Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = densified glass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 959 KiB  
Article
Effective Wood Veneer Densification by Optimizing Key Parameters: Temperature, Equilibrium Moisture Content, and Pressure
by Tolgay Akkurt, Anti Rohumaa and Jaan Kers
Forests 2025, 16(6), 969; https://doi.org/10.3390/f16060969 - 7 Jun 2025
Viewed by 465
Abstract
Due to increasing environmental concerns and the scarcity of high-quality hardwood resources, enhancing wood properties—such as strength, surface smoothness, and impact resistance—has become essential, especially for veneer-based products. Wood densification is a promising method for such improvements, typically involving mechanical, thermo-mechanical, or hygrothermal-mechanical [...] Read more.
Due to increasing environmental concerns and the scarcity of high-quality hardwood resources, enhancing wood properties—such as strength, surface smoothness, and impact resistance—has become essential, especially for veneer-based products. Wood densification is a promising method for such improvements, typically involving mechanical, thermo-mechanical, or hygrothermal-mechanical processes. However, most prior studies examined only one densification parameter at a time. This study systematically investigates the combined effects of equilibrium moisture content (EMC), pressing temperature, and pressure on birch veneer densification. Birch veneers were densified radially using four temperatures (90–210 °C), three pressures (1.8–5.4 MPa), and three EMC levels (5%–20%) for a fixed pressing time of 8 min, resulting in 36 unique combinations. Results showed that higher pressing pressure and higher initial EMC consistently led to greater veneer densification. Optimal outcomes were achieved under two distinct conditions: (1) 90 °C with high EMC and high pressure, and (2) 210 °C with the same high EMC and high pressure. Intermediate temperatures (130–170 °C) were less effective. Temperatures above 200 °C were found critical due to lignin softening beyond its glass transition temperature. These findings highlight the interactive role of key parameters and provide practical guidance for upgrading low-quality veneers into high-performance engineered wood products in a sustainable and resource-efficient manner. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

31 pages, 8815 KiB  
Article
Waste Glass as Partial Cement Replacement in Sustainable Concrete: Mechanical and Fresh Properties Review
by Sushant Poudel, Utkarsha Bhetuwal, Prabin Kharel, Sudip Khatiwada, Diwakar KC, Subash Dhital, Bipin Lamichhane, Sachin Kumar Yadav and Saurabh Suman
Buildings 2025, 15(6), 857; https://doi.org/10.3390/buildings15060857 - 10 Mar 2025
Cited by 1 | Viewed by 3131
Abstract
The significant anthropogenic carbon dioxide (CO2) emissions from cement production and the disposal of the majority of post-consumer waste glass into landfill sites have increased environmental pollution. In order to reduce the environmental impact, ground glass pozzolan (GGP) as a partial [...] Read more.
The significant anthropogenic carbon dioxide (CO2) emissions from cement production and the disposal of the majority of post-consumer waste glass into landfill sites have increased environmental pollution. In order to reduce the environmental impact, ground glass pozzolan (GGP) as a partial cement replacement has drawn interest from the concrete industry. This review examines the potential of GGP as a supplementary cementitious material (SCM), exploring the chemical composition of pozzolans, the different types of glass used for GGP, and the impact of glass color on pozzolanic reactivity. In addition, this study gathers the most recent research articles on the fresh and mechanical properties of concrete incorporating GGP. Key findings show that the incorporation of GGP in concrete improves the modulus of elasticity and the compressive, tensile, flexural, and punching strengths due to the pozzolanic reactions. The results indicate that GGP, made from waste glass, has pozzolanic properties that form additional strength-enhancing calcium silicate hydrate (C-S-H) gel and densify the concrete matrix. Additionally, the life cycle assessments of GGP-incorporated concrete demonstrate reductions in energy consumption and CO2 emissions compared to conventional concrete, supporting a circular economy and sustainable construction practices. Full article
(This article belongs to the Topic Green Construction Materials and Construction Innovation)
Show Figures

Figure 1

11 pages, 3054 KiB  
Article
Ultralow Temperature Sintering of High-Performance Sm-Doped Pb(Zr,Ti)O3-Based Piezoelectric Ceramics
by Zechi Ma, Zixuan Yuan, Zhonghua Yao, Jiangxue Chen, Hua Hao, Minghe Cao and Hanxing Liu
Materials 2025, 18(3), 512; https://doi.org/10.3390/ma18030512 - 23 Jan 2025
Cited by 1 | Viewed by 915
Abstract
Piezoelectric materials (PZTs) enjoy extensive applications in the field of electromechanical sensors due to their sensitive response to external electric fields. The limited piezoelectric response for single-layer piezoceramic pellets drives the use of multilayered technology to increase the electric displacement of a single [...] Read more.
Piezoelectric materials (PZTs) enjoy extensive applications in the field of electromechanical sensors due to their sensitive response to external electric fields. The limited piezoelectric response for single-layer piezoceramic pellets drives the use of multilayered technology to increase the electric displacement of a single piezo device. As is well known, Ag is commonly used as a metal for electrodes in devices based on traditional PZTs, which always densify at a high temperature above 1100 °C, resulting in Ag migration. Here, a high-performance samarium-ion-doped Sm0.01Pb0.99(Zr0.54Ti0.46)O3 ceramic was selected as parent materials to develop a new Ag-cofired ceramic matrix with a sintering temperature of 920 °C by glass flux. The ceramic composition with 2.0 wt% glass addition exhibits the excellent performance of piezoelectric d33~492 pC/N, planar electromechanical coupling coefficient kp~50.1%, mechanical quality factor Qm~68.71, and Curie temperature Tc~356 °C, respectively. The cyclic stability of d33 was measured below 6.6% at 30 kV/cm, which indicates that the piezoceramic has good temperature stability and fatigue resistance. Therefore, this study provides a novel high-performance piezoelectric system to meet the cofired requirement for multilayered piezoelectric devices. Full article
Show Figures

Figure 1

19 pages, 6812 KiB  
Article
Evolution of the Radiation Shielding, Optical, and Luminescence Properties of PbO2-SiO2 Glass Systems and the Influence of Rare Earth Elements (Eu, Ce, Yb)
by Mioara Zagrai, Ramona-Crina Suciu, Radu Cristian Gavrea and Vasile Rednic
Appl. Sci. 2025, 15(2), 864; https://doi.org/10.3390/app15020864 - 16 Jan 2025
Cited by 1 | Viewed by 1186
Abstract
This study explores the physical, radiation shielding, optical, and photoluminescent properties of PbO2-SiO2-based glass systems. Traditional radiation shielding materials, like lead and concrete, face challenges due to toxicity and weight. Glass materials provide an alternative, offering transparency and efficiency. [...] Read more.
This study explores the physical, radiation shielding, optical, and photoluminescent properties of PbO2-SiO2-based glass systems. Traditional radiation shielding materials, like lead and concrete, face challenges due to toxicity and weight. Glass materials provide an alternative, offering transparency and efficiency. Four glass systems were analyzed: PbO2-SiO2 (PS), PbO2-SiO2-CeO2 (PSC), PbO2-SiO2-Eu2O3 (PSE), and PbO2-SiO2-Yb2O3 (PSY). The results show that rare earth elements densify the glass network, thereby enhancing radiation attenuation properties, quantified through parameters like the linear attenuation coefficient (μ), the half-value layer (HVL), and the mean free path (MFP). The PSY system exhibited the best shielding properties, demonstrating its potential for use in gamma ray shielding. Samples PS0–PS3 revealed semiconducting behavior and may be considered a promising host matrix for solar cells and w-LED applications. Full article
Show Figures

Figure 1

14 pages, 2763 KiB  
Article
The Effect of Combining Femtosecond Laser and Electron Irradiation on Silica Glass
by Nadezhda Shchedrina, Roqya Allaoui, Matilde Sosa, Gergely Nemeth, Ferenc Borondics, Nadege Ollier and Matthieu Lancry
Nanomaterials 2024, 14(23), 1909; https://doi.org/10.3390/nano14231909 - 28 Nov 2024
Cited by 1 | Viewed by 1229
Abstract
This study investigates the structural and optical responses of silica glass to femtosecond (fs) laser irradiation followed by high-energy electron (2.5 MeV, 4.9 GGy) irradiation. Using optical microscopy and spectroscopy techniques, we analyzed retardance, phase shifts, nanograting periodicity, and Raman D2 band [...] Read more.
This study investigates the structural and optical responses of silica glass to femtosecond (fs) laser irradiation followed by high-energy electron (2.5 MeV, 4.9 GGy) irradiation. Using optical microscopy and spectroscopy techniques, we analyzed retardance, phase shifts, nanograting periodicity, and Raman D2 band intensity, which is an indicator of local glass densification. S-SNOM and nano-FTIR measurements further revealed changes in the Si–O–Si vibrational bands, indicating partial relaxation of the densified nanolayers under electron irradiation. Our findings reveal significant optical modifications due to subsequent electron irradiation, including reduced retardance and phase values, which are in agreement with the relaxation of the local densification. SEM analysis confirmed the preservation of nanogratings’ morphology including their periodicity. Apart from revealing fundamental aspects related to glass densification within nanogratings, this study also underscores the potential of combined fs-laser and electron irradiation techniques in understanding silica glass behavior under high radiation conditions, which is crucial for applications in harsh environments. Full article
(This article belongs to the Special Issue Laser Processing and Characterization of Materials in Nanoscale)
Show Figures

Figure 1

12 pages, 4522 KiB  
Article
Impact of Glass Free Volume on Femtosecond Laser-Written Nanograting Formation in Silica Glass
by Nadezhda Shchedrina, Maxime Cavillon, Julien Ari, Nadège Ollier and Matthieu Lancry
Materials 2024, 17(2), 502; https://doi.org/10.3390/ma17020502 - 20 Jan 2024
Cited by 4 | Viewed by 1924
Abstract
In this study, we investigate the effects of densification through high pressure and temperature (up to 5 GPa, 1000 °C) in the making of nanogratings in pure silica glass, inscribed with femtosecond laser. The latter were monitored through retardance measurements using polarized optical [...] Read more.
In this study, we investigate the effects of densification through high pressure and temperature (up to 5 GPa, 1000 °C) in the making of nanogratings in pure silica glass, inscribed with femtosecond laser. The latter were monitored through retardance measurements using polarized optical microscopy, and their internal structure was observed under scanning electron microscopy. We reveal the difficulty in making nanogratings in densified silica glasses. Based on this observation, we propose that free volume may be a key precursor to initiate nanograting formation. Full article
Show Figures

Figure 1

22 pages, 15648 KiB  
Article
The Effect of Different Diluents and Curing Agents on the Performance of Epoxy Resin-Based Intumescent Flame-Retardant Coatings
by Xukun Yang, Yange Wan, Nan Yang, Yilin Hou, Dantong Chen, Jiachen Liu, Guoshuai Cai and Mingchao Wang
Materials 2024, 17(2), 348; https://doi.org/10.3390/ma17020348 - 10 Jan 2024
Cited by 7 | Viewed by 2253
Abstract
The epoxy resin-based (ESB) intumescent flame-retardant coatings were modified with 1,4-butanediol diglycidyl ether (14BDDE) and butyl glycidyl ether (BGE) as diluents and T403 and 4,4′-diaminodiphenylmethane (DDM) as curing agents, respectively. The effects of different diluents and curing agents on the flame-retardant and mechanical [...] Read more.
The epoxy resin-based (ESB) intumescent flame-retardant coatings were modified with 1,4-butanediol diglycidyl ether (14BDDE) and butyl glycidyl ether (BGE) as diluents and T403 and 4,4′-diaminodiphenylmethane (DDM) as curing agents, respectively. The effects of different diluents and curing agents on the flame-retardant and mechanical properties, as well as the composition evolution of the coatings, were investigated by using large-plate combustion, the limiting oxygen index (LOI), vertical combustion, a cone calorimeter, X-ray diffraction, FTIR analysis, a N2 adsorption and desorption test, a scanning electron microscope (SEM), a tensile strength test, and a viscosity test. The results showed that the addition of 14BBDE and T403 promoted the oxidation of B4C and the formation of boron-containing glass or ceramics, increased the residual mass of char, densified the surface char layer, and increased the specific surface area of porous residual char. When their dosage was 30%, ESB-1T-3 coating exhibited the most excellent flame-retardant properties. During the 2 h large-plate combustion test, the backside temperature was only 138.72 °C, without any melting pits. In addition, the peak heat release rate (PHRR), total heat release rate (THR), total smoke production (TSP), and peak smoke production (PSPR) were reduced by 13.15%, 13.9%, 5.48%, and 17.45%, respectively, compared to the blank ESB coating. The LOI value reached 33.4%, and the vertical combustion grade was V-0. In addition, the tensile strength of the ESB-1T-3 sample was increased by 10.94% compared to ESB. In contrast, the addition of BGE and DDM promoted the combustion of the coating, affected the ceramic process of the coating, seriously affected the formation of borosilicate glass, and exhibited poor flame retardancy. The backside temperature reached 190.93 °C after 2 h combustion. A unified rule is that as the amount of diluent and curing agent increases, the flame retardancy improves while the mechanical properties decrease. This work provides data support for the preparation and process optimization of resin-based coatings. Full article
Show Figures

Figure 1

14 pages, 6871 KiB  
Article
Effect of Wood Densification and GFRP Reinforcement on the Embedment Strength of Poplar CLT
by Akbar Rostampour-Haftkhani, Farshid Abdoli, Mohammad Arabi, Vahid Nasir and Maria Rashidi
Appl. Sci. 2023, 13(22), 12249; https://doi.org/10.3390/app132212249 - 12 Nov 2023
Cited by 8 | Viewed by 1861
Abstract
Embedment strength is an important factor in the design and performance of connections in timber structures. This study assesses the embedment strength of lag screws in three-ply cross-laminated timber (CLT) composed of densified poplar wood with densification ratios of 25% and 50%, under [...] Read more.
Embedment strength is an important factor in the design and performance of connections in timber structures. This study assesses the embedment strength of lag screws in three-ply cross-laminated timber (CLT) composed of densified poplar wood with densification ratios of 25% and 50%, under both longitudinal (L) and transverse (T) loading conditions. The embedment strength was thereafter compared with that of CLT reinforced with glass-fiber-reinforced polymer (GFRP). The experimental data was compared with results obtained using different models for calculating embedment strength. The findings indicated that the embedment strength of CLT specimens made of densified wood and GFRP was significantly greater than that of control specimens. CLT samples loaded in the L direction showed higher embedment strength compared to those in the T direction. In addition, 50% densification had the best performance, followed by 25% densification and GFRP reinforcement. Modelling using the NDS formula yielded the highest accuracy (mean absolute percentage error = 10.31%), followed by the Ubel and Blub (MAPE = 21%), Kennedy (MAPE = 28.86%), CSA (MAPE = 32.68%), and Dong (MAPE = 40.07%) equations. Overall, densification can be considered as an alternative to GFRP reinforcement in order to increase the embedment strength in CLT. Full article
(This article belongs to the Special Issue Advances in Wood Processing Technology)
Show Figures

Figure 1

19 pages, 10215 KiB  
Article
Composite Cements Using Ground Granulated Blast Furnace Slag, Fly Ash, and Geothermal Silica with Alkali Activation
by Andres Salas Montoya, Loth I. Rodríguez-Barboza, Fabiola Colmenero Fonseca, Javier Cárcel-Carrasco and Lauren Y. Gómez-Zamorano
Buildings 2023, 13(7), 1854; https://doi.org/10.3390/buildings13071854 - 21 Jul 2023
Cited by 10 | Viewed by 2649
Abstract
In recent decades, alkali activated and blended cements have attracted great interest worldwide due to their advantages of low energy cost, high strength, and good durability. This study evaluated the effects of replacing 50% of Portland cement with a mixture of three waste [...] Read more.
In recent decades, alkali activated and blended cements have attracted great interest worldwide due to their advantages of low energy cost, high strength, and good durability. This study evaluated the effects of replacing 50% of Portland cement with a mixture of three waste materials: ground granulated blast furnace slag (GGBFS), fly ash (FA), and geothermal waste (GS), with and without external alkaline activation, and activated with different alkali agents: 4 and 7% Na2O equivalent of sodium hydroxide, sodium silicate (water glass), and sodium sulfate. After 90 days of curing, samples were characterized using compressive strength tests, scanning electron microscopy, X-ray diffraction, and thermogravimetric analyses. The results showed that sodium hydroxide caused an alkali–silica reaction and reduced the strength, while sodium silicate and sodium sulfate improved the strength and hydration products formation. Moreover, the addition of fly ash decreased the compressive strength but increased the workability, while the addition of slag and geothermal waste increased strength and densified the matrix with the formation of additional hydration products. The blended cements without activation also showed better performance than pure cement and a more compact matrix of hydration products. The study demonstrated the feasibility of using waste materials to produce blended cements with low energy costs and high durability. Full article
(This article belongs to the Special Issue Sustainability in Construction: Techniques, Management and Life Cycle)
Show Figures

Figure 1

9 pages, 4853 KiB  
Communication
The Densification Characteristics of Polished Fused Silica Glass and Its Scattering Characteristics
by Xiaowei Jiang, Dingbo Chen, Yuchuan Quan, Xingwu Long, Suyong Wu and Zhongqi Tan
Photonics 2023, 10(4), 447; https://doi.org/10.3390/photonics10040447 - 13 Apr 2023
Cited by 2 | Viewed by 1813
Abstract
Optical surface scattering is an important subject in the field of optics. Previous studies of surface scattering mainly focused on the influence of surface topography and often ignored the influence of the mechanical property’s change caused by polished surface densification. In this paper, [...] Read more.
Optical surface scattering is an important subject in the field of optics. Previous studies of surface scattering mainly focused on the influence of surface topography and often ignored the influence of the mechanical property’s change caused by polished surface densification. In this paper, we study the mechanical property of fused silica glass in detail and analyze the scattering behaviour of actual fused silica glass’s surface with sub-angstrom roughness, considering the topography and the change of refractive index. Experimental results show that there is a negative correlation between the height and modulus on the surface of roughly polished fused silica glass, and the correlation coefficient γ = −0.29 was determined. After super−polishing, the mechanical properties of the sample surface become significantly uniform with a roughness of Rq = 0.06 nm and Ra = 0.05 nm, and the correlation coefficient becomes γ = −0.02. Moreover, the nanoindentation test proves that silica glass surfaces have been densified during polishing. Based on the densification characteristics, the bidirectional reflectance distribution function (BRDF) was simulated by the finite element method. The result indicates that the densification characteristics will increase the scattering intensity. This work not only deepens the understanding of the properties of polished optical surfaces but also the surface scattering characteristics of optical elements. Full article
(This article belongs to the Topic Optical and Optoelectronic Materials and Applications)
Show Figures

Figure 1

12 pages, 4651 KiB  
Article
Synthesis and Characterization of Single-Phase α-Cordierite Glass-Ceramics for LTCC Substrates from Tuff
by Yongsheng Yu, Jinghan Wang, Yuanyuan Yu, Zhaoli Yan, Yanyan Du, Pengfei Chu, Qiangshan Jing and Peng Liu
Materials 2022, 15(24), 8758; https://doi.org/10.3390/ma15248758 - 8 Dec 2022
Cited by 4 | Viewed by 1847
Abstract
Single-phase α-cordierite glass-ceramics for a low-temperature co-fired ceramic (LTCC) substrate were fabricated from tuff as the main raw material, using the non-stoichiometric formula of α-cordierite with excess MgO without adding any sintering additives. The sintering/crystallization behavior and the various performances of dielectric properties, [...] Read more.
Single-phase α-cordierite glass-ceramics for a low-temperature co-fired ceramic (LTCC) substrate were fabricated from tuff as the main raw material, using the non-stoichiometric formula of α-cordierite with excess MgO without adding any sintering additives. The sintering/crystallization behavior and the various performances of dielectric properties, thermal expansion, and flexural strength of the glass-ceramics were detected. The results indicated that only single-phase α-cordierite crystal was precipitated from the basic glass sintered at the range 875–950 °C, and μ-cordierite crystal was not observed during the whole sintering-crystallization process. The properties of glass-ceramics were first improved and then deteriorated with the increase in tuff content and sintering temperature. Fortunately, the glass-ceramics sintered at 900 °C with 45 wt.% tuff content possessed excellent properties: high densify (2.62 g∙cm−3), applicable flexural strength (136 MPa), low dielectric loss (0.010, at 10 MHz), low dielectric constant (5.12, at 10 MHz, close to α-cordierite), and suitable coefficients of thermal expansion (CTE, 3.89 × 10−6 K−1). Full article
(This article belongs to the Special Issue Materials for LTCC Technology)
Show Figures

Figure 1

14 pages, 2575 KiB  
Article
Recovery of Terephthalic Acid from Densified Post-consumer Plastic Mix by HTL Process
by Ilaria Agostini, Benedetta Ciuffi, Riccardo Gallorini, Andrea Maria Rizzo, David Chiaramonti and Luca Rosi
Molecules 2022, 27(20), 7112; https://doi.org/10.3390/molecules27207112 - 21 Oct 2022
Cited by 12 | Viewed by 3754
Abstract
In this study, we investigate the hydrothermal liquefaction (HTL) of PET separated from a densified postconsumer plastic mix, with the aim of recovering its monomer. This second raw material is made up of 90% polyolefin, while the remaining 10% is made up of [...] Read more.
In this study, we investigate the hydrothermal liquefaction (HTL) of PET separated from a densified postconsumer plastic mix, with the aim of recovering its monomer. This second raw material is made up of 90% polyolefin, while the remaining 10% is made up of PET, traces of metals, paper, and glass. After preliminary separation by density in water, two batch experiments were performed on the sunken fraction (composed mainly of PET) in a stainless steel autoclave at 345 °C for 30 and 20 min. Both trials resulted in similar yields of the three phases. In particular, the solid yield is around 76% by weight. After a purification step, this phase was analyzed by UV–Vis, 1H-NMR, and FTIR spectroscopy and resulted to be constituted by terephthalic acid (TPA), a product of considerable industrial interest. The study proved that the hydrothermal liquefaction process coupled with density separation in water is effective for obtaining TPA from a densified postconsumer plastic mix, which can be used for new PET synthesis. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

12 pages, 5047 KiB  
Article
ZrSi2-SiC/SiC Gradient Coating of Micro-Structure and Anti-Oxidation Property on C/C Composites Prepared by SAPS
by Fei Liu, Hejun Li, Qiangang Fu, Xinhai He and Wei Zhang
Coatings 2022, 12(10), 1377; https://doi.org/10.3390/coatings12101377 - 21 Sep 2022
Cited by 3 | Viewed by 2442
Abstract
A ZrSi2-SiC/SiC gradient coating system was designed to reduce the thermal stress of anti-oxidation coatings for C/C composites and prolong their anti-oxidation time at a high temperature. The SiC transition layer was prepared by pack cementation and the gradient ZrSi2 [...] Read more.
A ZrSi2-SiC/SiC gradient coating system was designed to reduce the thermal stress of anti-oxidation coatings for C/C composites and prolong their anti-oxidation time at a high temperature. The SiC transition layer was prepared by pack cementation and the gradient ZrSi2-SiC outer coatings with different ZrSi2 contents added were deposited by supersonic air plasma spraying (SAPS). The micro-morphologies and phase compositions of the coatings were studied by SEM, EDS, XRD, and TG/DSC, and their anti-oxidation performances were tested by a static oxidation experiment. The findings suggested that the gradient coating with 30 wt.% ZrSi2 content displayed the optimum and dense microstructure without obvious pores and microcracks, compared with the other three proportional coatings. During the oxidation test, because of the oxidation reaction of ZrSi2 and SiC phases, a large amount of silica was formed in the coating to fill the pores and microcracks and densify the coating further. Oxidation products ZrO2 and ZrSiO4, having a high melting point and outstanding anti-oxidation property, were embedded in the SiO2 glass layer to reduce the layer volatilization rate and improve the ability to block oxygen. Therefore, the specimen with 30 wt.% ZrSi2 still kept mass gain after 188 h oxidation time at 1500 °C. However, when the oxidation time was increased to 198 h, it had a mass loss of 0.1%, because the coating compactness was destroyed by the escape of the oxidation gases. Full article
(This article belongs to the Special Issue Advances in Plasma Coatings)
Show Figures

Figure 1

19 pages, 3478 KiB  
Article
Influence of R=Y, Gd, Sm on Crystallization and Sodium Ion Conductivity of Na5RSi4O12 Phase
by Jochen Schilm, Rafael Anton, Dörte Wagner, Juliane Huettl, Mihails Kusnezoff, Mathias Herrmann, Hong Ki Kim and Chang Woo Lee
Materials 2022, 15(3), 1104; https://doi.org/10.3390/ma15031104 - 30 Jan 2022
Cited by 9 | Viewed by 3748
Abstract
New sodium-based battery concepts require solid electrolytes as ion conducting separators. Besides NaSICON and β-Al2O3 in the Na2O-R2O3-SiO2 system (R = rare earth), a rarely noticed glass-ceramic solid electrolyte with the composition Na [...] Read more.
New sodium-based battery concepts require solid electrolytes as ion conducting separators. Besides NaSICON and β-Al2O3 in the Na2O-R2O3-SiO2 system (R = rare earth), a rarely noticed glass-ceramic solid electrolyte with the composition Na5RSi4O12 (N5-type) exists. The present study addresses the investigation of the ionic conductivity of Na5RSi4O12 solid electrolytes sintered from pre-crystallized glass-ceramic powders. The sintering behavior (optical dilatometry), the microstructure (SEM/EDX), and phase composition (XRD), as well as electrochemical properties (impedance spectroscopy), were investigated. To evaluate the effect of the ionic radii, Y, Sm and Gd rare elements were chosen. All compositions were successfully synthesized to fully densified compacts having the corresponding conducting N5-type phase as the main component. The densification behavior was in agreement with the melting point, which decreased with increasing ionic radii and specific cell volume. Alternatively, the ionic conductivities of N5-phases decreased from Y to Gd and Sm containing samples. The highest ionic conductivity of 1.82 × 10−3 S cm−1 at 20 °C was obtained for Na5YSi4O12 composition. The impact of grain boundaries and bulk conductivity on measured values is discussed. A powder-based synthesis method of this glass-ceramic solid electrolyte using different rare earth elements opens possibilities for optimizing ionic conductivity and scalable technological processing by tape casting. Full article
Show Figures

Figure 1

13 pages, 7670 KiB  
Article
Sintered Glass-Ceramics, Self-Glazed Materials and Foams from Metallurgical Waste Slag
by Nicolai B. Jordanov, Ivan Georgiev and Alexander Karamanov
Materials 2021, 14(9), 2263; https://doi.org/10.3390/ma14092263 - 27 Apr 2021
Cited by 7 | Viewed by 2960
Abstract
The materials used for the synthesis of parent glass are 70% wt. metallurgical slag and 30% wt. industrial quartz sand. The initial batch is melted at and then quenched in water. The resulting glass frit is milled bellow 75 microns and pressed 1400 [...] Read more.
The materials used for the synthesis of parent glass are 70% wt. metallurgical slag and 30% wt. industrial quartz sand. The initial batch is melted at and then quenched in water. The resulting glass frit is milled bellow 75 microns and pressed 1400 °C into “green” samples. In a next stage, they are heat treated at different temperatures with various heating rates and holding times. As a result, it is demonstrated the possibility for production variations, allowing the manufacture of three types of new materials by using the same pressed glass powders. We highlight the flexibility of the synthesis obtaining namely well densified glass-ceramics at about 950 °C, self-glazed glass-ceramics at about 1000 °C or glass-ceramic foams at approximately 1100 °C. The first set of materials is characterized by very well sintered structure combined with reasonable crystallinity; the second one—by smooth self-glazed surface with an attractive appearance and good properties and the third one—by 80–90% closed porosity and very good thermal stability above 1000 °C. Full article
(This article belongs to the Special Issue Environmentally Sustainable Materials and Fabrication Techniques)
Show Figures

Figure 1

Back to TopTop