Comparison of Cognitive Deterioration Between Propofol and Remimazolam Anesthesia in ApoE4 Knock-In Mouse Model
Abstract
:1. Introduction
2. Results
2.1. Body Weight
2.2. Behavioral Testing Results
2.2.1. Morris Water Maze Test Results
2.2.2. Y-Maze Test Results
2.3. Histopathology
2.3.1. Apoptosis
2.3.2. Aβ Deposition
3. Discussion
4. Materials and Methods
4.1. Experimental Animals
4.2. Experimental Timeline
4.3. Anesthesia and Surgery
4.4. Behavioral Testing Protocol
4.4.1. Morris Water Maze Test Protocol
4.4.2. Y-Maze Test Protocol
4.5. Histological Analysis
4.5.1. Hematoxylin and Eosin Stain (H&E)
4.5.2. TUNEL Assay
4.5.3. Immunohistochemistry (IHC)
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PND | Perioperative neurocognitive disorder |
AD | Alzheimer’s disease |
Aβ | Amyloid beta |
DG | Dentate gyrus |
ApoE | Apolipoprotein E |
ApoE4-KI | ApoE4 knock-in |
GABAA | gamma-aminobutyric acid type A |
MWM | Morris Water Maze |
ED50 | Median effective dose |
ED95 | 95% effective dose |
ANOVA | Analysis of variance |
TUNEL | Terminal deoxynucleotidyl transferase dUTP nick end labeling |
IV | Intravenous |
IP | Intraperitoneal |
H&E | Hematoxylin and Eosin Stain |
OCT | Optimal cutting temperature |
PBS | Phosphate-buffered saline |
IHC | Immunohistochemistry |
HRP | Horseradish peroxidase |
DAB | Diaminobenzidine |
References
- Evered, L.; Silbert, B.; Knopman, D.S.; Scott, D.A.; DeKosky, S.T.; Rasmussen, L.S.; Oh, E.S.; Crosby, G.; Berger, M.; Eckenhoff, R.G. Recommendations for the Nomenclature of Cognitive Change Associated with Anaesthesia and Surgery-2018. Anesthesiology 2018, 129, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Moller, J.T.; Cluitmans, P.; Rasmussen, L.S.; Houx, P.; Rasmussen, H.; Canet, J.; Rabbitt, P.; Jolles, J.; Larsen, K.; Hanning, C.D.; et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction. Lancet 1998, 351, 857–861. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, J.; Rasmussen, L.S. Peri-operative cognitive dysfunction and protection. Anaesthesia 2016, 71 (Suppl. S1), 58–63. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Tanzi, R.E. Alzheimer’s disease and post-operative cognitive dysfunction. Exp. Gerontol. 2006, 41, 346–359. [Google Scholar] [CrossRef]
- Monk, T.G.; Weldon, B.C.; Garvan, C.W.; Dede, D.E.; van der Aa, M.T.; Heilman, K.M.; Gravenstein, J.S. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology 2008, 108, 18–30. [Google Scholar] [CrossRef]
- Steinmetz, J.; Christensen, K.B.; Lund, T.; Lohse, N.; Rasmussen, L.S. Long-term consequences of postoperative cognitive dysfunction. Anesthesiology 2009, 110, 548–555. [Google Scholar] [CrossRef]
- Terrando, N.; Monaco, C.; Ma, D.; Foxwell, B.M.; Feldmann, M.; Maze, M. Tumor necrosis factor-α triggers a cytokine cascade yielding postoperative cognitive decline. Proc. Natl. Acad. Sci. USA 2010, 107, 20518–20522. [Google Scholar] [CrossRef]
- Vlisides, P.; Xie, Z. Neurotoxicity of general anesthetics: An update. Curr. Pharm. Des. 2012, 18, 6232–6240. [Google Scholar] [CrossRef]
- Abildstrom, H.; Christiansen, M.; Siersma, V.D.; Rasmussen, L.S. Apolipoprotein E genotype and cognitive dysfunction after noncardiac surgery. Anesthesiology 2004, 101, 855–861. [Google Scholar] [CrossRef]
- Fodale, V.; Santamaria, L.B.; Schifilliti, D.; Mandal, P.K. Anaesthetics and postoperative cognitive dysfunction: A pathological mechanism mimicking Alzheimer’s disease. Anaesthesia 2010, 65, 388–395. [Google Scholar] [CrossRef]
- Yang, C.W.; Fuh, J.L. Exposure to general anesthesia and the risk of dementia. J. Pain Res. 2015, 8, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261, 921–923. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.C.; Liu, C.C.; Kanekiyo, T.; Xu, H.; Bu, G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat. Rev. Neurol. 2013, 9, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Farrer, L.A.; Cupples, L.A.; Haines, J.L.; Hyman, B.; Kukull, W.A.; Mayeux, R.; Myers, R.H.; Pericak-Vance, M.A.; Risch, N.; van Duijn, C.M. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. Jama 1997, 278, 1349–1356. [Google Scholar] [CrossRef]
- Hsiao, W.J.; Chen, C.Y.; Kang, Y.N.; Hu, C.J.; Chen, C.H.; Lin, P.L.; Lin, Y.C. Apolipoprotein E4 allele is genetically associated with risk of the short- and medium-term postoperative cognitive dysfunction: A meta-analysis and trial sequential analysis. PLoS ONE 2023, 18, e0282214. [Google Scholar] [CrossRef]
- Verghese, P.B.; Castellano, J.M.; Holtzman, D.M. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol. 2011, 10, 241–252. [Google Scholar] [CrossRef]
- Fernandez, C.G.; Hamby, M.E.; McReynolds, M.L.; Ray, W.J. The Role of APOE4 in Disrupting the Homeostatic Functions of Astrocytes and Microglia in Aging and Alzheimer’s Disease. Front. Aging Neurosci. 2019, 11, 14. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Li, R.; Sterling, K.; Song, W. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future. Signal Transduct. Target. Ther. 2023, 8, 248. [Google Scholar] [CrossRef]
- Rai, A.; Ojiakor, O.A.; Rylett, R.J. Detection of early Alzheimer’s disease-like molecular alterations in a mouse model expressing human ApoE4. J. Neurochem. 2023, 166, 572–587. [Google Scholar] [CrossRef]
- Liraz, O.; Boehm-Cagan, A.; Michaelson, D.M. ApoE4 induces Aβ42, tau, and neuronal pathology in the hippocampus of young targeted replacement apoE4 mice. Mol. Neurodegener. 2013, 8, 16. [Google Scholar] [CrossRef]
- Kim, J.H.; Jung, H.; Lee, Y.; Sohn, J.H. Surgery Performed Under Propofol Anesthesia Induces Cognitive Impairment and Amyloid Pathology in ApoE4 Knock-In Mouse Model. Front. Aging Neurosci. 2021, 13, 658860. [Google Scholar] [CrossRef] [PubMed]
- van Heuvelen, M.J.G.; van der Lei, M.B.; Alferink, P.M.; Roemers, P.; van der Zee, E.A. Cognitive deficits in human ApoE4 knock-in mice: A systematic review and meta-analysis. Behav. Brain Res. 2024, 471, 115123. [Google Scholar] [CrossRef] [PubMed]
- Ruesch, D.; Neumann, E.; Wulf, H.; Forman, S.A. An allosteric coagonist model for propofol effects on α1β2γ2L γ-aminobutyric acid type A receptors. Anesthesiology 2012, 116, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Kazi, M.; Gaskari, A.; Shahba, A.A.; Ahmad, S.; Aldughaim, M.S.; Hussain, M.D. Propofol: Current Updates, Challenges, and Strategies for Improved Self-Nanoemulsifying Formulation. ACS Pharmacol. Transl. Sci. 2025, 8, 1013–1027. [Google Scholar] [CrossRef]
- Sahinovic, M.M.; Struys, M.; Absalom, A.R. Clinical Pharmacokinetics and Pharmacodynamics of Propofol. Clin. Pharmacokinet. 2018, 57, 1539–1558. [Google Scholar] [CrossRef]
- Whittington, R.A.; Virág, L.; Marcouiller, F.; Papon, M.A.; El Khoury, N.B.; Julien, C.; Morin, F.; Emala, C.W.; Planel, E. Propofol directly increases tau phosphorylation. PLoS ONE 2011, 6, e16648. [Google Scholar] [CrossRef]
- Berger, M.; Nadler, J.W.; Friedman, A.; McDonagh, D.L.; Bennett, E.R.; Cooter, M.; Qi, W.; Laskowitz, D.T.; Ponnusamy, V.; Newman, M.F.; et al. The Effect of Propofol Versus Isoflurane Anesthesia on Human Cerebrospinal Fluid Markers of Alzheimer’s Disease: Results of a Randomized Trial. J. Alzheimers Dis. 2016, 52, 1299–1310. [Google Scholar] [CrossRef]
- Mardini, F.; Tang, J.X.; Li, J.C.; Arroliga, M.J.; Eckenhoff, R.G.; Eckenhoff, M.F. Effects of propofol and surgery on neuropathology and cognition in the 3xTgAD Alzheimer transgenic mouse model. Br. J. Anaesth. 2017, 119, 472–480. [Google Scholar] [CrossRef]
- Othman, M.Z.; Hassan, Z.; Has, A.T.C. Morris water maze: A versatile and pertinent tool for assessing spatial learning and memory. Exp. Anim. 2022, 71, 264–280. [Google Scholar] [CrossRef]
- Prieur, E.A.K.; Jadavji, N.M. Assessing Spatial Working Memory Using the Spontaneous Alternation Y-maze Test in Aged Male Mice. Bio-Protocol 2019, 9, e3162. [Google Scholar] [CrossRef]
- Evered, L.A.; Goldstein, P.A. Reducing Perioperative Neurocognitive Disorders (PND) Through Depth of Anesthesia Monitoring: A Critical Review. Int. J. Gen. Med. 2021, 14, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Keam, S.J. Remimazolam: First Approval. Drugs 2020, 80, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Liu, X.; Wen, C.; Li, D.; Lei, X. Remimazolam: An Updated Review of a New Sedative and Anaesthetic. Drug Des. Dev. Ther. 2022, 16, 3957–3974. [Google Scholar] [CrossRef] [PubMed]
- Jhuang, B.J.; Yeh, B.H.; Huang, Y.T.; Lai, P.C. Efficacy and Safety of Remimazolam for Procedural Sedation: A Meta-Analysis of Randomized Controlled Trials with Trial Sequential Analysis. Front. Med. 2021, 8, 641866. [Google Scholar] [CrossRef]
- Zhou, X.H.; Zhang, C.C.; Wang, L.; Jin, S.L. Remimazolam induced cognitive dysfunction in mice via glutamate excitotoxicity. Transl. Neurosci. 2022, 13, 104–115. [Google Scholar] [CrossRef]
- Garfield, J.M.; Bukusoglu, C. Propofol and ethanol produce additive hypnotic and anesthetic effects in the mouse. Anesth. Analg. 1996, 83, 156–161. [Google Scholar] [CrossRef]
- Leslie, K.; Crankshaw, D.P. Potency of propofol for loss of consciousness after a single dose. Br. J. Anaesth. 1990, 64, 734–736. [Google Scholar] [CrossRef]
- Shi, W.; Wu, X.; Yuan, C.; Kuang, T.; Xie, X.; Gong, W.; Li, F.; Shen, L.; Zhang, Y.; Liang, X. Effect of remimazolam toluene sulfonate on the cognitive function of juveniles and its mechanism of action. Eur. J. Med. Res. 2024, 29, 543. [Google Scholar] [CrossRef]
- Al Shoyaib, A.; Archie, S.R.; Karamyan, V.T. Intraperitoneal Route of Drug Administration: Should it Be Used in Experimental Animal Studies? Pharm. Res. 2019, 37, 12. [Google Scholar] [CrossRef]
- Kilpatrick, G.J.; McIntyre, M.S.; Cox, R.F.; Stafford, J.A.; Pacofsky, G.J.; Lovell, G.G.; Wiard, R.P.; Feldman, P.L.; Collins, H.; Waszczak, B.L.; et al. CNS 7056: A novel ultra-short-acting Benzodiazepine. Anesthesiology 2007, 107, 60–66. [Google Scholar] [CrossRef]
- Evered, L.; Atkins, K.; Silbert, B.; Scott, D.A. Acute peri-operative neurocognitive disorders: A narrative review. Anaesthesia 2022, 77 (Suppl. S1), 34–42. [Google Scholar] [CrossRef] [PubMed]
- Kapila, A.K.; Watts, H.R.; Wang, T.; Ma, D. The impact of surgery and anesthesia on post-operative cognitive decline and Alzheimer’s disease development: Biomarkers and preventive strategies. J. Alzheimers Dis. 2014, 41, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R., Jr.; Knopman, D.S.; Jagust, W.J.; Shaw, L.M.; Aisen, P.S.; Weiner, M.W.; Petersen, R.C.; Trojanowski, J.Q. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010, 9, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Bissette, G. Mini-forum: Roles of amyloid-β and tau phosphorylation in neuronal repair and protection. J. Alzheimers Dis. 2009, 18, 369–370. [Google Scholar] [CrossRef]
- Mandal, P.K.; Pettegrew, J.W. Aβ peptide interactions with isoflurane, propofol, thiopental and combined thiopental with halothane: A NMR study. Biochim. Biophys. Acta 2008, 1778, 2633–2639. [Google Scholar] [CrossRef]
- Xie, Z.; Culley, D.J.; Dong, Y.; Zhang, G.; Zhang, B.; Moir, R.D.; Frosch, M.P.; Crosby, G.; Tanzi, R.E. The common inhalation anesthetic isoflurane induces caspase activation and increases amyloid β-protein level in vivo. Ann. Neurol. 2008, 64, 618–627. [Google Scholar] [CrossRef]
- Xie, Z.; Dong, Y.; Maeda, U.; Alfille, P.; Culley, D.J.; Crosby, G.; Tanzi, R.E. The common inhalation anesthetic isoflurane induces apoptosis and increases amyloid β protein levels. Anesthesiology 2006, 104, 988–994. [Google Scholar] [CrossRef]
- Xie, Z.; Dong, Y.; Maeda, U.; Moir, R.D.; Xia, W.; Culley, D.J.; Crosby, G.; Tanzi, R.E. The inhalation anesthetic isoflurane induces a vicious cycle of apoptosis and amyloid β-protein accumulation. J. Neurosci. 2007, 27, 1247–1254. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, Y.M.; Huang, H.; Chen, C.; Wan, J.; Ma, L.H.; Sun, Y.Y.; Miao, H.H.; Wu, Y.Q. Sirtuin 3 protects against anesthesia/surgery-induced cognitive decline in aged mice by suppressing hippocampal neuroinflammation. J. Neuroinflammation 2021, 18, 41. [Google Scholar] [CrossRef]
- Ye, J.S.; Chen, L.; Lu, Y.Y.; Lei, S.Q.; Peng, M.; Xia, Z.Y. SIRT3 activator honokiol ameliorates surgery/anesthesia-induced cognitive decline in mice through anti-oxidative stress and anti-inflammatory in hippocampus. CNS Neurosci. Ther. 2019, 25, 355–366. [Google Scholar] [CrossRef]
- Giménez-Llort, L.; Blázquez, G.; Cañete, T.; Johansson, B.; Oddo, S.; Tobeña, A.; LaFerla, F.M.; Fernández-Teruel, A. Modeling behavioral and neuronal symptoms of Alzheimer’s disease in mice: A role for intraneuronal amyloid. Neurosci. Biobehav. Rev. 2007, 31, 125–147. [Google Scholar] [CrossRef] [PubMed]
- Jankowsky, J.L.; Fadale, D.J.; Anderson, J.; Xu, G.M.; Gonzales, V.; Jenkins, N.A.; Copeland, N.G.; Lee, M.K.; Younkin, L.H.; Wagner, S.L.; et al. Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: Evidence for augmentation of a 42-specific γ secretase. Hum. Mol. Genet. 2004, 13, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Vutskits, L.; Xie, Z. Lasting impact of general anaesthesia on the brain: Mechanisms and relevance. Nat. Rev. Neurosci. 2016, 17, 705–717. [Google Scholar] [CrossRef] [PubMed]
- Woodhouse, A.; Fernandez-Martos, C.M.; Atkinson, R.A.K.; Hanson, K.A.; Collins, J.M.; O’Mara, A.R.; Terblanche, N.; Skinner, M.W.; Vickers, J.C.; King, A.E. Repeat propofol anesthesia does not exacerbate plaque deposition or synapse loss in APP/PS1 Alzheimer’s disease mice. BMC Anesthesiol. 2018, 18, 47. [Google Scholar] [CrossRef]
- Chen, Y.; Dai, C.L.; Wu, Z.; Iqbal, K.; Liu, F.; Zhang, B.; Gong, C.X. Intranasal Insulin Prevents Anesthesia-Induced Cognitive Impairment and Chronic Neurobehavioral Changes. Front. Aging Neurosci. 2017, 9, 136. [Google Scholar] [CrossRef]
- Liu, X.; Guo, L.; Duan, B.; Wu, J.; Wang, E. Novel benzodiazepine remimazolam tosylate delays neurodegeneration of aged mice via decreasing tau phosphorylation. Neurotoxicology 2022, 92, 156–165. [Google Scholar] [CrossRef]
- Zhou, L.; Shi, H.; Xiao, M.; Liu, W.; Wang, L.; Zhou, S.; Chen, S.; Wang, Y.; Liu, C. Remimazolam attenuates lipopolysaccharide-induced neuroinflammation and cognitive dysfunction. Behav. Brain Res. 2025, 476, 115268. [Google Scholar] [CrossRef]
- Kuang, Q.; Zhong, N.; Ye, C.; Zhu, X.; Wei, F. Propofol Versus Remimazolam on Cognitive Function, Hemodynamics, and Oxygenation During One-Lung Ventilation in Older Patients Undergoing Pulmonary Lobectomy: A Randomized Controlled Trial. J. Cardiothorac. Vasc. Anesth. 2023, 37, 1996–2005. [Google Scholar] [CrossRef]
- Tan, Y.; Ouyang, W.; Tang, Y.; Fang, N.; Fang, C.; Quan, C. Effect of remimazolam tosilate on early cognitive function in elderly patients undergoing upper gastrointestinal endoscopy. J. Gastroenterol. Hepatol. 2022, 37, 576–583. [Google Scholar] [CrossRef]
- Kaneko, S.; Morimoto, T.; Ichinomiya, T.; Murata, H.; Yoshitomi, O.; Hara, T. Effect of remimazolam on the incidence of delirium after transcatheter aortic valve implantation under general anesthesia: A retrospective exploratory study. J. Anesth. 2023, 37, 210–218. [Google Scholar] [CrossRef]
- Yang, J.J.; Lei, L.; Qiu, D.; Chen, S.; Xing, L.K.; Zhao, J.W.; Mao, Y.Y.; Yang, J.J. Effect of Remimazolam on Postoperative Delirium in Older Adult Patients Undergoing Orthopedic Surgery: A Prospective Randomized Controlled Clinical Trial. Drug Des. Dev. Ther. 2023, 17, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Makaryus, R.; Lee, H.; Feng, T.; Park, J.H.; Nedergaard, M.; Jacob, Z.; Enikolopov, G.; Benveniste, H. Brain maturation in neonatal rodents is impeded by sevoflurane anesthesia. Anesthesiology 2015, 123, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Flick, R.P.; Katusic, S.K.; Colligan, R.C.; Wilder, R.T.; Voigt, R.G.; Olson, M.D.; Sprung, J.; Weaver, A.L.; Schroeder, D.R.; Warner, D.O. Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics 2011, 128, e1053–e1061. [Google Scholar] [CrossRef] [PubMed]
- Wilder, R.T.; Flick, R.P.; Sprung, J.; Katusic, S.K.; Barbaresi, W.J.; Mickelson, C.; Gleich, S.J.; Schroeder, D.R.; Weaver, A.L.; Warner, D.O. Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 2009, 110, 796–804. [Google Scholar] [CrossRef]
- Dubois, B.; Hampel, H.; Feldman, H.H.; Scheltens, P.; Aisen, P.; Andrieu, S.; Bakardjian, H.; Benali, H.; Bertram, L.; Blennow, K.; et al. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016, 12, 292–323. [Google Scholar] [CrossRef]
- Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R., Jr.; Kaye, J.; Montine, T.J.; et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011, 7, 280–292. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.J.; Fang, X.; Chen, D.Q.; Yu, W.Q.; Zhu, Z.Q. Peripheral inflammation as a potential mechanism and preventive strategy for perioperative neurocognitive disorder under general anesthesia and surgery. Front. Cell Neurosci. 2024, 18, 1365448. [Google Scholar] [CrossRef]
- Ennaceur, A.; Delacour, J. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav. Brain Res. 1988, 31, 47–59. [Google Scholar] [CrossRef]
- Steiner, A.R.; Rousseau-Blass, F.; Schroeter, A.; Hartnack, S.; Bettschart-Wolfensberger, R. Systematic Review: Anaesthetic Protocols and Management as Confounders in Rodent Blood Oxygen Level Dependent Functional Magnetic Resonance Imaging (BOLD fMRI)-Part A: Effects of Changes in Physiological Parameters. Front. Neurosci. 2020, 14, 577119. [Google Scholar] [CrossRef]
- Daniel, B.; DeCoster, M.A. Quantification of sPLA2-induced early and late apoptosis changes in neuronal cell cultures using combined TUNEL and DAPI staining. Brain Res. Brain Res. Protoc. 2004, 13, 144–150. [Google Scholar] [CrossRef]
- Cibelli, M.; Fidalgo, A.R.; Terrando, N.; Ma, D.; Monaco, C.; Feldmann, M.; Takata, M.; Lever, I.J.; Nanchahal, J.; Fanselow, M.S.; et al. Role of interleukin-1β in postoperative cognitive dysfunction. Ann. Neurol. 2010, 68, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Grootendorst, J.; Bour, A.; Vogel, E.; Kelche, C.; Sullivan, P.M.; Dodart, J.C.; Bales, K.; Mathis, C. Human apoE targeted replacement mouse lines: H-apoE4 and h-apoE3 mice differ on spatial memory performance and avoidance behavior. Behav. Brain Res. 2005, 159, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kimura, R.; Devi, L.; Ohno, M. Partial reduction of BACE1 improves synaptic plasticity, recent and remote memories in Alzheimer’s disease transgenic mice. J. Neurochem. 2010, 113, 248–261. [Google Scholar] [CrossRef] [PubMed]
Group P | Group R | p-Value | |
---|---|---|---|
Pre-operative | 31.34 ± 1.39 | 30.75 ± 2.59 | 0.376 |
2 Days ‡ | 29.03 ± 1.69 | 28.98 ± 2.88 | 0.943 |
4 Days ‡ | 28.77 ± 1.39 | 29.26 ± 3.58 | 0.645 |
7 Days ‡ | 29.25 ± 1.53 | 28.96 ± 3.58 | 0.788 |
Group P | Group R | p-Value | |
---|---|---|---|
A. Absolute escape latency (s) | |||
Pre-operative | 13.68 ± 4.10 | 12.79 ± 4.74 | 0.596 |
2 Days | 21.59 ± 16.40 | 20.38 ± 11.76 | 0.832 |
4 Days | 19.20 ± 15.78 | 18.91 ± 10.17 | 0.957 |
7 Days | 18.48 ± 9.18 | 18.97 ± 9.21 | 0.913 |
B. Relative escape latency | |||
Pre-operative | 1.00 ± 0.00 | 1.00 ± 0.00 | |
2 Days † | 1.67 ± 1.42 | 1.87 ± 1.51 | 0.717 |
4 Days | 1.51 ± 1.37 | 1.41 ± 0.48 | 0.812 |
7 Days | 1.53 ± 0.97 | 1.46 ± 0.63 | 0.849 |
Group P | Group R | p-Value | |
---|---|---|---|
A. Absolute spontaneous alternation (%) | |||
Pre-operative | 48.65 ± 13.31 | 50.45 ± 12.68 | 0.716 |
2 Days | 55.60 ± 14.74 | 57.75 ± 12.92 | 0.603 |
4 Days | 54.87 ± 15.27 | 57.28 ± 8.59 | 0.521 |
7 Days | 59.84 ± 19.14 | 55.64 ± 17.41 | 0.499 |
B. Relative spontaneous alternation | |||
Pre-operative | 1.00 ± 0.00 | 1.00 ± 0.00 | |
2 Days | 1.16 ± 0.38 | 1.23 ± 0.30 | 0.620 |
4 Days † | 1.22 ± 0.30 | 1.28 ± 0.31 | 0.664 |
7 Days † | 1.27 ± 0.37 | 1.28 ± 0.44 | 0.986 |
Group P | Group R | p-Value | |
---|---|---|---|
A. Absolute spontaneous alternation (%) | |||
Pre-operative | 116.75 ± 57.64 | 123.96 ± 60.13 | 0.868 |
2 Days ⁋ | 575.00 ± 64.55 | 725.00 ± 170.78 | 0.179 |
4 Days ⁋ | 3962.50 ± 217.47 | 912.50 ± 85.39 | <0.001 |
7 Days ⁋ | 1175.00 ± 95.74 | 462.50 ± 47.87 | <0.001 |
B. Hippocampal dentate gyrus (DG) region | |||
Pre-operative | 102.00 ± 16.08 | 102.25 ± 18.57 | 0.984 |
2 Days ⁋ | 2750.00 ± 177.95 | 625.00 ± 104.08 | <0.001 |
4 Days ⁋ | 3887.50 ± 110.87 | 412.50 ± 47.87 | <0.001 |
7 Days ⁋ | 1212.50 ± 85.39 | 575.00 ± 64.55 | <0.001 |
Group P | Group R | p-Value | |
---|---|---|---|
A. Hippocampal CA3 region | |||
Pre-operative | 116.75 ± 57.64 | 123.96 ± 60.13 | 0.868 |
2 Days ⁋ | 575.00 ± 64.55 | 725.00 ± 170.78 | 0.179 |
4 Days ⁋ | 3962.50 ± 217.47 | 912.50 ± 85.39 | <0.001 |
7 Days | 1175.00 ± 95.74 | 462.50 ± 47.87 | <0.001 |
B. Hippocampal dentate gyrus (DG) region | |||
Pre-operative | 102.00 ± 16.08 | 102.25 ± 18.57 | 0.984 |
2 Days | 2750.00 ± 177.95 | 625.00 ± 104.08 | <0.001 |
4 Days ⁋ | 3887.50 ± 110.87 | 412.50 ± 47.87 | <0.001 |
7 Days ⁋ | 1212.50 ± 85.39 | 575.00 ± 64.55 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-H.; Park, S.; Jung, H.; Lee, E.-H.; Lee, E.-S.; Lee, J.-J.; Sohn, J.-H. Comparison of Cognitive Deterioration Between Propofol and Remimazolam Anesthesia in ApoE4 Knock-In Mouse Model. Int. J. Mol. Sci. 2025, 26, 5718. https://doi.org/10.3390/ijms26125718
Kim J-H, Park S, Jung H, Lee E-H, Lee E-S, Lee J-J, Sohn J-H. Comparison of Cognitive Deterioration Between Propofol and Remimazolam Anesthesia in ApoE4 Knock-In Mouse Model. International Journal of Molecular Sciences. 2025; 26(12):5718. https://doi.org/10.3390/ijms26125718
Chicago/Turabian StyleKim, Jong-Ho, Songyi Park, Harry Jung, Eun-Hae Lee, Eun-Seo Lee, Jae-Jun Lee, and Jong-Hee Sohn. 2025. "Comparison of Cognitive Deterioration Between Propofol and Remimazolam Anesthesia in ApoE4 Knock-In Mouse Model" International Journal of Molecular Sciences 26, no. 12: 5718. https://doi.org/10.3390/ijms26125718
APA StyleKim, J.-H., Park, S., Jung, H., Lee, E.-H., Lee, E.-S., Lee, J.-J., & Sohn, J.-H. (2025). Comparison of Cognitive Deterioration Between Propofol and Remimazolam Anesthesia in ApoE4 Knock-In Mouse Model. International Journal of Molecular Sciences, 26(12), 5718. https://doi.org/10.3390/ijms26125718