Synthesis and Characterization of Single-Phase α-Cordierite Glass-Ceramics for LTCC Substrates from Tuff
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sebastian, M.T.; Ubic, R.; Jantunen, H. Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 2015, 60, 392–412. [Google Scholar] [CrossRef]
- Zhou, D.; Pang, L.-X.; Wang, D.-W.; Li, C.; Jin, B.-B.; Reaney, L.M. High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture. J. Mater. Chem. C 2017, 5, 10094–10098. [Google Scholar] [CrossRef]
- Qin, T.; Zhong, C.; Tang, B.; Zhan, S. A novel type of composite LTCC material for high flexural strength application. J. Eur. Ceram. Soc. 2021, 41, 1342–1351. [Google Scholar] [CrossRef]
- Li, J.; Su, H.; Sun, Y.; Wang, G.; Gao, F.; Han, X.; Liang, Z.; Li, Q. Enhancement of structural and microwave properties of ion-substituted Li2MgSiO4 ceramics for LTCC applications. Ceram. Int. 2021, 47, 15039–15043. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, Y.; Li, J.; Fang, W.; Ma, J.; Yang, A.; Liu, L.; Fang, L. Crystal structure, Raman spectra and microwave dielectric properties of novel low-temperature cofired ceramic Li4GeO4. J. Alloys Compd. 2021, 867, 159059. [Google Scholar] [CrossRef]
- Sebastian, M.T.; Jantunen, H. Low loss dielectric materials for LTCC applications: A review. Int. Mater. Rev. 2008, 53, 57–90. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Nemati, A.; Banijamali, S. Fabrication and microwave dielectric characterization of cordierite/BZBS (Bi2O3-ZnO-B2O3-SiO2) glass composites for LTCC applications. J. Alloys Compd. 2021, 882, 160722. [Google Scholar] [CrossRef]
- Ivetić, T.B.; Xia, Y.; Benzine, O.; Petrović, J.; Papan, J.; Lukić-Petrović, S.R.; Litvinchuk, A.P. Structure, electrochemical impedance and Raman spectroscopy of lithium-niobium-titanium-oxide ceramics for LTCC technology. Ceram. Int. 2021, 47, 4944–4953. [Google Scholar] [CrossRef]
- Wang, F.; Lou, Y.-H.; Li, Z.-J.; Lei, W.; Lu, Y.; Dong, Z.-W.; Lu, W.-Z. Improved flexural strength and dielectric loss in Al2O3-based LTCC with La2O3-CaO-B2O3-SiO2 glass. Ceram. Int. 2021, 47, 9955–9960. [Google Scholar] [CrossRef]
- Xiong, Z.; Tang, B.; Zhang, X.; Yang, C.; Fang, Z.; Zhang, S. Low-fire processing and microwave dielectric properties of LB glass doped Ba3.75Nd9.5Ti17.5(Cr0.5Nb0.5)0.5O54 ceramic. J. Am. Ceram. Soc. 2021, 104, 1726–1739. [Google Scholar] [CrossRef]
- Synkiewicz, B.; Szwagierczak, D.; Kulawik, J. Multilayer LTCC structures based on glass-cordierite layers with different porosity. Microelectron. Int. 2017, 34, 110–115. [Google Scholar] [CrossRef]
- Hwang, S.-P.; Wu, J.-M. Effect of composition on micro-structural development in MgO–Al2O3–SiO2 glass–ceramics. J. Am. Ceram. Soc. 2001, 84, 1108–1112. [Google Scholar] [CrossRef]
- Chen, G.; Liu, X. Fabrication, characterization and sintering of glass–ceramics for low-temperature co-fired ceramic substrates. J. Mater. Sci. Mater. Electr. 2004, 15, 595–600. [Google Scholar] [CrossRef]
- Song, L.; Li, Z.; Li, G.; Li, Y.; Jiang, S. Fabrication, sintering and characterization of cordierite glass-ceramics for low temperature co-fired ceramic substrates from kaolin. J. Mater. Sci. Mater. Electr. 2016, 27, 8504–8511. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.; Huang, Y.; Li, F.; Yang, Q. Fabrication and characterization of low temperature co-fired cordierite glass-ceramics from potassium feldspar. J. Alloys Compd. 2014, 583, 248–253. [Google Scholar] [CrossRef]
- Kang, J.; Chen, J.; Chen, Z.; Hou, Y.; Qu, Y. Crystallization, sinterability, and dielectric properties of MgO-Al2O3-SiO2 glass-ceramics doped with TiO2. J. Mater. Sci. Mater. Electr. 2020, 31, 5697–5702. [Google Scholar] [CrossRef]
- Luo, W.; Bao, Z.; Jiang, W.; Liu, J.; Feng, G.; Xu, Y.; Tang, H.; Wang, T. Effect of B2O3 on the crystallization, structure and properties of MgO-Al2O3-SiO2 glass-ceramics. Ceram. Int. 2019, 45, 24750–24756. [Google Scholar] [CrossRef]
- Kang, J.; Wang, J.; Lou, X.; Khater, G.A.; Hou, Y.; Tang, F.; Yue, Y. Effect of Y2O3 content on the crystallization behaviors and physical properties of glasses based on MgO-Al2O3-SiO2 system. J. Non-Cryst. Solids 2018, 497, 12–18. [Google Scholar] [CrossRef]
- Li, B.; Xia, Q.; Wang, Z. Effect of MnO on the crystallization, microstructure, and properties of MgO-Al2O3-SiO2 glass-ceramics. J. Aust. Ceram. Soc. 2021, 57, 927–932. [Google Scholar] [CrossRef]
- Chen, G. Sintering, crystallization, and properties of CaO doped cordierite-based glass–ceramics. J. Alloys Compd. 2008, 455, 298–302. [Google Scholar] [CrossRef]
- Shao, H.; Wang, T.; Zhang, Q. Preparation and properties of CaO– SiO2–B2O3 glass–Ceramic at low temperature. J. Alloys Compd. 2009, 484, 2–5. [Google Scholar] [CrossRef]
- Banjuraizah, J.; Mohamad, H.; Ahmad, Z.A. Densification and crystallization of non-stoichiometric cordierite glass with excess MgO synthesized from kaolin and talc. J. Am. Ceram. Soc. 2011, 94, 687–694. [Google Scholar] [CrossRef]
- Chen, G.-H. Effect of ZnO addition on properties of cordierite based glass–ceramics. J. Mater. Sci. Mater. Electr. 2007, 18, 1253–1257. [Google Scholar] [CrossRef]
- Li, Y.; Qian, H.; Cheng, X.; Zhang, R.; Zhang, H. Fabrication of dense cordierite ceramic through reducing Al2O3 mole ratio. Mater. Lett. 2014, 116, 262–264. [Google Scholar] [CrossRef]
- Li, Z.; Wu, J.; Song, L.; Huang, Y. Effect of composition on sinter-crystallization and properties of low temperature co-fired α-cordierite glass-ceramics. J. Eur. Ceram. Soc. 2014, 34, 3981–3991. [Google Scholar] [CrossRef]
- Song, L.; Wu, J.; Li, Z.; Hao, X.; Yu, Y. Crystallization mechanisms and properties of α-cordierite glass-ceramics from K2O-MgO-Al2O3-SiO2 glasses. J. Non-Cryst. Solids 2015, 419, 16–26. [Google Scholar] [CrossRef]
- Banjuraizah, J.; Mohamad, H.; Ahamd, Z.A. Crystal structure of single phase and low sintering temperature of α-cordierite synthesized from talc and kaolin. J. Alloys Compd. 2009, 482, 429–436. [Google Scholar] [CrossRef]
- Banjuraizah, J.; Mohamad, H.; Ahamd, Z.A. Thermal expansion coefficient and dielectric properties of non-stoichiometric cordierite compositions with excess MgO mole ratio synthesized from mainly kaolin and talc by the glass crystallization method. J. Alloys Compd. 2010, 494, 256–260. [Google Scholar] [CrossRef]
- Banjuraizah, J.; Mohamad, H.; Ahamd, Z.A. Effect of melting temperatures on the crystallization and densification of 2.8MgO·1.5Al2O3·5SiO2 glass-ceramic synthesized from mainly talc and kaolin. J. Alloys Compd. 2011, 509, 1874–1879. [Google Scholar] [CrossRef]
- Demirci, Y.; Günay, E. Crystallization behavior and properties of cordierite glass-ceramics with added boron oxide. J. Ceram. Process. Res. 2011, 12, 352–356. [Google Scholar]
- Yu, Y.; Hao, X.; Song, L.; Li, Z.; Song, L. Synthesis and characterization of single phase and low temperature co-fired cordierite glass-ceramics from perlite. J. Non-Cryst. Solids 2016, 448, 36–42. [Google Scholar] [CrossRef]
- Amista, P.; Cesari, M.; Montenero, A.; Gnappi, G.; Lan, L. Crystallization behaviour in the system MgO∙Al2O3∙SiO2. J. Non-Cryst. Solids 1995, 192, 529–533. [Google Scholar] [CrossRef]
- Azín, N.J.; Camerucci, M.A.; Cavalieri, A.L. Crystallisation of non-stoichiometric cordierite glasses. Ceram. Int. 2005, 31, 189–195. [Google Scholar] [CrossRef]
- Karamanov, A.; Pelino, M. Sinter-crystallisation in the diopside-albite system: Part I. Formation of induced crystallisation porosity. J. Eur. Ceram. Soc. 2006, 26, 2511–2517. [Google Scholar] [CrossRef]
- Karamanov, A.; Pelino, M. Induced crystallization porosity and properties of sintereds diopside and wollastonite glass-ceramics. J. Eur. Ceram. Soc. 2008, 28, 555–562. [Google Scholar] [CrossRef]
- Schwartz, B. Microelectronics packaging. II. Am. Ceram. Soc. Bull. 1984, 63, 577–581. [Google Scholar]
- Chen, J.; Wang, H.; Feng, S.; Ma, H.; Deng, D.; Xu, S. Effects of CaSiO3 addition on sintering behavior and microwave dielectric properties of Al2O3 ceramics. Ceram. Int. 2011, 37, 989–993. [Google Scholar] [CrossRef]
- Yoon, S.O.; Shim, S.H.; Kim, K.S.; Park, J.G.; Kim, S. Low-temperature preparation and microwave dielectric properties of ZBS glass-Al2O3 composites. Ceram. Int. 2009, 35, 1271–1275. [Google Scholar] [CrossRef]
- Fang, Y.; Li, L.; Xiao, Q.; Chen, X.M. Preparation and microwave dielectric properties of cristobalite ceramics. Ceram. Int. 2012, 38, 4511–4515. [Google Scholar] [CrossRef]
- Synkiewicz-Musialska, B.; Szwagierczak, D.; Kulawik, J.; Pałka, N.; Piasecki, P. Structural, thermal and dielectric properties of low dielectric permittivity cordierite-mullite-glass substrates at terahertz frequencies. Materials 2021, 14, 4030. [Google Scholar] [CrossRef]
- Szwagierczak, D.; Synkiewicz-Musialska, B.; Kulawik, J.; Pałka, N. LTCC and bulk Zn4B6O13–Zn2SiO4 composites for submillimeter wave applications. Materials 2021, 14, 1014. [Google Scholar] [CrossRef] [PubMed]
- Penn, S.J.; Alford, N.M.N.; Templeton, A.; Wang, X.; Xu, M.; Reece, M.; Schrapel, K. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 1997, 80, 1885–1888. [Google Scholar] [CrossRef]
- Wang, S.; Lu, H.; Hou, Z. Sol-emulsion-gel synthesis of cordierite ceramics for high-frequency multilayer chip inductors. Ceram. Int. 2013, 39, 991–997. [Google Scholar] [CrossRef]
- Majumder, M.; Mukhopadhyay, S.; Parkash, O.; Kumar, D. Sintering and crystallization behavior of chemically prepared cordierite for application in electronic packaging. Ceram. Int. 2004, 30, 1067–1070. [Google Scholar] [CrossRef]
- Vepa, S.S.V.S.S.; Umarji, A.M. Effect of substitution of CaO on thermal expansion of cordierite (Mg2Al4Si5O18). J. Am. Ceram. Soc. 1993, 76, 1873–1876. [Google Scholar] [CrossRef]
- Heintz, J.M.; Rabardel, L.; Al Qaraoui, M.; Talbi, M.A.; Brochu, R.; Flem, G.L. New low thermal expansion ceramics: Sintering and thermal behavior of Ln1/3Zr2(PO4)3-based composites. J. Alloys Compd. 1997, 250, 515–519. [Google Scholar] [CrossRef]
- Harada, T.; Hamanaka, T.; Hamaguchi, K.; Asami, S. Cordierite Honeycomb-structural Body and a Method for Producing the Same. U.S. Patent 4869944, 26 September 1989. [Google Scholar]
Compositions | SiO2 | Al2O3 | MgO | K2O | Na2O | TiO2 | CaO | Fe2O3 | Others |
---|---|---|---|---|---|---|---|---|---|
Content | 69.65 | 14.34 | 0.131 | 12.96 | 1.73 | 0.498 | 0.153 | 0.261 | 0.277 |
Samples | MgO | Al2O3 | SiO2 | Tuff |
---|---|---|---|---|
MAS40 | 16.00 | 25.69 | 18.31 | 40.00 |
MAS45 | 15.84 | 24.73 | 14.43 | 45.00 |
MAS50 | 15.75 | 23.81 | 10.44 | 50.00 |
Basic Glasses | MAS40 | MAS45 | MAS50 |
---|---|---|---|
Tg (°C) | 909.76 | 908.39 | 909.43 |
Tp (°C) | 1006.22 | 1020.30 | 1028.33 |
Content | Coefficients of Thermal Expansion (CTEs) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Temperature Range | 40–100 °C (×10−7 K−1) | 100–600 °C (×10−6 K−1) | 40–600 °C (×10−6 K−1) | ||||||
Sintering Temperature | 875 °C | 900 °C | 950 °C | 875 °C | 900 °C | 950 °C | 875 °C | 900 °C | 950 °C |
MAS40 | −2.04 | 0.12 | −1.73 40–110 °C | 3.37 | 3.65 | 3.00 110–600 °C | 3.37 | 4.35 | 5.12 |
MAS45 | −0.76 40–85 °C | 0.13 | −0.26 | 4.25 85–600 °C | 3.89 | 3.52 | 3.65 | 3.89 | 4.20 |
MAS50 | 1.56 | −1.32 40–90 °C | −1.98 40–90 °C | 5.12 | 4.13 90–600 °C | 3.49 90–600 °C | 2.94 | 3.52 | 3.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Wang, J.; Yu, Y.; Yan, Z.; Du, Y.; Chu, P.; Jing, Q.; Liu, P. Synthesis and Characterization of Single-Phase α-Cordierite Glass-Ceramics for LTCC Substrates from Tuff. Materials 2022, 15, 8758. https://doi.org/10.3390/ma15248758
Yu Y, Wang J, Yu Y, Yan Z, Du Y, Chu P, Jing Q, Liu P. Synthesis and Characterization of Single-Phase α-Cordierite Glass-Ceramics for LTCC Substrates from Tuff. Materials. 2022; 15(24):8758. https://doi.org/10.3390/ma15248758
Chicago/Turabian StyleYu, Yongsheng, Jinghan Wang, Yuanyuan Yu, Zhaoli Yan, Yanyan Du, Pengfei Chu, Qiangshan Jing, and Peng Liu. 2022. "Synthesis and Characterization of Single-Phase α-Cordierite Glass-Ceramics for LTCC Substrates from Tuff" Materials 15, no. 24: 8758. https://doi.org/10.3390/ma15248758
APA StyleYu, Y., Wang, J., Yu, Y., Yan, Z., Du, Y., Chu, P., Jing, Q., & Liu, P. (2022). Synthesis and Characterization of Single-Phase α-Cordierite Glass-Ceramics for LTCC Substrates from Tuff. Materials, 15(24), 8758. https://doi.org/10.3390/ma15248758