Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (212)

Search Parameters:
Keywords = dentate gyrus neurons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8673 KiB  
Article
Potential of Lactoferrin Against the Radiation-Induced Brain Injury
by Marina Yu. Kopaeva, Anton B. Cherepov, Irina B. Alchinova, Daria A. Shaposhnikova, Anna V. Rybakova and Alexandr P. Trashkov
Cells 2025, 14(15), 1198; https://doi.org/10.3390/cells14151198 - 4 Aug 2025
Viewed by 201
Abstract
The purpose of this work was to study the effects of lactoferrin (Lf) on acute (days 3 and 15) and early-delayed (day 30) changes in the dentate gyrus of mouse hippocampus caused by whole-body gamma-irradiation. Male C57BL/6 mice received Lf (4 mg per [...] Read more.
The purpose of this work was to study the effects of lactoferrin (Lf) on acute (days 3 and 15) and early-delayed (day 30) changes in the dentate gyrus of mouse hippocampus caused by whole-body gamma-irradiation. Male C57BL/6 mice received Lf (4 mg per mouse, i.p. injection) immediately after whole-body gamma-irradiation at a dose of 7.5 Gy from a 60Co source. The effect of Lf on mouse behavior was evaluated using “Open field” and “Elevated plus-maze” tests. The proportion of cells with DNA replication was determined by 5-ethynyl-2′-deoxyuridine incorporation (thymidine analog) and detected by a click reaction with azide Alexa Fluor 568. Lf treatment increased animal survival during the experiment (30 days), compensated for radiation-induced body weight loss, and prevented suppression of motor and exploratory activities. A pronounced anti-radiation effect of Lf on mouse brain cells has been demonstrated. A single injection of the protein allowed preserving 2-fold more proliferating cells and immature neurons in the dentate gyrus of the hippocampus of irradiated animals during the acute period of post-radiation injury development. Full article
Show Figures

Figure 1

18 pages, 5008 KiB  
Article
Enhanced Modulation of CaMKII in Mouse Hippocampus by an Antidepressant-like Dose of Melatonin/Ketamine Combination
by Armida Miranda-Riestra, Rosa Estrada-Reyes, Luis A. Constantino-Jonapa, Jesús Argueta, Julián Oikawa-Sala, Miguel A. Reséndiz-Gachús, Daniel Albarrán-Gaona and Gloria Benítez-King
Cells 2025, 14(15), 1187; https://doi.org/10.3390/cells14151187 - 1 Aug 2025
Viewed by 307
Abstract
Forty per cent of major depression patients are resistant to antidepressant medication. Thus, it is necessary to search for alternative treatments. Melatonin (N-acetyl-5-hydroxytryptamine) enhances neurogenesis and neuronal survival in the adult mouse hippocampal dentate gyrus. Additionally, melatonin stimulates the activity of [...] Read more.
Forty per cent of major depression patients are resistant to antidepressant medication. Thus, it is necessary to search for alternative treatments. Melatonin (N-acetyl-5-hydroxytryptamine) enhances neurogenesis and neuronal survival in the adult mouse hippocampal dentate gyrus. Additionally, melatonin stimulates the activity of Ca2+/Calmodulin-dependent Kinase II (CaMKII), promoting dendrite formation and neurogenic processes in human olfactory neuronal precursors and rat organotypic cultures. Similarly, ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, modulates CaMKII activity. Importantly, co-treatment of low doses of ketamine (10−7 M) in combination with melatonin (10−7 M) produces additive effects on neurogenic responses in olfactory neuronal precursors. Importantly, enhanced neurogenic responses are produced by conventional antidepressants like ISSRs. The goal of this study was to investigate whether hippocampal CaMKII participates in the signaling pathway elicited by combining doses of melatonin with ketamine acutely administered to mice, 30 min before being subjected to the forced swimming test. The results showed that melatonin, in conjunction with ketamine, significantly enhances CaMKII activation and changes its subcellular distribution in the dentate gyrus of the hippocampus. Remarkably, melatonin causes nuclear translocation of the active form of CaMKII. Luzindole, a non-selective MT1 and MT2 receptor antagonist, abolished these effects, suggesting that CaMKII is downstream of the melatonin receptor pathway that causes the antidepressant-like effects. These findings provide molecular insights into the combined effects of melatonin and ketamine on neuronal plasticity-related signaling pathways and pave the way for combating depression using combination therapy. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

19 pages, 8295 KiB  
Article
Melatonin as an Alleviator in Decabromodiphenyl Ether-Induced Aberrant Hippocampal Neurogenesis and Synaptogenesis: The Role of Wnt7a
by Jinghua Shen, Lu Gao, Jingjing Gao, Licong Wang, Dongying Yan, Ying Wang, Jia Meng, Hong Li, Dawei Chen and Jie Wu
Biomolecules 2025, 15(8), 1087; https://doi.org/10.3390/biom15081087 - 27 Jul 2025
Viewed by 415
Abstract
Developmental exposure to polybrominated diphenyl ethers (PBDEs), which are commonly used as flame retardants, results in irreversible cognitive impairments. Postnatal hippocampal neurogenesis, which occurs in the subgranular zone (SGZ) of the dentate gyrus, is critical for neuronal circuits and plasticity. Wnt7a-Frizzled5 (FZD5) is [...] Read more.
Developmental exposure to polybrominated diphenyl ethers (PBDEs), which are commonly used as flame retardants, results in irreversible cognitive impairments. Postnatal hippocampal neurogenesis, which occurs in the subgranular zone (SGZ) of the dentate gyrus, is critical for neuronal circuits and plasticity. Wnt7a-Frizzled5 (FZD5) is essential for both neurogenesis and synapse formation; moreover, Wnt signaling participates in PBDE neurotoxicity and also contributes to the neuroprotective effects of melatonin. Therefore, we investigated the impacts of perinatal decabromodiphenyl ether (BDE-209) exposure on hippocampal neurogenesis and synaptogenesis in juvenile rats through BrdU injection and Golgi staining, as well as the alleviation of melatonin pretreatment. Additionally, we identified the structural basis of Wnt7a and two compounds via molecular docking. The hippocampal neural progenitor pool (Sox2+BrdU+ and Sox2+GFAP+cells), immature neurons (DCX+) differentiated from neuroblasts, and the survival of mature neurons (NeuN+) in the dentate gyrus were inhibited. Moreover, in BDE-209-exposed offspring rats, it was observed that dendritic branching and spine density were reduced, alongside the long-lasting suppression of the Wnt7a-FZD5/β-catenin pathway and targeted genes (Prox1, Neurod1, Neurogin2, Dlg4, and Netrin1) expression. Melatonin alleviated BDE-209-disrupted memory, along with hippocampal neurogenesis and dendritogenesis, for which the restoration of Wnt7a-FZD5 signaling may be beneficial. This study suggested that melatonin could represent a potential intervention for the cognitive deficits induced by PBDEs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

23 pages, 19687 KiB  
Article
Intranasal Mitochondrial Transplantation Restores Mitochondrial Function and Modulates Glial–Neuronal Interactions in a Genetic Parkinson’s Disease Model of UQCRC1 Mutation
by Jui-Chih Chang, Chin-Hsien Lin, Cheng-Yi Yeh, Mei-Fang Cheng, Yi-Chieh Chen, Chi-Han Wu, Hui-Ju Chang and Chin-San Liu
Cells 2025, 14(15), 1148; https://doi.org/10.3390/cells14151148 - 25 Jul 2025
Viewed by 609
Abstract
The intranasal delivery of exogenous mitochondria is a potential therapy for Parkinson’s disease (PD). The regulatory mechanisms and effectiveness in genetic models remains uncertain, as well as the impact of modulating the mitochondrial permeability transition pore (mPTP) in grafts. Utilizing UQCRC1 (p.Tyr314Ser) knock-in [...] Read more.
The intranasal delivery of exogenous mitochondria is a potential therapy for Parkinson’s disease (PD). The regulatory mechanisms and effectiveness in genetic models remains uncertain, as well as the impact of modulating the mitochondrial permeability transition pore (mPTP) in grafts. Utilizing UQCRC1 (p.Tyr314Ser) knock-in mice, and a cellular model, this study validated the transplantation of mitochondria with or without cyclosporin A (CsA) preloading as a method to treat mitochondrial dysfunction and improve disease progression through intranasal delivery. Liver-derived mitochondria were labeled with bromodeoxyuridine (BrdU), incubated with CsA to inhibit mPTP opening, and were administered weekly via the nasal route to 6-month-old mice for six months. Both treatment groups showed significant locomotor improvements in open-field tests. PET imaging showed increased striatal tracer uptake, indicating enhanced dopamine synthesis capacity. The immunohistochemical analysis revealed increased neuron survival in the dentate gyrus, a higher number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) and striatum (ST), and a thicker granule cell layer. In SN neurons, the function of mitochondrial complex III was reinstated. Additionally, the CsA-accumulated mitochondria reduced more proinflammatory cytokine levels, yet their therapeutic effectiveness was similar to that of unmodified mitochondria. External mitochondria were detected in multiple brain areas through BrdU tracking, showing a 3.6-fold increase in the ST compared to the SN. In the ST, about 47% of TH-positive neurons incorporated exogenous mitochondria compared to 8% in the SN. Notably, GFAP-labeled striatal astrocytes (ASTs) also displayed external mitochondria, while MBP-labeled striatal oligodendrocytes (OLs) did not. On the other hand, fewer ASTs and increased OLs were noted, along with lower S100β levels, indicating reduced reactive gliosis and a more supportive environment for OLs. Intranasally, mitochondrial transplantation showed neuroprotective effects in genetic PD, validating a noninvasive therapeutic approach. This supports mitochondrial recovery and is linked to anti-inflammatory responses and glial modulation. Full article
Show Figures

Graphical abstract

18 pages, 6054 KiB  
Article
Mitotic Activity, Cell Survival, and Neuronal Differentiation in the Hilus of the Dentate Gyrus Under Physiological and Hypothyroid Conditions in Adult Wistar Rats
by Karla Sánchez-Huerta, Ana Karen García-Juárez, Lía Diana Colmenero-Rodríguez, Yuliana García-Martínez and Jorge Pacheco-Rosado
Cells 2025, 14(14), 1112; https://doi.org/10.3390/cells14141112 - 19 Jul 2025
Viewed by 304
Abstract
The adult rodent hippocampus is capable of maintaining its capacity to generate new neurons in the subgranular zone (SGZ) of the dentate gyrus (DG). Interestingly, proliferative cells have also been described in the hilus. The involvement of the hilar neurogenesis process in hippocampal [...] Read more.
The adult rodent hippocampus is capable of maintaining its capacity to generate new neurons in the subgranular zone (SGZ) of the dentate gyrus (DG). Interestingly, proliferative cells have also been described in the hilus. The involvement of the hilar neurogenesis process in hippocampal physiology is unknown. Thyroid hormones (THs) are necessary for the survival of postmitotic progenitor cells, neuroblasts, and immature granule neurons in the SGZ. In contrast, evidence concerning the role of THs in the hilar neurogenesis process is limited. The present study characterized the mitotic activity, cell survival, and neuronal differentiation of hilar neurogenesis under physiological and hypothyroid conditions and compared them with those of the granular layer (GL) and the SGZ of the DG in adult Wistar rats. We found that, under physiological conditions, the hilus harbors fewer proliferative cells than the neurogenic zone (GL/SGZ) does, with a rate of cell survival of 18.9% and a rate of differentiation into granular neurons of 19%. Interestingly, hypothyroidism provokes decreased cell proliferation and an increased rate of cell survival without affecting neuronal differentiation. These effects induced by hypothyroidism in the hilus were different or inclusive, contrary to those observed in the neurogenic zone. Full article
Show Figures

Graphical abstract

19 pages, 1575 KiB  
Article
Comparison of Cognitive Deterioration Between Propofol and Remimazolam Anesthesia in ApoE4 Knock-In Mouse Model
by Jong-Ho Kim, Songyi Park, Harry Jung, Eun-Hae Lee, Eun-Seo Lee, Jae-Jun Lee and Jong-Hee Sohn
Int. J. Mol. Sci. 2025, 26(12), 5718; https://doi.org/10.3390/ijms26125718 - 14 Jun 2025
Cited by 1 | Viewed by 553
Abstract
Perioperative neurocognitive disorder (PND) is a concern following anesthesia, particularly in individuals at risk for Alzheimer’s disease (AD). This study compared the cognitive and pathological effects of propofol and remimazolam in a mouse model with AD following surgery. Five-month-old male ApoE4-KI mice underwent [...] Read more.
Perioperative neurocognitive disorder (PND) is a concern following anesthesia, particularly in individuals at risk for Alzheimer’s disease (AD). This study compared the cognitive and pathological effects of propofol and remimazolam in a mouse model with AD following surgery. Five-month-old male ApoE4-KI mice underwent abdominal surgery under either propofol (170 mg/kg) or remimazolam (85 mg/kg) anesthesia. Cognitive function was assessed using the Morris water maze and Y-maze, and neuronal apoptosis and amyloid-beta (Aβ) deposition in the CA3 and dentate gyrus (DG) of the hippocampus were evaluated preoperatively and at 2, 4, and 7 days postoperatively. Both groups showed similar postoperative cognitive functions, with increased relative escape latency at day 2 and decreased relative spontaneous alternation at days 4 and 7. However, the neuropathological analysis revealed that propofol-induced significantly more neuronal death in the CA3 (days 4 and 7) and DG (days 2, 4, and 7), and greater Aβ accumulation in the CA3 (days 2 and 4) and DG (days 2 and 7) compared to remimazolam (p < 0.05). Propofol was associated with more pronounced neuropathologic changes in the hippocampus compared to remimazolam. These findings suggest remimazolam may be a safer anesthetic for patients at risk for neurodegenerative disorders, as it is associated with less severe hippocampal pathology, which is characteristic of AD. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

15 pages, 2053 KiB  
Article
Effects of Phenosanic Acid in Rat Seizure Models
by Victor A. Aniol, Natalia A. Lazareva, Yulia V. Moiseeva, Olga A. Nedogreeva, Margarita R. Novikova, Pavel A. Kostryukov, Mikhail V. Onufriev and Natalia V. Gulyaeva
Int. J. Mol. Sci. 2025, 26(12), 5668; https://doi.org/10.3390/ijms26125668 - 13 Jun 2025
Viewed by 511
Abstract
Oxidative stress and membrane damage are believed to be principally involved in the pathogenesis of epilepsy. This study aimed to assess the effects of phenosanic acid (PA), an antioxidant and membrane protector, in acute pentylenetetrazole and chronic lithium–pilocarpine seizure models in male Wistar [...] Read more.
Oxidative stress and membrane damage are believed to be principally involved in the pathogenesis of epilepsy. This study aimed to assess the effects of phenosanic acid (PA), an antioxidant and membrane protector, in acute pentylenetetrazole and chronic lithium–pilocarpine seizure models in male Wistar rats. PA was administered acutely (ip, 120 mg/kg BW ip, or 240 mg/kg BW per os) or chronically (80 mg/kg BW/day per os). Indices of free radical oxidation, the hypothalamo–pituitary–adrenocortical axis, and the nitrergic system were assessed in blood and brain regions. Morphological analysis of the hippocampus was performed in the lithium–pilocarpine model. PA exerted an acute anti-seizure effect in the pentylenetetrazole model. In the lithium–pilocarpine model, acute PA treatment decreased the death rate and corticosterone levels in the neocortex and brainstem. In contrast, the level of free radical oxidation products reacting with thiobarbituric acid declined in the brain stem in response to chronic PA treatment. In the lithium–pilocarpine model, the neuronal density in the dentate gyrus was elevated, and the proliferating cell nuclear antigen positive (PCNA+) cell counts in the subgranular zone did not differ between groups. Doublecortin positive (DCX+) cell count was significantly increased after chronic PA treatment. PA-induced reduction in mortality in the lithium–pilocarpine epilepsy model may be partially mediated by decreasing the lipid peroxidation and corticosterone levels in different brain regions. Chronic PA treatment may affect adult hippocampal neurogenesis by either prolonging the action of factors that increase neurogenesis after status epilepticus or by slowing down the neuronal differentiation rate. These data suggest that PA may be a disease-modifying AED able to hamper epileptogenesis. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Epilepsy—3rd Edition)
Show Figures

Figure 1

19 pages, 7673 KiB  
Article
Neuronal Deletion of Tumor Susceptibility Gene 101 (Tsg101) Causes Rapid Apoptotic Loss of Hippocampal CA3 Neurons
by Will P. Walker, Megan Lea Ratz-Mitchem, Kay-Uwe Wagner and Teresa M. Gunn
Biomolecules 2025, 15(6), 786; https://doi.org/10.3390/biom15060786 - 28 May 2025
Viewed by 1213
Abstract
Endosomal dysfunction is one of the earliest cellular signs in Alzheimer’s disease. Tumor susceptibility gene 101 protein (TSG101) is a component of the endosomal sorting complex required for transport (ESCRT)-I, which plays a key role in sorting ubiquitinated cell surface proteins and lipids [...] Read more.
Endosomal dysfunction is one of the earliest cellular signs in Alzheimer’s disease. Tumor susceptibility gene 101 protein (TSG101) is a component of the endosomal sorting complex required for transport (ESCRT)-I, which plays a key role in sorting ubiquitinated cell surface proteins and lipids onto intraluminal vesicles of multivesicular bodies for trafficking to lysosomes or autophagosomes for degradation, or to the plasma membrane for exosomal secretion. TSG101-dependent trafficking has been implicated in the propagation and spread of misfolded proteins associated with neurodegenerative diseases. We used transgenesis mice to study the in vivo consequences of disrupting TSG101-dependent trafficking in adult neurons. Mice lacking Tsg101 in forebrain neurons (Tsg101ck2-null) showed rapid loss of hippocampal neurons and progressive forebrain atrophy. Astrogliosis was apparent in the dentate gyrus within 1 week of deleting Tsg101, followed by apoptosis of hippocampal CA3 neurons and accumulation of the autophagy adapter P62/SQSTM1 and ubiquitinated proteins. Failure to detect lipidated LC3 indicated autophagy was impaired rather than upregulated. Endosomal markers (RAB5 and RAB7) and amyloid protein also accumulated in hippocampal neurons of Tsg101ck2-null mice. Our data establish a critical role for TSG101 in neuronal survival and demonstrate the importance of the in vivo assessment of gene and protein functions. Full article
(This article belongs to the Special Issue Molecular and Genetic Basis of Neurodegenerative Diseases)
Show Figures

Figure 1

14 pages, 3580 KiB  
Article
Cinnamomum cassia Alleviates Neuropsychiatric Lupus in a Murine Experimental Model
by Georges Maalouly, Youakim Saliba, Joelle Hajal, Anna Zein-El-Din, Luana Fakhoury, Rouaa Najem, Viviane Smayra, Hussein Nassereddine and Nassim Fares
Nutrients 2025, 17(11), 1820; https://doi.org/10.3390/nu17111820 - 27 May 2025
Viewed by 556
Abstract
Background: The pathogenesis of neuropsychiatric lupus erythematosus (NPSLE) is very complex and is associated with neuroinflammation and blood–brain barrier compromise. Experimental investigations of NPSLE have classically relied on spontaneous models. Recently, TLR7 agonist-induced lupus has been shown to exhibit similar neuropsychiatric manifestations to [...] Read more.
Background: The pathogenesis of neuropsychiatric lupus erythematosus (NPSLE) is very complex and is associated with neuroinflammation and blood–brain barrier compromise. Experimental investigations of NPSLE have classically relied on spontaneous models. Recently, TLR7 agonist-induced lupus has been shown to exhibit similar neuropsychiatric manifestations to spontaneous ones. Cinnamon is a widespread spice and natural flavoring agent. It has been proven to modulate vascular endothelial tight junctions, neuroinflammation, and autoimmunity pathways, but it has never been tested in relation to lupus. Hypothesis/Purpose: In this pilot study, we aimed to explore the disease-modifying effect of Cinnamomum cassia on NPSLE in a TLR7 agonist-induced model. Study Design: An experimental design was followed in this study. Methods: Lupus was induced in C57BL/6J female mice via the direct application of imiquimod, a TLR7 agonist (5% imiquimod cream, 1.25 mg three times weekly), to the skin. Mice were divided into five groups (n = 8 per group): a sham group (S), a sham group supplemented with cinnamon (SC), an imiquimod-treated group (L), an imiquimod-treated group supplemented with cinnamon starting from induction (LC), and an imiquimod-treated group supplemented with cinnamon beginning two weeks prior to induction (CLC). This protocol was followed for six consecutive weeks. Cinnamomum cassia powder was administered orally at 200 mg/kg, 5 days per week. Results: Behavioral alterations were significantly ameliorated in the CLC group compared to lupus mice. Neuronal shrinkage and nuclear chromatin condensation were visible in the hippocampal cornu ammonis and dentate gyrus zones of lupus mice, with an increased expression of TLR7 and NLRP3, versus significantly less neurodegeneration and TLR7 and NLRP3 expression in the CLC group. In addition, the expression of the blood–brain barrier endothelial cell tight junction proteins claudin-1, occludin, and ZO-1 was abnormally modified in lupus mice and was restored in the CLC group. Moreover, while the cell–cell border delocalization of claudin-1 was documented in cultured blood–brain barrier endothelial cells treated with the plasma of lupus mice to a punctate intracytoplasmic fluorescence pattern, only cells treated with the plasma of the CLC group exhibited a complete reversal of this redistribution of claudin-1. Finally, cinnamaldehyde seemed to interact with TLR7 at multiple sites. Conclusions:Cinnamomum cassia seems to alleviate the pathogenesis of NPSLE. Supplementation with Cinnamomum cassia could be of great interest to modulate the activity and severity of the disease. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Graphical abstract

16 pages, 3702 KiB  
Article
γ-Aminobutyric Acid Transporter Mutation GAT1 (S295L) Substantially Impairs Neurogenesis in Dentate Gyrus
by Weitong Liu, Yantian Yang, Yichen Liu, Bingyan Ni, Hua Zhuang, Kexin Chen, Jiahao Shi, Chenxin Zhu, Haoyue Wang and Jian Fei
Brain Sci. 2025, 15(4), 393; https://doi.org/10.3390/brainsci15040393 - 13 Apr 2025
Viewed by 679
Abstract
Background: GABAergic signaling plays a crucial role in modulating neuronal proliferation, migration, and the formation of neural network connections. The termination of GABA transmission primarily occurs through the action of GABA transporter 1 (GAT1), encoded by the SLC6A1 gene. Multiple SLC6A1 mutations [...] Read more.
Background: GABAergic signaling plays a crucial role in modulating neuronal proliferation, migration, and the formation of neural network connections. The termination of GABA transmission primarily occurs through the action of GABA transporter 1 (GAT1), encoded by the SLC6A1 gene. Multiple SLC6A1 mutations have been implicated in neurodevelopmental disorders, but their effects on the nervous system are unclear. Methods: We estimated the expression pattern of the GAT1 (S295L) protein using the Slc6a1S295L/S295L mouse model via RT-PCR, Western blotting, and confocal immunofluorescence. The effect of GAT1 (S295L) on hippocampal neurogenesis was investigated by neuronal marker staining (Sox2, Tbr2, NeuroD1, DCX, NeuN) and BrdU label experiments. The dendritic complexity was mapped through Sholl analysis. RNA-Seq was utilized to explore the signaling pathways and molecules associated with neurodevelopmental disorders. Results: We detected a remarkable decline in the quantity of type-2b intermediate progenitor cells, neuroblasts, and immature neurons in the dentate gyrus (DG) of Slc6a1S295L/S295L mice at 4 weeks. These abnormalities were exacerbated in adulthood, as evidenced by compromised dendritic length and height as well as the complexity of immature neurons. Immunofluorescence staining showed the abnormal aggregation of GAT1 (S295L) protein in neurons. RNA-seq analysis identified pathways associated with neurodevelopment, neurological disorders, protein homeostasis, and neuronutrition. The neurotrophin Bdnf decreased at all ages in the Slc6a1S295L/S295L mice. Conclusions: Our data provide new evidence that GAT1 (S295L) causes impaired neurogenesis in the DG. GAT1 mutation not only disrupts GABA homeostasis but also impairs the neurotrophic support necessary for normal hippocampal development, which may be one of the factors contributing to impaired neurogenesis. Full article
(This article belongs to the Special Issue Molecular Genetics of Neurodevelopment Disorders)
Show Figures

Figure 1

19 pages, 9288 KiB  
Article
Neural Mechanism of 5-HT4R-Mediated Memory Enhancement in Hippocampal–Prefrontal Circuits in a Mouse Model of Schizophrenia
by Thomas Gener, Sara Hidalgo-Nieves, Cristina López-Cabezón and Maria Victoria Puig
Int. J. Mol. Sci. 2025, 26(8), 3659; https://doi.org/10.3390/ijms26083659 - 12 Apr 2025
Viewed by 641
Abstract
We investigated the cellular and neurophysiological mechanisms underlying the pro-cognitive effects of 5-HT4R activation in hippocampal–prefrontal pathways. Our findings show that, in addition to pyramidal neurons, 30–60% of parvalbumin+ interneurons in the CA1, CA3, and dentate gyrus (DG) of the hippocampus and the [...] Read more.
We investigated the cellular and neurophysiological mechanisms underlying the pro-cognitive effects of 5-HT4R activation in hippocampal–prefrontal pathways. Our findings show that, in addition to pyramidal neurons, 30–60% of parvalbumin+ interneurons in the CA1, CA3, and dentate gyrus (DG) of the hippocampus and the anterior cingulate (ACC), prelimbic (PL), and infralimbic (IL) regions of the prefrontal cortex co-express 5-HT4Rs. Additionally, 15% of somatostatin+ interneurons in CA1 and CA3 express 5-HT4Rs. Partial 5-HT4R agonist RS-67333 (1 mg/kg, i.p.) exerted anxiolytic effects and ameliorated short-term (3-min) and long-term (24-h) memory deficits in a mouse model of schizophrenia-like cognitive impairment induced by sub-chronic phencyclidine (sPCP) but did not enhance memory in healthy mice. At the neurophysiological level, RS-67333 normalized sPCP-induced disruptions in hippocampal–prefrontal neural dynamics while having no effect in healthy animals. Specifically, sPCP increased delta oscillations in CA1 and PL, leading to aberrant delta–high-frequency coupling in CA1 and delta–high-gamma coupling in PL. RS-67333 administration attenuated this abnormal delta synchronization without altering phase coherence or signal directionality within the circuit. Collectively, these results highlight the therapeutic potential of 5-HT4R activation in pyramidal, parvalbumin+, and somatostatin+ neurons of hippocampal–prefrontal pathways for mitigation of cognitive and negative symptoms associated with schizophrenia. Full article
(This article belongs to the Special Issue Biological Research of Rhythms in the Nervous System)
Show Figures

Figure 1

19 pages, 999 KiB  
Article
Effects of Testosterone and Its Major Metabolites upon Different Stages of Neuron Survival in the Dentate Gyrus of Male Rats
by Mark D. Spritzer, Ethan A. Roy, Kelsey M. K. Calhoun, Zachary E. Schneider-Lynch, Leslie Panella, Charlotte Michaelcheck, April Qian, Evan D. Kelly, Hadley Barr, Emma Hall, Blaine Cunningham, Hieu H. M. Nguyen, Dani Xu, Jennifer M. Barker and Liisa A. M. Galea
Biomolecules 2025, 15(4), 542; https://doi.org/10.3390/biom15040542 - 7 Apr 2025
Viewed by 1427
Abstract
Testosterone has been shown to enhance hippocampal neurogenesis through increased cell survival, but which stages of new neuron development are influenced by testosterone remains unclear. Therefore, we tested the effects of sex steroids administered during three different periods after cell division in the [...] Read more.
Testosterone has been shown to enhance hippocampal neurogenesis through increased cell survival, but which stages of new neuron development are influenced by testosterone remains unclear. Therefore, we tested the effects of sex steroids administered during three different periods after cell division in the dentate gyrus of adult male rats to determine when they influence the survival of new neurons. Adult male rats were bilaterally castrated. After 7 days of recovery, a single injection of bromodeoxyuridine (BrdU) was given on the first day of the experiment (Day 0) to label actively dividing cells. All subjects received five consecutive days of hormone injections during one of three stages of new neuron development (days 1–5, 6–10, or 11–15) after BrdU labeling. Subjects were injected during these time periods with either testosterone propionate (0.250 or 0.500 mg/rat), dihydrotestosterone (0.250 or 0.500 mg/rat), or estradiol benzoate (1.0 or 10 µg/rat). All subjects were euthanized sixteen days later to assess the effects of these hormones on the number of BrdU-labeled cells. The high dose of testosterone caused a significant increase in the number of BrdU-labeled cells in the hippocampus compared to all other groups, with the strongest effect caused by later injections (11-15 days old). In contrast, neither DHT nor estradiol injections had any significant effects on number of BrdU-labeled cells. Fluorescent double-labeling and confocal microscopy reveal that the majority of BrdU-labeled cells were neurons. Our results add to past evidence that testosterone increases neurogenesis, but whether this involves an androgenic or estrogenic pathway remains unclear. Full article
(This article belongs to the Special Issue Role of Neuroactive Steroids in Health and Disease: 2nd Edition)
Show Figures

Figure 1

20 pages, 2651 KiB  
Article
Alterations in Blood and Hippocampal mRNA and miRNA Expression, Along with Fat Deposition in Female B6C3F1 Mice Continuously Exposed to Prenatal Low-Dose-Rate Radiation and Their Comparison with Male Mice
by Hong Wang, Ignacia Braga Tanaka, Salihah Lau, Satoshi Tanaka, Amanda Tan and Feng Ru Tang
Cells 2025, 14(3), 173; https://doi.org/10.3390/cells14030173 - 23 Jan 2025
Viewed by 1125
Abstract
Our recent study revealed that continuous prenatal low-dose-rate irradiation did not induce cellular changes in the dentate gyrus of the hippocampus in male B6C3F1 mice exposed to gamma rays during prenatal development. However, changes in body weight, body mass index (BMI), locomotor ability, [...] Read more.
Our recent study revealed that continuous prenatal low-dose-rate irradiation did not induce cellular changes in the dentate gyrus of the hippocampus in male B6C3F1 mice exposed to gamma rays during prenatal development. However, changes in body weight, body mass index (BMI), locomotor ability, and mRNA and miRNA expressions in the hippocampus and blood were observed. To investigate potential sex differences in the effects of prenatal gamma irradiation, we conducted a parallel study on female B6C3F1 mice. The results showed significant reductions in the weight of the lungs and left kidney in prenatally irradiated female offspring, accompanied by significantly increased fat deposits in the mesentery, retroperitoneal, and left perigonadal areas. Despite these systemic changes, no cellular alterations were observed in the subgranular zone (immature neurons) or the hilus of the dentate gyrus (mature neurons and glial cells, including astrocytes, microglia, and oligodendrocyte progenitor cells). However, significant increases in hippocampal mRNA expression were detected for genes such as H2bc24, Fos, Cd74, Tent5a, Traip, and Sap25. Conversely, downregulation of mRNAs Inpp5j and Gdf3 was observed in whole blood. A Venn diagram highlighted the differential expression of two mRNAs, Ttn and Slc43a3, between the hippocampus and whole blood. Comparisons between prenatally irradiated male and female B6C3F1 mice revealed sex-specific differences. In whole blood, 4 mRNAs (Scd1, Cd59b, Vmn1r58, and Gm42427) and 1 miRNA (mmu-miR-8112) exhibited differential expression. In the hippocampus, 12 mRNAs and 2 novel miRNAs were differentially expressed between the sexes. qRT-PCR analysis validated the upregulation of H2bc24, Fos, Cd74, and Tent5a in the female hippocampus. These gene expression changes may be associated with the increased fat deposition observed following chronic low-dose-rate gamma irradiation exposure. This study underscores the importance of investigating sex-specific biological responses to prenatal gamma irradiation and highlights potential molecular pathways linked to observed physiological changes. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

14 pages, 1295 KiB  
Article
Resilience of Spontaneously Hypertensive Rats to Secondary Insults After Traumatic Brain Injury: Immediate Seizures, Survival, and Stress Response
by Ilia Komoltsev, Olga Kostyunina, Pavel Kostrukov, Daria Bashkatova, Daria Shalneva, Stepan Frankevich, Olga Salyp, Natalia Shirobokova, Aleksandra Volkova, Aleksandra Soloveva, Margarita Novikova and Natalia Gulyaeva
Int. J. Mol. Sci. 2025, 26(2), 829; https://doi.org/10.3390/ijms26020829 - 19 Jan 2025
Viewed by 1497
Abstract
Traumatic brain injury (TBI) is one of the primary causes of mortality and disability, with arterial blood pressure being an important factor in the clinical management of TBI. Spontaneously hypertensive rats (SHRs), widely used as a model of essential hypertension and vascular dementia, [...] Read more.
Traumatic brain injury (TBI) is one of the primary causes of mortality and disability, with arterial blood pressure being an important factor in the clinical management of TBI. Spontaneously hypertensive rats (SHRs), widely used as a model of essential hypertension and vascular dementia, demonstrate dysfunction of the hypothalamic–pituitary–adrenal axis, which may contribute to glucocorticoid-mediated hippocampal damage. The aim of this study was to assess acute post-TBI seizures, delayed mortality, and hippocampal pathology in SHRs and normotensive Sprague Dawley rats (SDRs). Male adult SDRs and SHRs were subjected to lateral fluid-percussion injury. Immediate seizures were video recorded, corticosterone (CS) was measured in blood plasma throughout the study, and hippocampal morphology assessed 3 months post-TBI. Acute and remote survival rates were significantly higher in the SHRs compared to the SDRs (overall mortality 0% and 58%, respectively). Immediate seizure duration predicted acute but not remote mortality. TBI did not affect blood CS in the SHRs, while the CS level was transiently elevated in the SDRs, predicting remote mortality. Neuronal cell loss in the polymorph layer of ipsilateral dentate gyrus was found in both the SDRs and SHRs, while thinning of hippocampal pyramidal and granular cell layers were strain- and area-specific. No remote effects of TBI on the density of astrocytes or microglia were revealed. SHRs possess a unique resilience to TBI as compared with normotensive SDRs. SHRs show shorter immediate seizures and reduced CS response to the injury, suggesting the development of long-term adaptative mechanisms associated with chronic hypertension. Though remote post-traumatic hippocampal damage in ipsilateral dentate gyrus is obvious in both SHRs and SDRs, the data imply that physiological adaptations to high blood pressure in SHRs may be protective, preventing TBI-induced mortality but not hippocampal neurodegeneration. Understanding the mechanisms of resilience to TBI may also help improve clinical recommendations for patients with hypertension. Limitation: since more than a half of the SDRs with prolonged immediate seizures or elevated CS 3 days after TBI have died, survivorship bias might hamper correct interpretation of the data. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Epilepsy—3rd Edition)
Show Figures

Figure 1

17 pages, 5883 KiB  
Article
Astrocytic Acid-Sensing Ion Channel 1a Contributes to the Development of Epileptic Cognitive Impairment
by Wen Li, Huimin Zhou, Xiaona Li, Gengyao Hu and Dong Wei
Biomolecules 2025, 15(1), 142; https://doi.org/10.3390/biom15010142 - 17 Jan 2025
Viewed by 1271
Abstract
Reactive astrogliosis and acidosis, common features of epileptogenic lesions, express a high level of astrocytic acid-sensing ion channel-1a (ASIC1a), a proton-gated cation channel and key mediator of responses to neuronal injury. This study investigates the role of astrocytic ASIC1a in cognitive impairment following [...] Read more.
Reactive astrogliosis and acidosis, common features of epileptogenic lesions, express a high level of astrocytic acid-sensing ion channel-1a (ASIC1a), a proton-gated cation channel and key mediator of responses to neuronal injury. This study investigates the role of astrocytic ASIC1a in cognitive impairment following epilepsy. Status epilepticus (SE) in C57/BL6 mice was induced using lithium–pilocarpine; the impact of ASIC1a on astrocytes was assessed using rAAV–ASIC1a–NC and rAAV–ASIC1a–shRNA, injected in the CA3 region of mice. Behavioral assessments were conducted using the Morris water maze (MWM). Western blotting and immunofluorescence were applied to evaluate ASIC1a and Gfap expression while analyzing intracellular calcium and extracellular glutamate (Glu) concentrations in primary cultured astrocytes isolated from the brains of 1 to 3-day-old mice and treated LPS. Results showed enhanced astrocyte proliferation and ASIC1a expression in the dentate gyrus of epileptic mice 7, 21, and 28 days post-SE (all p < 0.05). Escape latency in the MWM further suggested that ASIC1a regulates cognitive function in mice with chronic epilepsy. LPS stimulation in vitro mimicked inflammatory responses, increasing ASIC1a after 24 h, which increased the concentration of intracellular calcium and extracellular expression of Glu; inhibition of ASIC1a expression reversed this process. To sum up, these data confirm that astrocytic ASIC1a may facilitate cognitive dysfunction post-epilepsy, presenting a potential therapeutic target. Full article
(This article belongs to the Special Issue The Role of Astrocytes in Neurodegenerative Diseases)
Show Figures

Figure 1

Back to TopTop