Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (176)

Search Parameters:
Keywords = dense time-series images

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 892 KB  
Article
Line-Field Confocal Optical Coherence Tomography for the Evaluation of Pigmented Skin Lesions of the Genital Area
by Simone Cappilli, Gerardo Palmisano, Elisa Cinotti, Lucas Boussingault, Luca Pellegrino, Linda Tognetti, Simona Maria Fragomeni, Javiera Pérez-Anker, Jean-Luc Perrot, Angela Santoro, Giorgia Garganese, Gian Franco Zannoni, Mariano Suppa, Ketty Peris and Alessandro Di Stefani
Diagnostics 2025, 15(23), 3023; https://doi.org/10.3390/diagnostics15233023 - 27 Nov 2025
Viewed by 338
Abstract
Background/Objectives: Pigmented lesions of the genital area are of commonly occurrence, with population-based incidence estimated around 10–20%. Historically, invasive biopsy or surgical removal were recommended to obtain a definite diagnosis. Line-field confocal optical coherence tomography (LC-OCT) is a novel multimodality imaging tool, able [...] Read more.
Background/Objectives: Pigmented lesions of the genital area are of commonly occurrence, with population-based incidence estimated around 10–20%. Historically, invasive biopsy or surgical removal were recommended to obtain a definite diagnosis. Line-field confocal optical coherence tomography (LC-OCT) is a novel multimodality imaging tool, able to reproduce a “virtual biopsy” of skin lesions, offering vertical, horizontal, and three-dimensional (3D) imaging down to the mid-dermis with high-resolution real-time visualization. The aims of the study were (i) to describe the LC-OCT features in a series of benign and malignant pigmented genital lesions (PGLs), (ii) to investigate the impact of LC-OCT on the diagnostic accuracy, (iii) and to estimate the diagnostic concordance between LC-OCT and histopathology. Methods: This was a retrospective, cross-sectional study including histologically confirmed PGL investigated with LC-OCT over 2 years. Descriptive statistics were calculated for continuous and categorical variables. Diagnostic accuracy of LC-OCT and dermoscopy was compared, and the LC-OCT–histopathology diagnostic concordance was estimated. Results: A total of 96 PGLs were analyzed in 23 male and 57 female patients. Pathologic reporting consisted of 56 melanoses, 21 nevi (15 compound nevi and 6 atypical genital nevi), 10 melanomas, and 9 angiokeratomas. LC-OCT obtained higher diagnostic accuracy rather than dermoscopy; diagnostic concordance LC-OCT/histopathology was 91% (87/96; 95% CI 83.7–95.3). Melanoses were characterized by a continuous undulated junction. Common genital nevi were identified by the presence of regular dense nests, while dischoesive nests were seen in atypical genital nevi. Features of epidermal disarray with pagetoid cells, junctional atypia, and discohesive nests were observed in melanoma. Angiokeratomas showed the presence of dark vascular lacunae. Conclusions: Providing in vivo key clues with a resolution close to classic histopathology, LC-OCT may have a valuable role in the clinical management of PGLs, particularly when lesions involve large areas or are multiple in number. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

33 pages, 4007 KB  
Article
Comprehensive Assessment of CNN Sensitivity in Automated Microorganism Classification: Effects of Compression, Non-Uniform Scaling, and Data Augmentation
by Dimitria Theophanis Boukouvalas, Márcia Aparecida Silva Bissaco, Humberto Dellê, Alessandro Melo Deana, Peterson Adriano Belan and Sidnei Alves de Araújo
BioMedInformatics 2025, 5(4), 61; https://doi.org/10.3390/biomedinformatics5040061 - 31 Oct 2025
Viewed by 517
Abstract
Background: The growing demand for automated microorganism classification in the context of Laboratory 4.0 highlights the potential of convolutional neural networks (CNNs) for accurate and efficient image analysis. However, their effectiveness remains limited by the scarcity of large, labeled datasets. This study [...] Read more.
Background: The growing demand for automated microorganism classification in the context of Laboratory 4.0 highlights the potential of convolutional neural networks (CNNs) for accurate and efficient image analysis. However, their effectiveness remains limited by the scarcity of large, labeled datasets. This study addresses a key gap in the literature by investigating how commonly used image preprocessing techniques, such as lossy compression, non-uniform scaling (typically applied to fit input images to CNN input layers), and data augmentation, affect the performance of CNNs in automated microorganism classification. Methods: Using two well-established CNN architectures, AlexNet and DenseNet-121, both frequently applied in biomedical image analysis, we conducted a series of computational experiments on a standardized dataset of high-resolution bacterial images. Results: Our results demonstrate under which conditions these preprocessing strategies degrade or improve CNN performance. Using the findings from this research to optimize hyperparameters and train the CNNs, we achieved classification accuracies of 98.61% with AlexNet and 99.82% with DenseNet-121, surpassing the performance reported in current state-of-the-art studies. Conclusions: This study advances laboratory digitalization by reducing data preparation effort, training time, and computational costs, while improving the accuracy of microorganism classification with deep learning. Its contributions also benefit broader biomedical fields such as automated diagnostics, digital pathology, clinical decision support, and point-of-care imaging. Full article
Show Figures

Graphical abstract

21 pages, 5676 KB  
Article
Surface Deformation Monitoring and Spatiotemporal Evolution Analysis of Open-Pit Mines Using Small-Baseline Subset and Distributed-Scatterer InSAR to Support Sustainable Mine Operations
by Zhouai Zhang, Yongfeng Li and Sihua Gao
Sustainability 2025, 17(19), 8834; https://doi.org/10.3390/su17198834 - 2 Oct 2025
Cited by 1 | Viewed by 671
Abstract
Open-pit mining often induces geological hazards such as slope instability, surface subsidence, and ground fissures. To support sustainable mine operations and safety, high-resolution monitoring and mechanism-based interpretation are essential tools for early warning, risk management, and compliant reclamation. This study focuses on the [...] Read more.
Open-pit mining often induces geological hazards such as slope instability, surface subsidence, and ground fissures. To support sustainable mine operations and safety, high-resolution monitoring and mechanism-based interpretation are essential tools for early warning, risk management, and compliant reclamation. This study focuses on the Baorixile open-pit coal mine in Inner Mongolia, China, where 48 Sentinel-1 images acquired between 3 March 2017 and 23 April 2021 were processed using the Small-Baseline Subset and Distributed-Scatterer Interferometric Synthetic Aperture Radar (SBAS-DS-InSAR) technique to obtain dense and reliable time-series deformation. Furthermore, a Trend–Periodic–Residual Subspace-Constrained Regression (TPRSCR) method was developed to decompose the deformation signals into long-term trends, seasonal and annual components, and residual anomalies. By introducing Distributed-Scatterer (DS) phase optimization, the monitoring density in low-coherence regions increased from 1055 to 338,555 points (approximately 321-fold increase). Deformation measurements at common points showed high consistency (R2 = 0.97, regression slope = 0.88; mean rate difference = −0.093 mm/yr, standard deviation = 3.28 mm/yr), confirming the reliability of the results. Two major deformation zones were identified: one linked to ground compaction caused by transportation activities, and the other associated with minor subsidence from pre-mining site preparation. In addition, the deformation field exhibits a superimposed pattern of persistent subsidence and pronounced seasonality. TPRSCR results indicate that long-term trend rates range from −14.03 to 14.22 mm/yr, with a maximum periodic amplitude of 40 mm. Compared with the Seasonal-Trend decomposition using LOESS (STL), TPRSCR effectively suppressed “periodic leakage into trend” and reduced RMSEs of total, trend, and periodic components by 48.96%, 93.33%, and 89.71%, respectively. Correlation analysis with meteorological data revealed that periodic deformation is strongly controlled by precipitation and temperature, with an approximately 34-day lag relative to the temperature cycle. The proposed “monitoring–decomposition–interpretation” framework turns InSAR-derived deformation into sustainability indicators that enhance deformation characterization and guide early warning, targeted upkeep, climate-aware drainage, and reclamation. These metrics reduce downtime and resource-intensive repairs and inform integrated risk management in open-pit mining. Full article
(This article belongs to the Special Issue Application of Remote Sensing and GIS in Environmental Monitoring)
Show Figures

Figure 1

36 pages, 9276 KB  
Article
Understanding Landslide Expression in SAR Backscatter Data: Global Study and Disaster Response Application
by Erin Lindsay, Alexandra Jarna Ganerød, Graziella Devoli, Johannes Reiche, Steinar Nordal and Regula Frauenfelder
Remote Sens. 2025, 17(19), 3313; https://doi.org/10.3390/rs17193313 - 27 Sep 2025
Viewed by 1590
Abstract
Cloud cover can delay landslide detection in optical satellite imagery for weeks, complicating disaster response. Synthetic Aperture Radar (SAR) backscatter imagery, which is widely used for monitoring floods and avalanches, remains underutilised for landslide detection due to a limited understanding of landslide signatures [...] Read more.
Cloud cover can delay landslide detection in optical satellite imagery for weeks, complicating disaster response. Synthetic Aperture Radar (SAR) backscatter imagery, which is widely used for monitoring floods and avalanches, remains underutilised for landslide detection due to a limited understanding of landslide signatures in SAR data. We developed a conceptual model of landslide expression in SAR backscatter (σ°) change images through iterative investigation of over 1000 landslides across 30 diverse study areas. Using multi-temporal composites and dense time series Sentinel-1 C-band SAR data, we identified characteristic patterns linked to land cover, terrain, and landslide material. The results showed either increased or decreased backscatter depending on environmental conditions, with reduced visibility in urban or mixed vegetation areas. Detection was also hindered by geometric distortions and snow cover. The diversity of landslide expression illustrates the need to consider local variability and multi-track (ascending and descending) satellite data in designing representative training datasets for automated detection models. The conceptual model was applied to three recent disaster events using the first post-event Sentinel-1 image, successfully identifying previously unknown landslides before optical imagery became available in two cases. This study provides a theoretical foundation for interpreting landslides in SAR imagery and demonstrates its utility for rapid landslide detection. The findings support further exploration of rapid landslides in SAR backscatter data and future development of automated detection models, offering a valuable tool for disaster response. Full article
Show Figures

Graphical abstract

19 pages, 3620 KB  
Article
Surface Urban Heat Island Risk Index Computation Using Remote-Sensed Data and Meta Population Dataset on Naples Urban Area (Italy)
by Massimo Musacchio, Alessia Scalabrini, Malvina Silvestri, Federico Rabuffi and Antonio Costanzo
Remote Sens. 2025, 17(19), 3306; https://doi.org/10.3390/rs17193306 - 26 Sep 2025
Viewed by 1196
Abstract
Extreme climate events such as heatwaves are becoming more frequent and pose serious challenges in cities. Urban areas are particularly vulnerable because built surfaces absorb and release heat, while human activities generate additional greenhouse gases. This increases health risks, making it crucial to [...] Read more.
Extreme climate events such as heatwaves are becoming more frequent and pose serious challenges in cities. Urban areas are particularly vulnerable because built surfaces absorb and release heat, while human activities generate additional greenhouse gases. This increases health risks, making it crucial to study population exposure to heat stress. This research focuses on Naples, Italy’s most densely populated city, where intense human activity and unique geomorphological conditions influence local temperatures. The presence of a Surface Urban Heat Island (SUHI) is assessed by deriving high-resolution Land Surface Temperature (LST) in a time series ranging from 2013 to 2023, processed with the Statistical Mono Window (SMW) algorithm in the Google Earth Engine (GEE) environment. SMW needs brightness temperature (Tb) extracted from a Landsat 8 (L8) Thermal InfraRed Sensor (TIRS), emissivity from Advanced Spaceborne and Thermal Emission Radiometer Global Emissivity Database (ASTERGED), and atmospheric correction coefficients from the National Center for Environmental Prediction and Atmospheric Research (NCEP/NCAR). A total of 64 nighttime images were processed and analyzed to assess long-term trends and identify the main heat islands in Naples. The hottest image was compared with population data, including demographic categories such as children, elderly people, and pregnant women. A risk index was calculated by combining temperature values, exposure levels, and the vulnerability of each group. Results identified three major heat islands, showing that risk is strongly linked to both population density and heat island distribution. Incorporating Local Climate Zone (LCZ) classification further highlighted the urban areas most prone to extreme heat based on morphology. Full article
Show Figures

Graphical abstract

35 pages, 30270 KB  
Article
Season-Specific CNN and TVDI Approach for Soil Moisture and Irrigation Monitoring in the Hetao Irrigation District, China
by Yule Sun, Dongliang Zhang, Ze Miao, Shaodong Yang, Quanming Liu and Zhongyi Qu
Agriculture 2025, 15(18), 1946; https://doi.org/10.3390/agriculture15181946 - 14 Sep 2025
Cited by 1 | Viewed by 2527
Abstract
We develop a year-round, field-scale framework to retrieve soil moisture and map irrigation in an arid irrigation district where crop phenology and canopy dynamics undermine static, single-season approaches. However, the currently popular TVDI application is limited during non-growing seasons. To address this gap, [...] Read more.
We develop a year-round, field-scale framework to retrieve soil moisture and map irrigation in an arid irrigation district where crop phenology and canopy dynamics undermine static, single-season approaches. However, the currently popular TVDI application is limited during non-growing seasons. To address this gap, we introduce a season-stratified TVDI scheme—based on the LST–EVI feature space with phenology-specific dry/wet edges—coupled with a non-growing-season inversion that fuses Sentinel-1 SAR and Landsat features and compares multiple regressors (PLSR, RF, XGBoost, and CNN). The study leverages 2023–2024 multi-sensor image time series for the Yichang sub-district of the Hetao Irrigation District (China), together with in situ topsoil moisture, meteorological records, a local cropping calendar, and district statistics for validation. Methodologically, EVI is preferred over NDVI to mitigate saturation under dense canopies; season-specific edge fitting stabilizes TVDI, while cross-validated regressors yield robust soil-moisture retrievals outside the growing period, with the CNN achieving the highest accuracy (test R2 ≈ 0.56–0.61), outperforming PLSR/RF/XGBoost by approximately 12–38%. The integrated mapping reveals complementary seasonal irrigation patterns: spring irrigates about 40–45% of farmland (e.g., 43.39% on 20 May 2024), summer peaks around 70% (e.g., 71.42% on 16 August 2024), and autumn stabilizes near 20–25% (e.g., 24.55% on 23 November 2024), with marked spatial contrasts between intensively irrigated southwest blocks and drier northeastern zones. We conclude that season-stratified edges and multi-source inversions together enable reproducible, year-round irrigation detection at field scale. These results provide operational evidence to refine irrigation scheduling and water allocation, and support drought-risk management and precision water governance in arid irrigation districts. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

26 pages, 5414 KB  
Article
Profile-Based Building Detection Using Convolutional Neural Network and High-Resolution Digital Surface Models
by Behaeen Farajelahi and Hossein Arefi
Remote Sens. 2025, 17(14), 2496; https://doi.org/10.3390/rs17142496 - 17 Jul 2025
Viewed by 1185
Abstract
This research presents a novel method for detecting building roof types using deep learning models based on height profiles from high-resolution digital surface models. While deep learning has proven effective in digit, handwritten, and time series classification, this study focuses on the emerging [...] Read more.
This research presents a novel method for detecting building roof types using deep learning models based on height profiles from high-resolution digital surface models. While deep learning has proven effective in digit, handwritten, and time series classification, this study focuses on the emerging and crucial area of height profile detection for building roof type classification. We propose an innovative approach to automatically generate, classify, and detect building roof types using height profiles derived from normalized digital surface models. We present three distinct methods to detect seven roof types from two height profiles of the building cross-section. The first two methods detect the building roof type from two-dimensional (2D) height profiles: two binary images and a two-band spectral image. The third method, vector-based, detects the building roof type from two one-dimensional (1D) height profiles represented as two 1D vectors. We trained various one- and two-dimensional convolutional neural networks on these 1D and 2D height profiles. The DenseNet201 network could directly detect the roof type of a building from two height profiles stored as a two-band spectral image with an average accuracy of 97%, even in the presence of consecutive chimneys, dormers, and noise. The strengths of this approach include the generation of a large, detailed, and storage-efficient labeled height profile dataset, the development of a robust classification method using both 1D and 2D height profiles, and an automated workflow that enhances building roof type detection. Full article
Show Figures

Figure 1

19 pages, 7851 KB  
Article
Ship Plate Detection Algorithm Based on Improved RT-DETR
by Lei Zhang and Liuyi Huang
J. Mar. Sci. Eng. 2025, 13(7), 1277; https://doi.org/10.3390/jmse13071277 - 30 Jun 2025
Cited by 1 | Viewed by 1227
Abstract
To address the challenges in ship plate detection under complex maritime scenarios—such as small target size, extreme aspect ratios, dense arrangements, and multi-angle rotations—this paper proposes a multi-module collaborative detection algorithm, RT-DETR-HPA, based on an enhanced RT-DETR framework. The proposed model integrates three [...] Read more.
To address the challenges in ship plate detection under complex maritime scenarios—such as small target size, extreme aspect ratios, dense arrangements, and multi-angle rotations—this paper proposes a multi-module collaborative detection algorithm, RT-DETR-HPA, based on an enhanced RT-DETR framework. The proposed model integrates three core components: an improved High-Frequency Enhanced Residual Block (HFERB) embedded in the backbone to strengthen multi-scale high-frequency feature fusion, with deformable convolution added to handle occlusion and deformation; a Pinwheel-shaped Convolution (PConv) module employing multi-directional convolution kernels to achieve rotation-adaptive local detail extraction and accurately capture plate edges and character features; and an Adaptive Sparse Self-Attention (ASSA) mechanism incorporated into the encoder to automatically focus on key regions while suppressing complex background interference, thereby enhancing feature discriminability. Comparative experiments conducted on a self-constructed dataset of 20,000 ship plate images show that, compared to the original RT-DETR, RT-DETR-HPA achieves a 3.36% improvement in mAP@50 (up to 97.12%), a 3.23% increase in recall (reaching 94.88%), and maintains real-time detection speed at 40.1 FPS. Compared with mainstream object detection models such as the YOLO series and Faster R-CNN, RT-DETR-HPA demonstrates significant advantages in high-precision localization, adaptability to complex scenarios, and real-time performance. It effectively reduces missed and false detections caused by low resolution, poor lighting, and dense occlusion, providing a robust and high-accuracy solution for intelligent ship supervision. Future work will focus on lightweight model design and dynamic resolution adaptation to enhance its applicability on mobile maritime surveillance platforms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 1771 KB  
Article
An Innovative Artificial Intelligence Classification Model for Non-Ischemic Cardiomyopathy Utilizing Cardiac Biomechanics Derived from Magnetic Resonance Imaging
by Liqiang Fu, Peifang Zhang, Liuquan Cheng, Peng Zhi, Jiayu Xu, Xiaolei Liu, Yang Zhang, Ziwen Xu and Kunlun He
Bioengineering 2025, 12(6), 670; https://doi.org/10.3390/bioengineering12060670 - 19 Jun 2025
Cited by 1 | Viewed by 1330
Abstract
Significant challenges persist in diagnosing non-ischemic cardiomyopathies (NICMs) owing to early morphological overlap and subtle functional changes. While cardiac magnetic resonance (CMR) offers gold-standard structural assessment, current morphology-based AI models frequently overlook key biomechanical dysfunctions like diastolic/systolic abnormalities. To address this, we propose [...] Read more.
Significant challenges persist in diagnosing non-ischemic cardiomyopathies (NICMs) owing to early morphological overlap and subtle functional changes. While cardiac magnetic resonance (CMR) offers gold-standard structural assessment, current morphology-based AI models frequently overlook key biomechanical dysfunctions like diastolic/systolic abnormalities. To address this, we propose a dual-path hybrid deep learning framework based on CNN-LSTM and MLP, integrating anatomical features from cine CMR with biomechanical markers derived from intraventricular pressure gradients (IVPGs), significantly enhancing NICM subtype classification by capturing subtle biomechanical dysfunctions overlooked by traditional morphological models. Our dual-path architecture combines a CNN-LSTM encoder for cine CMR analysis and an MLP encoder for IVPG time-series data, followed by feature fusion and dense classification layers. Trained on a multicenter dataset of 1196 patients and externally validated on 137 patients from a distinct institution, the model achieved a superior performance (internal AUC: 0.974; external AUC: 0.962), outperforming ResNet50, VGG16, and radiomics-based SVM. Ablation studies confirmed IVPGs’ significant contribution, while gradient saliency and gradient-weighted class activation mapping (Grad-CAM) visualizations proved the model pays attention to physiologically relevant cardiac regions and phases. The framework maintained robust generalizability across imaging protocols and institutions with minimal performance degradation. By synergizing biomechanical insights with deep learning, our approach offers an interpretable, data-efficient solution for early NICM detection and subtype differentiation, holding strong translational potential for clinical practice. Full article
(This article belongs to the Special Issue Bioengineering in a Generative AI World)
Show Figures

Figure 1

23 pages, 13542 KB  
Article
A Lightweight Neural Network for Denoising Wrapped-Phase Images Generated with Full-Field Optical Interferometry
by Muhammad Awais, Younggue Kim, Taeil Yoon, Wonshik Choi and Byeongha Lee
Appl. Sci. 2025, 15(10), 5514; https://doi.org/10.3390/app15105514 - 14 May 2025
Cited by 1 | Viewed by 1533
Abstract
Phase wrapping is a common phenomenon in optical full-field imaging or measurement systems. It arises from large phase retardations and results in wrapped-phase maps that contain essential information about surface roughness and topology. However, these maps are often degraded by noise, such as [...] Read more.
Phase wrapping is a common phenomenon in optical full-field imaging or measurement systems. It arises from large phase retardations and results in wrapped-phase maps that contain essential information about surface roughness and topology. However, these maps are often degraded by noise, such as speckle and Gaussian, which reduces the measurement accuracy and complicates phase reconstruction. Denoising such data is a fundamental problem in computer vision and plays a critical role in biomedical imaging modalities like Full-Field Optical Interferometry. In this paper, we propose WPD-Net (Wrapped-Phase Denoising Network), a lightweight deep learning-based neural network specifically designed to restore phase images corrupted by high noise levels. The network architecture integrates a shallow feature extraction module, a series of Residual Dense Attention Blocks (RDABs), and a dense feature fusion module. The RDABs incorporate attention mechanisms that help the network focus on critical features and suppress irrelevant noise, especially in high-frequency or complex regions. Additionally, WPD-Net employs a growth-rate-based feature expansion strategy to enhance multi-scale feature representation and improve phase continuity. We evaluate the model’s performance on both synthetic and experimentally acquired datasets and compare it with other state-of-the-art deep learning-based denoising methods. The results demonstrate that WPD-Net achieves superior noise suppression while preserving fine structural details even with mixed speckle and Gaussian noises. The proposed method is expected to enable fast image processing, allowing unwrapped biomedical images to be retrieved in real time. Full article
(This article belongs to the Special Issue Computer-Vision-Based Biomedical Image Processing)
Show Figures

Figure 1

24 pages, 5567 KB  
Article
Using Sentinel-1 Time Series Data for the Delineation of Management Zones
by Juliano de Paula Gonçalves, Francisco de Assis de Carvalho Pinto, Daniel Marçal de Queiroz and Domingos Sárvio Magalhães Valente
AgriEngineering 2025, 7(5), 150; https://doi.org/10.3390/agriengineering7050150 - 8 May 2025
Viewed by 1829
Abstract
The characterization of soil attribute variability often requires dense sampling grids, which can be economically unfeasible. A possible solution is to perform targeted sampling based on previously collected data. The objective of this research was to develop a method for mapping soil attributes [...] Read more.
The characterization of soil attribute variability often requires dense sampling grids, which can be economically unfeasible. A possible solution is to perform targeted sampling based on previously collected data. The objective of this research was to develop a method for mapping soil attributes based on Management Zones (MZs) delineated from Sentinel-1 radar data. Sentinel-1 images were used to create time profiles of six indices based on VV (vertical–vertical) and VH (vertical–horizontal) backscatter in two agricultural fields. MZs were delineated by analyzing indices and VV/VH backscatter bands individually through two approaches: (1) fuzzy k-means clustering directly applied to the indices’ time series and (2) dimensionality reduction using deep-learning autoencoders followed by fuzzy k-means clustering. The best combination of index and MZ delineation approaches was compared with four soil attribute mapping methods: conventional (single composite sample), high-density uniform grid (one sample per hectare), rectangular cells (one composite sample per cell of 5 to 10 hectares), and random cells (one composite sample per cell of varying sizes). Leave-one-out cross-validation evaluated the performance of each sampling method. Results showed that combining the VV/VH index and autoencoders for MZ delineation provided more accurate soil attribute estimates, outperforming the conventional, random cells, and often the rectangular cell method. In conclusion, the proposed methodology presents scalability potential, as it does not require prior calibration and was validated on soil types commonly found across Brazil’s agricultural regions, making it suitable for integration into digital platforms for broader application in precision agriculture. Full article
Show Figures

Figure 1

30 pages, 33973 KB  
Article
Research on Rapid and Accurate 3D Reconstruction Algorithms Based on Multi-View Images
by Lihong Yang, Hang Ge, Zhiqiang Yang, Jia He, Lei Gong, Wanjun Wang, Yao Li, Liguo Wang and Zhili Chen
Appl. Sci. 2025, 15(8), 4088; https://doi.org/10.3390/app15084088 - 8 Apr 2025
Viewed by 2439
Abstract
Three-dimensional reconstruction entails the development of mathematical models of three-dimensional objects that are suitable for computational representation and processing. This technique constructs realistic 3D models of images and has significant practical applications across various fields. This study proposes a rapid and precise multi-view [...] Read more.
Three-dimensional reconstruction entails the development of mathematical models of three-dimensional objects that are suitable for computational representation and processing. This technique constructs realistic 3D models of images and has significant practical applications across various fields. This study proposes a rapid and precise multi-view 3D reconstruction method to address the challenges of low reconstruction efficiency and inadequate, poor-quality point cloud generation in incremental structure-from-motion (SFM) algorithms in multi-view geometry. The methodology involves capturing a series of overlapping images of campus. We employed the Scale-invariant feature transform (SIFT) algorithm to extract feature points from each image, applied the KD-Tree algorithm for inter-image matching, and Enhanced autonomous threshold adjustment by utilizing the Random sample consensus (RANSAC) algorithm to eliminate mismatches, thereby enhancing feature matching accuracy and the number of matched point pairs. Additionally, we developed a feature-matching strategy based on similarity, which optimizes the pairwise matching process within the incremental structure from a motion algorithm. This approach decreased the number of matches and enhanced both algorithmic efficiency and model reconstruction accuracy. For dense reconstruction, we utilized the patch-based multi-view stereo (PMVS) algorithm, which is based on facets. The results indicate that our proposed method achieves a higher number of reconstructed feature points and significantly enhances algorithmic efficiency by approximately ten times compared to the original incremental reconstruction algorithm. Consequently, the generated point cloud data are more detailed, and the textures are clearer, demonstrating that our method is an effective solution for three-dimensional reconstruction. Full article
Show Figures

Figure 1

19 pages, 13012 KB  
Article
Neural Network-Based Temporal Ensembling of Water Depth Estimates Derived from SuperDove Images
by Milad Niroumand-Jadidi, Carl J. Legleiter and Francesca Bovolo
Remote Sens. 2025, 17(7), 1309; https://doi.org/10.3390/rs17071309 - 6 Apr 2025
Viewed by 1043
Abstract
CubeSats provide a wealth of high-frequency observations at a meter-scale spatial resolution. However, most current methods of inferring water depth from satellite data consider only a single image. This approach is sensitive to the radiometric quality of the data acquired at that particular [...] Read more.
CubeSats provide a wealth of high-frequency observations at a meter-scale spatial resolution. However, most current methods of inferring water depth from satellite data consider only a single image. This approach is sensitive to the radiometric quality of the data acquired at that particular instant in time, which could be degraded by various confounding factors, such as sun glint or atmospheric effects. Moreover, using single images in isolation fails to exploit recent improvements in the frequency of satellite image acquisition. This study aims to leverage the dense image time series from the SuperDove constellation via an ensembling framework that helps to improve empirical (regression-based) bathymetry retrieval. Unlike previous studies that only ensembled the original spectral data, we introduce a neural network-based method that instead ensembles the water depths derived from multi-temporal imagery, provided the data are acquired under steady flow conditions. We refer to this new approach as NN-depth ensembling. First, every image is treated individually to derive multitemporal depth estimates. Then, we use another NN regressor to ensemble the temporal water depths. This step serves to automatically weight the contribution of the bathymetric estimates from each time instance to the final bathymetry product. Unlike methods that ensemble spectral data, NN-depth ensembling mitigates against propagation of uncertainties in spectral data (e.g., noise due to sun glint) to the final bathymetric product. The proposed NN-depth ensembling is applied to temporal SuperDove imagery of reaches from the American, Potomac, and Colorado rivers with depths of up to 10 m and evaluated against in situ measurements. The proposed method provided more accurate and robust bathymetry retrieval than single-image analyses and other ensembling approaches. Full article
(This article belongs to the Special Issue Advances in Remote Sensing of the Inland and Coastal Water Zones II)
Show Figures

Graphical abstract

23 pages, 12422 KB  
Article
Mapping Coastal Marine Habitats Using UAV and Multispectral Satellite Imagery in the NEOM Region, Northern Red Sea
by Emma Sullivan, Nikolaos Papagiannopoulos, Daniel Clewley, Steve Groom, Dionysios E. Raitsos and Ibrahim Hoteit
Remote Sens. 2025, 17(3), 485; https://doi.org/10.3390/rs17030485 - 30 Jan 2025
Cited by 2 | Viewed by 4088
Abstract
Effective management to conserve marine environments requires up-to-date information on the location, distribution, and extent of major benthic habitats. Remote sensing is a key tool for such assessments, enabling consistent, repeated measurements over large areas. There is particular interest in using freely available [...] Read more.
Effective management to conserve marine environments requires up-to-date information on the location, distribution, and extent of major benthic habitats. Remote sensing is a key tool for such assessments, enabling consistent, repeated measurements over large areas. There is particular interest in using freely available satellite images such as from the Copernicus Sentinel-2 series for accessible repeat assessments. In this study, an area of 438 km2 of the northern Red Sea coastline, adjacent to the NEOM development was mapped using Sentinel-2 imagery. A hierarchical Random Forest classification method was used, where the initial level classified pixels into a geomorphological class, followed by a second level of benthic cover classification. Uncrewed Aerial Vehicle (UAV) surveys were carried out in 12 locations in the NEOM area to collect field data on benthic cover for training and validation. The overall accuracy of the geomorphic and benthic classifications was 84.15% and 72.97%, respectively. Approximately 12% (26.26 km2) of the shallow Red Sea study area was classified as coral or dense algae and 16% (36.12 km2) was classified as rubble. These reef environments offer crucial ecosystem services and are believed to be internationally important as a global warming refugium. Seagrass meadows, covering an estimated 29.17 km2 of the study area, play a regionally significant role in carbon sequestration and are estimated to store 200 tonnes of carbon annually, emphasising the importance of their conservation for meeting the environmental goals of the NEOM megaproject. This is the first map of this region generated using Sentinel-2 data and demonstrates the feasibility of using an open source and reproducible methodology for monitoring coastal habitats in the region. The use of training data derived from UAV imagery provides a low-cost and time-efficient alternative to traditional methods of boat or snorkel surveys for covering large areas in remote sites. Full article
(This article belongs to the Topic Conservation and Management of Marine Ecosystems)
Show Figures

Figure 1

17 pages, 12379 KB  
Article
Artificial-Intelligence-Based Classification to Unveil Geodynamic Processes in the Eastern Alps
by Christian Bignami, Alessandro Pignatelli, Giulia Romoli and Carlo Doglioni
Remote Sens. 2024, 16(23), 4364; https://doi.org/10.3390/rs16234364 - 22 Nov 2024
Viewed by 1357
Abstract
InSAR has emerged as a leading technique for studying and monitoring ground movements over large areas and across various geodynamic environments. Recent advancements in SAR sensor technology have enabled the acquisition of dense spatial datasets, providing substantial information at regional and national scales. [...] Read more.
InSAR has emerged as a leading technique for studying and monitoring ground movements over large areas and across various geodynamic environments. Recent advancements in SAR sensor technology have enabled the acquisition of dense spatial datasets, providing substantial information at regional and national scales. Despite these improvements, classifying and interpreting such vast datasets remains a significant challenge. InSAR analysts and geologists frequently have to manually analyze the time series from Persistent Scatterer Interferometry (PSI) to model the complexity of geological and tectonic phenomena. This process is time-consuming and impractical for large-scale monitoring. Utilizing Artificial Intelligence (AI) to classify and detect deformation processes presents a promising solution. In this study, vertical ground deformation time series from northeastern Italy were obtained from the European Ground Motion Service and classified by experts into different deformation categories. Convolutional and pre-trained neural networks were then trained and tested using both numerical time-series data and trend images. The application of the best performing trained network to test data showed an accuracy of 83%. Such a result demonstrates that neural networks can successfully identify areas experiencing distinct geodynamic processes, emphasizing the potential of AI to improve PSI data interpretation. Full article
(This article belongs to the Special Issue Signal Processing and Machine Learning for Space Geodesy Applications)
Show Figures

Figure 1

Back to TopTop