing opportunistic pathogens including Romboutsia (p < 0.05). Furthermore, alpha diversity indices (Chao1 and ACE) were significantly higher in the FMT group than in all other groups (p < 0.05), indicating enhanced microbial richness and community stability. Functional prediction using PICRUSt2 revealed that FMT-enriched metabolic pathways (particularly those associated with SCFA production) and enhanced gut barrier-related functions. Collectively, this study deepens our understanding of host–microbe interactions under HFD-induced metabolic stress and provides mechanistic insights into how FMT restores gut homeostasis, highlighting its potential as a therapeutic strategy for diet-induced dysbiosis and associated metabolic disorders. Full article
(This article belongs to the Special Issue The Role of Gut Microbiome in Regulating Animal Health)
Show Figures

Figure 1

21 pages, 3026 KB  
Article
In Situ Quantification of Root Exudates in a Subtropical Mangrove (Bruguiera gymnorhiza) Forest
by Norihiro Kato, Ken’ichi Osaka, Nada Yimatsa, Toshiyuki Ohtsuka and Yasuo Iimura
Forests 2026, 17(2), 156; https://doi.org/10.3390/f17020156 - 24 Jan 2026
Viewed by 48
Abstract
Root exudates represent a critical belowground carbon flux; however, direct field-based quantification of these rates on intact mangrove roots remains limited due to methodological challenges. Here, we present, to our knowledge, the first in situ evaluation of root exudation rates in a subtropical [...] Read more.
Root exudates represent a critical belowground carbon flux; however, direct field-based quantification of these rates on intact mangrove roots remains limited due to methodological challenges. Here, we present, to our knowledge, the first in situ evaluation of root exudation rates in a subtropical Bruguiera gymnorhiza forest in Japan, employing a modified cuvette method specifically designed for field measurements on intact root systems. The net root exudation rates measured in artificial seawater at depths of 0–60 cm ranged from 0.01 to 0.97 mg C g−1 h−1, with a mean of 0.22 mg C g−1 h−1. Although this mean rate was comparable to values reported for tropical terrestrial forests, the spatiotemporal variation exhibited variable site-specific patterns. At the midstream site, exudation rates were closely coupled with fine root biomass under nitrogen-limited conditions and peaked during summer. In contrast, the upstream site exhibited unusually high exudation rates during winter, even in deep soil layers. Furthermore, contrary to patterns typically observed in terrestrial forests, exudation rates showed positive correlations with root C:N ratios and proton efflux. These findings suggest that root exudation in mangroves is regulated by complex interactions among site-specific hydrological regimes and stress-adaptation mechanisms, particularly salinity tolerance and nutrient acquisition, rather than by simple growth trade-offs. When integrated over a depth of 0–60 cm, the estimated annual root exudate carbon flux was approximately 0.4 kg C m−2 yr−1. This likely represents a conservative lower-bound estimate because fine root systems extend well below this depth in mangrove forests. Our results strongly suggest that root exudates constitute an important, previously under-recognized component of the “missing carbon” in mangrove ecosystems and underscore the need to explicitly incorporate this flux into blue carbon models to more accurately evaluate mangrove carbon sequestration capacity. Full article
(This article belongs to the Special Issue Soil Carbon Storage in Forests: Dynamics and Management)
Show Figures

Figure 1

20 pages, 1400 KB  
Article
Optimizing Biodegradable Films with Varying Induction Periods to Enhance Rice Growth and Soil Carbon and Nitrogen Dynamics
by Youliang Zhang, Xiaoming Li, Kaican Zhu, Shaoyuan Feng, Chaoying Dou, Xiaoping Chen, Yan Huang, Bai Wang, Yanling Sun, Fengxin Wang, Xiaoyu Geng and Huanhe Wei
Plants 2026, 15(3), 358; https://doi.org/10.3390/plants15030358 - 23 Jan 2026
Viewed by 91
Abstract
Polyethylene film (PE) mulching produces substantial “white pollution,” prompting the use of biodegradable film (BF) alternatives, yet their performance in rice systems on Northeast black soils is still uncertain. We compared three BFs with different induction periods (45 d, BF45; 60 [...] Read more.
Polyethylene film (PE) mulching produces substantial “white pollution,” prompting the use of biodegradable film (BF) alternatives, yet their performance in rice systems on Northeast black soils is still uncertain. We compared three BFs with different induction periods (45 d, BF45; 60 d, BF60; 80 d, BF80), PE and a no-film control (CK) to quantify their effects on soil hydrothermal conditions, rice growth, yield, grain quality, irrigation water use efficiency (IWUE) and soil C, N. Results showed that mulching increased soil temperature and soil moisture. Across the growing season, the mean soil temperature at the 0–5 cm depth under PE was 5.5% and 2.2–5.5% higher than that under CK and BFs, respectively. Specifically, compared with CK, PE increased grain yield by 31–77% and IWUE by 75–123%, while BFs improved yield by 25–73% and IWUE by 48–101%. PE only slightly outperformed BF80 in yield (by 2.3% in 2023 and 2.1% in 2024) but achieved higher IWUE (11.0–11.7%). Grain chalkiness and sensory scores under BFs were comparable to PE and better than CK. At 0–20 cm, PE increased SOC (2.3–6.8%) and the C/N ratio (0–0.8%) but reduced total nitrogen (TN) (2.7–3.9%) and total carbon (TC) (2.5–3.1%), whereas BFs increased Org-N by 0.4–4.2%, SOC by 2.9–7.1%, and TN by 0.2–0.7%, with BF80 showing the greatest stimulatory effect. Overall, BFs—particularly BF80—are promising substitutes for PE in black soil rice systems, supporting sustainable rice production with strong application potential. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

10 pages, 1009 KB  
Article
Impact of Stromal Deposit Depth on Pneumatic Dissection During DALK for TGFBI Corneal Dystrophies
by Luca Lucchino, Giacomo Visioli, Giulio Pocobelli, Fabio Scarinci, Rossella Anna Maria Colabelli Gisoldi, Chiara Komaiha, Giacinta Buffon, Marco Marenco, Alessandro Lambiase and Augusto Pocobelli
J. Clin. Med. 2026, 15(3), 917; https://doi.org/10.3390/jcm15030917 (registering DOI) - 23 Jan 2026
Viewed by 73
Abstract
Objectives: To evaluate whether preoperative anterior segment optical coherence tomography (AS-OCT) parameters differ according to Big Bubble (BB) formation during deep anterior lamellar keratoplasty (DALK) in patients with TGFBI-related corneal stromal dystrophies (CSD). Methods: This retrospective cohort study included 17 eyes [...] Read more.
Objectives: To evaluate whether preoperative anterior segment optical coherence tomography (AS-OCT) parameters differ according to Big Bubble (BB) formation during deep anterior lamellar keratoplasty (DALK) in patients with TGFBI-related corneal stromal dystrophies (CSD). Methods: This retrospective cohort study included 17 eyes from 12 patients undergoing DALK with an attempted BB technique. Stromal deposit depth was assessed by AS-OCT using both a categorical depth-based classification (anterior, mid-, and posterior stroma) and continuous measurements of stromal involvement (µm). The ratio between stromal involvement and the thinnest corneal point was calculated. Intraoperative data included BB success, BB type, and complications. Inter-eye correlation was accounted for in comparisons of continuous variables using linear mixed-effects models. Results: BB formation was achieved in 11 of 17 eyes (64.7%), with type 1 BB observed in all successful cases. BB success was observed in all eyes with anterior or mid-stromal involvement and in 33.3% of eyes with posterior stromal involvement. Greater stromal deposit depth and a higher stromal-depth-to-thinnest-point ratio were observed in eyes in which BB formation failed (p < 0.01). No intraoperative perforations or conversions to penetrating keratoplasty occurred. Inter-observer agreement for AS-OCT measurements was high. Conclusions: BB failure was more frequent in eyes with greater absolute and relative stromal deposit depth, as assessed by preoperative AS-OCT during DALK in TGFBI-related CSD. These AS-OCT-derived parameters may support surgical planning and improve patient selection for BB DALK in this clinical setting. Full article
(This article belongs to the Special Issue Prevention, Diagnosis, and Clinical Treatment of Corneal Diseases)
Show Figures

Figure 1

24 pages, 5920 KB  
Article
Mechanical, Fatigue, and Thermal Characterization of ASA, Nylon 12, PC, and PC-ABS Manufactured by Fused Filament Fabrication (FFF)
by Ângela Rodrigues, Ricardo Branco, Margarida Franco, Rui Silva, Cândida Malça and Rui F. Martins
Polymers 2026, 18(2), 302; https://doi.org/10.3390/polym18020302 - 22 Jan 2026
Viewed by 68
Abstract
Additive manufacturing has been widely adopted in industry as an alternative to traditional manufacturing processes for complex component production. In fact, a diverse range of materials, particularly polymers, can be processed using 3D printing for biomechanical applications (e.g., prosthetics). However, in-depth evaluation of [...] Read more.
Additive manufacturing has been widely adopted in industry as an alternative to traditional manufacturing processes for complex component production. In fact, a diverse range of materials, particularly polymers, can be processed using 3D printing for biomechanical applications (e.g., prosthetics). However, in-depth evaluation of these materials is necessary to determine their suitability for demanding applications, such as those involving cyclic loading. Following previous work that studied Polylactic Acid (PLA) and Polyethylene Terephthalate Glycol-modified (PETG) under experimental fatigue testing, this study examines the fatigue behaviour of other current 3D-printed polymeric materials, namely Acrylonitrile Styrene Acrylate (ASA), Polycarbonate (PC), Polyamide 12 (Nylon 12), and Polycarbonate–Acrylonitrile Butadiene Styrene (blend) (PC-ABS), for which fatigue data remain limited or even non-existent. The findings revealed performance differences on Tensile Strength (σR), Young’s Modulus and Ultimate Strain among tensile specimens made from these materials and characterised S-N curves for both high-cycle (HCF) and low-cycle (LCF) fatigue regimes at room temperature, with a tensile load ratio (R = 0.05). These results establish relationships among fatigue limit and quasi-static mechanical properties, namely 25% × σr for ASA (8 MPa), 7% × σr for PC (3.6 MPa), 17% × σr for Nylon 12 (7.4 MPa), and 15% × σr for PC-ABS (4.7 MPa), as well as between mechanical properties and preliminary potential biomechanical applications. Main conclusions were further supported by micro-computed tomography (micro-CT), which revealed levels of porosity in between 4% and 11%, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). Full article
(This article belongs to the Special Issue Research Progress on Mechanical Behavior of Polymers, 2nd Edition)
Show Figures

Figure 1

24 pages, 8351 KB  
Article
Resolving Knowledge Gaps in Liquid Crystal Delay Line Phase Shifters for 5G/6G mmW Front-Ends
by Jinfeng Li and Haorong Li
Electronics 2026, 15(2), 485; https://doi.org/10.3390/electronics15020485 - 22 Jan 2026
Viewed by 33
Abstract
In the context of fifth-generation (5G) communications and the dawn of sixth-generation (6G) networks, a surged societal demand on bandwidth and data rate and more stringent commercial requirements on transmission efficiency, cost, and reliability are increasingly evident and, hence, driving the maturity of [...] Read more.
In the context of fifth-generation (5G) communications and the dawn of sixth-generation (6G) networks, a surged societal demand on bandwidth and data rate and more stringent commercial requirements on transmission efficiency, cost, and reliability are increasingly evident and, hence, driving the maturity of reconfigurable millimeter-wave (mmW) and terahertz (THz) devices and systems, in particular, liquid crystal (LC)-based tunable solutions for delay line phase shifters (DLPSs). However, the field of LC-combined electronics has witnessed only incremental developments in the past decade. First, the tuning principle has largely been unchanged (leveraging the shape anisotropy of LC molecules in microscale and continuum mechanics in macroscale for variable polarizability). Second, LC-enabled devices’ performance has yet to be standardized (suboptimal case by case at different frequency domains). In this context, this work points out three underestimated knowledge gaps as drawn from our theoretical designs, computational simulations, and experimental prototypes, respectively. The first gap reports previously overlooked physical constraints from the analytical model of an LC-embedded coaxial DLPS. A new geometry-dielectric bound is identified. The second gap deals with the lack of consideration in the suboptimal dispersion behavior in differential delay time (DDT) and differential delay length (DDL) for LC phase-shifting devices. A new figure of merit (FoM) is proposed and defined at the V-band (60 GHz) to comprehensively evaluate the ratios of the DDT and DDL over their standard deviations across the 54 to 66 GHz spectrum. The third identified gap deals with the in-depth explanation of our recent experimental results and outlook for partial leakage attack analysis of LC phase shifters in modern eavesdropping. Full article
Show Figures

Figure 1

17 pages, 11315 KB  
Article
Dispersion Features of Scholte-like Waves in Ice over Shallow Water: Modeling, Analysis, and Application
by Dingyi Ma, Yuxiang Zhang, Chao Sun, Rui Yang and Xiaoying Liu
J. Mar. Sci. Eng. 2026, 14(2), 232; https://doi.org/10.3390/jmse14020232 - 22 Jan 2026
Viewed by 28
Abstract
Acoustic propagation in the ice cover of the Polar Ocean is of increasing interest from both scientific and engineering perspectives. The low-frequency elastic waves propagating in floating ice are primarily governed by waveguides stemming from the layered structure of the medium. For shallow [...] Read more.
Acoustic propagation in the ice cover of the Polar Ocean is of increasing interest from both scientific and engineering perspectives. The low-frequency elastic waves propagating in floating ice are primarily governed by waveguides stemming from the layered structure of the medium. For shallow water areas, experimental observation indicates that two Scholte-like waves are observed at low frequencies, i.e., the quasi-Scholte (QS) and Scholte–Stoneley (SS) waves, which are different from deep-sea cases. Due to the finite depths of ice, water, and sediment layers, both waves are dispersive. By modeling the waveguide of an ice-covered shallow-water (ICSW) system, the dispersion characteristics of both waves are derived, validated through numerical simulation, and analyzed with respect to layer structure for both soft and hard sediment. Results indicate a consistent conclusion; the QS wave exhibits a unique sensitivity to ice thickness, whereas the SS wave shows marginal sensitivity to ice thickness, and is controlled by the ratio of water depth to sediment depth, regardless of their absolute values. Based on these dispersion characteristics, a two-step inversion procedure is developed and applied to the synthetic signals from a numerical simulation. The conditional observability of the SS wave at the ice surface is also investigated and discussed. Full article
Show Figures

Figure 1

18 pages, 785 KB  
Article
Effect of Water Extract of Artemisia annua L. on Growth Performance, Blood Biochemical Parameters and Intestinal-Related Indices in Mutton Sheep
by Gen Gang, Ruiheng Gao, Manman Tong, Shangxiong Zhang, Shiwei Guo, Xiao Jin, Yuanyuan Xing, Sumei Yan, Yuanqing Xu and Binlin Shi
Animals 2026, 16(2), 340; https://doi.org/10.3390/ani16020340 - 22 Jan 2026
Viewed by 25
Abstract
Objective: This experiment aimed to explore the effects of water extract of Artemisia annua L. (WEAA) on growth performance, blood parameters, and intestinal-related indices in mutton sheep, so as to evaluate its potential as a natural growth promoter. Methods: The experiment was conducted [...] Read more.
Objective: This experiment aimed to explore the effects of water extract of Artemisia annua L. (WEAA) on growth performance, blood parameters, and intestinal-related indices in mutton sheep, so as to evaluate its potential as a natural growth promoter. Methods: The experiment was conducted using a completely randomized design. Thirty-two 3-month-old Dorper × Han mutton sheep were randomly assigned to 4 groups (n = 8). The control group was fed only the basal diet, while the other groups were fed the basal diet supplemented with, respectively, 500, 1000, and 1500 mg/kg WEAA. The adaptation period lasted 15 days, followed by a 60-day experimental period. Results: Results showed that dietary supplementation of WEAA significantly reduced average daily feed intake (ADFI) and feed-to-gain ratio (F:G) of mutton sheep, significantly improved the apparent digestibility of crude protein (CP) and phosphorus (P), and optimized blood biochemical indices, such as significantly increasing the concentrations of total protein (TP), albumin (ALB), high-density lipoprotein cholesterol (HDL-C), and glucose (GLU), while significantly decreasing blood urea nitrogen (BUN) level (p < 0.05). Additionally, WEAA significantly improved intestinal morphology by reducing the crypt depth (CD) of the duodenum, jejunum, and ileum, increasing jejunal villus height (VH), and elevating the villus-to-crypt ratio (VH/CD) across intestinal segments (p < 0.05). It also significantly enhanced the activity of intestinal digestive enzymes, including α-amylase and trypsin in the duodenum, lipase and chymotrypsin in the jejunum, and α-amylase and chymotrypsin in the ileum, with the 500 mg/kg and 1000 mg/kg WEAA groups reaching better activity (p < 0.05). Furthermore, WEAA supplementation significantly increased the counts of beneficial bacteria (Bifidobacteria and Lactobacilli) and decreased the count of harmful bacteria (Escherichia coli) in rectal fecal samples (p < 0.05). Notably, most of these beneficial effects were dosage-dependent, with overall optimal performance observed in the 1000 mg/kg WEAA group. Conclusion: In conclusion, supplementing the diet with 1000 mg/kg WEAA exerted significant positive effects on the feed efficiency, nutrient digestibility, and intestinal health status of mutton sheep. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

20 pages, 3667 KB  
Article
Effects of Water-Delivered Probiotics on Performance, Carcass Traits, Immunity, Blood Biochemistry, and Ileal Morphology of Broilers Reared at High Stocking Density Under Warm Ambient Temperature
by Ibrahim Al-Homidan, Abdulla Alsuqayhi, Osama Abou-Emera, Zarroug Ibrahim and Moataz Fathi
Animals 2026, 16(2), 328; https://doi.org/10.3390/ani16020328 - 21 Jan 2026
Viewed by 50
Abstract
This study investigated the effects of dietary probiotic supplementation and stocking density on the growth performance, carcass traits, immunity, blood biochemical parameters, and ileal histomorphology of broiler chickens. A total of five hundred ten 1-day-old unsexed broiler chicks (Cobb 39) were allocated to [...] Read more.
This study investigated the effects of dietary probiotic supplementation and stocking density on the growth performance, carcass traits, immunity, blood biochemical parameters, and ileal histomorphology of broiler chickens. A total of five hundred ten 1-day-old unsexed broiler chicks (Cobb 39) were allocated to three probiotic levels (0%, 0.1%, 0.2%) and two stocking densities (low vs. high). Results indicated that stocking density significantly influenced body weight from the third week onward, with birds reared under low density showing higher weight and better feed-to-gain ratio. Probiotic supplementation did not significantly affect weekly body weight, feed intake, or mortality, although mortality tended to be lower in probiotic-fed groups. Carcass traits and lymphoid organ indices were largely unaffected by treatments, except for a higher heart percentage in low-density birds. Cell-mediated immunity was enhanced under low stocking density, and probiotic supplementation at 0.2% increased the immune response at 48 h post-challenge. Blood biochemical analysis revealed significant effects of stocking density on total protein, globulin, and triglycerides, while probiotics reduced total lipid and LDL levels. Ileal histomorphology was significantly improved by probiotics, with increased villus height, crypt depth, and villus-to-crypt ratio. Similarly, low stocking density further enhanced these parameters. Overall, probiotic supplementation, particularly at 0.1%, combined with low stocking density, positively influenced gut morphology and immune responses, contributing to improved broiler health and performance. Full article
(This article belongs to the Collection Application of Antibiotic Alternatives in the Poultry Industry)
Show Figures

Figure 1

20 pages, 2552 KB  
Article
Profile Differentiation of Soil Properties and Soil Organic Matter Quality as a Result of Soil Degradation in Drained Peatlands of the Temperate Zone
by Marcin Becher, Magdalena Banach-Szott, Dawid Jaremko, Agnieszka Godlewska and Natalia Barbarczyk
Sustainability 2026, 18(2), 1096; https://doi.org/10.3390/su18021096 - 21 Jan 2026
Viewed by 52
Abstract
In achieving sustainable development goals, soils play a key role in environmental protection, natural resources, and food security. Peatlands are particularly important here, as they function at the interface between terrestrial and aquatic ecosystems and store large amounts of organic matter. However, organic [...] Read more.
In achieving sustainable development goals, soils play a key role in environmental protection, natural resources, and food security. Peatlands are particularly important here, as they function at the interface between terrestrial and aquatic ecosystems and store large amounts of organic matter. However, organic soils are highly susceptible to transformation and degradation; therefore, their degradation caused by, among others, drainage properties is a high risk to both the environment and agriculture—it disrupts the ecosystems, causes greenhouse gas emissions, and eutrophicates the hydrosphere. Soil degradation in drained peatlands is associated with the transformation of soil organic matter (SOM), which in organic soils is the dominant component of the solid phase of the soil. The aim of our study was to assess the properties and degree of organic matter transformation in drained temperate peatland soils, with particular emphasis on sequential fractionation of SOM and humic acid properties. Due to the fact that in Poland, as many as 90% of non-forest peat bogs have been drained, we compare the mursh horizons that formed after peat bog drainage with the peat horizons that constitute the parent rock (where anaerobiosis occurs and morphological changes in the soil material are absent due to peat bog drainage). Studies were conducted on 11 soil profiles located in central-eastern Poland. Basic physicochemical soil properties were determined: pH, bulk density, contents of ash, SOM, total carbon (TC), and total nitrogen (TN). Sequential carbon fractionation was used to qualitatively analyze organic matter, which allowed for the identification of labile fractions, lipid fractions, humic substances (fulvic and humic acids), and residual fractions. Humic acids (HAs) were extracted using the Schnitzer method and analyzed for their elemental composition and spectrometric parameters in the VIS range. It was demonstrated that SOM transformation in drained temperate peatland soils was correlated with comprehensive changes in the soil’s physical and chemical properties. Compared to peat horizons, topsoil horizons were characterized by higher ash content and density, lower SOM content, and a lower TC/TN ratio. Qualitative SOM transformation during aerobic SOM transformation after draining the studied peatlands consisted of an increase in the amount of labile fractions and humic substances and a decrease in the lipid and residual fractions. The research results have shown that the HAs properties depended on the depth. HAs from topsoil horizons, compared to peat horizons, were characterized by a lower “degree of maturity,” as reflected by the values of atomic ratios (H/C, O/C) and absorbance coefficients (A4/6 and ΔlogK). It was found that the share of the distinguished SOM fractions and HAs properties were closely correlated with the physical and chemical properties of the soils. The study demonstrated the usefulness of the sequential carbon fractionation method for assessing the effects of dewatered peat transformation. The obtained results could contribute to the development of good practices ensuring high quality of organic matter and stability of ecosystems, as well as to the development of methods for limiting the mineralization of organic matter (SOM), greenhouse gas emissions, and the loss of organic soils in agricultural areas. Full article
(This article belongs to the Special Issue Soil Restoration and Sustainable Utilization)
Show Figures

Figure 1

20 pages, 3417 KB  
Article
Autonomous Frequency–Voltage Regulation Strategy for Weak-Grid Renewable-Energy Stations Based on Hybrid Supercapacitors and Cascaded H-Bridge Converters
by Geng Niu, Yu Ji, Ming Wu, Nan Zheng, Yongmei Liu, Xiangwu Yan and Yibo Gan
Appl. Syst. Innov. 2026, 9(1), 23; https://doi.org/10.3390/asi9010023 - 21 Jan 2026
Viewed by 75
Abstract
Hybrid supercapacitors possess high power and energy density, while the cascaded H-bridge converter features rapid response capability. Integrating these two components leads to an energy storage system capable of swiftly responding to power demands, effectively mitigating voltage and frequency instability in weak-grid renewable [...] Read more.
Hybrid supercapacitors possess high power and energy density, while the cascaded H-bridge converter features rapid response capability. Integrating these two components leads to an energy storage system capable of swiftly responding to power demands, effectively mitigating voltage and frequency instability in weak-grid renewable energy stations. Based on this system, in this paper, a novel automatic frequency–voltage regulation strategy is proposed. First, a fast fault severity detection method is proposed. It evaluates the system’s fault condition by monitoring the voltage response and generates auxiliary signals to enable subsequent rapid compensation of voltage and frequency. Subsequently, fast automatic voltage and frequency regulation strategies are developed. These strategies leverage real-time fault assessment to deliver immediate power support to weak-grid renewable stations following a disturbance, thereby effectively stabilizing the terminal voltage magnitude and system frequency. The effectiveness of the proposed method is validated through simulations. A grid-connected model of a weak-grid renewable energy station is established in MATLAB (2023b)/Simulink. Tests under various fault scenarios with different short-circuit ratios and voltage sag depths demonstrate that the proposed strategy can rapidly stabilize both voltage and frequency after large disturbances. Full article
(This article belongs to the Topic Collection Series on Applied System Innovation)
Show Figures

Figure 1

25 pages, 9604 KB  
Article
Shaft-Rate Magnetic Field Localization Algorithm Based on Improved Exponential Triangular Optimization
by Bozhong Lei, Ranfeng Wang, Cheng Chi, Lu Yu, Zhentao Yu and Dan Wang
J. Mar. Sci. Eng. 2026, 14(2), 216; https://doi.org/10.3390/jmse14020216 - 20 Jan 2026
Viewed by 91
Abstract
Addressing the issues of low positioning accuracy and poor robustness in shaft-rate magnetic fields, this study introduces the Improved Exponential Triangular Optimization Algorithm (IETO). By incorporating adaptive attenuation factors, dynamic population reduction, and intelligent boundary contraction strategies, it significantly enhances the global search [...] Read more.
Addressing the issues of low positioning accuracy and poor robustness in shaft-rate magnetic fields, this study introduces the Improved Exponential Triangular Optimization Algorithm (IETO). By incorporating adaptive attenuation factors, dynamic population reduction, and intelligent boundary contraction strategies, it significantly enhances the global search capability and robustness. A magnetic dipole localization model is developed, and comparative simulations show that IETO achieves reliable accuracy and robustness under low signal-to-noise ratio (SNR) conditions, reducing localization error by 7.82% compared with the conventional Exponential Triangular Optimization Algorithm (ETO). The effects of base station deployment, number of stations, and sea depth on localization performance are further examined, and the capability of IETO for dynamic target tracking is verified. Preliminary sea trial results confirm the practical feasibility and engineering applicability of the proposed method. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Data Analysis)
Show Figures

Figure 1

Back to TopTop