Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (321)

Search Parameters:
Keywords = denied environment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 1464 KB  
Review
Enabling Cooperative Autonomy in UUV Clusters: A Survey of Robust State Estimation and Information Fusion Techniques
by Shuyue Li, Miguel López-Benítez, Eng Gee Lim, Fei Ma, Mengze Cao, Limin Yu and Xiaohui Qin
Drones 2025, 9(11), 752; https://doi.org/10.3390/drones9110752 - 30 Oct 2025
Viewed by 269
Abstract
Cooperative navigation is a fundamental enabling technology for unlocking the full potential of Unmanned Underwater Vehicle (UUV) clusters in GNSS-denied environments. However, the severe constraints of the underwater acoustic channel, such as high latency, low bandwidth, and non-Gaussian noise, pose significant challenges to [...] Read more.
Cooperative navigation is a fundamental enabling technology for unlocking the full potential of Unmanned Underwater Vehicle (UUV) clusters in GNSS-denied environments. However, the severe constraints of the underwater acoustic channel, such as high latency, low bandwidth, and non-Gaussian noise, pose significant challenges to designing robust and efficient state estimation and information fusion algorithms. While numerous surveys have cataloged the available techniques, they have remained largely descriptive, lacking a rigorous, quantitative comparison of their performance trade-offs under realistic conditions. This paper provides a comprehensive and critical review that moves beyond qualitative descriptions to establish a novel quantitative comparison framework. Through a standardized benchmark scenario, we provide the first data-driven, comparative analysis of key frontier algorithms—from recursive filters like the Maximum Correntropy Kalman Filter (MCC-KF) to batch optimization methods like Factor Graph Optimization (FGO)—evaluating them across critical metrics including accuracy, computational complexity, communication load, and robustness. Our results empirically reveal the fundamental performance gaps and trade-offs, offering actionable insights for system design. Furthermore, this paper provides in-depth technical analyses of advanced topics, including distributed fusion architectures, intelligent strategies like Deep Reinforcement Learning (DRL), and the unique challenges of navigating in extreme environments such as the polar regions. Finally, leveraging the insights derived from our quantitative analysis, we propose a structured, data-driven research roadmap to systematically guide future investigations in this critical domain. Full article
(This article belongs to the Section Unmanned Surface and Underwater Drones)
Show Figures

Figure 1

14 pages, 10155 KB  
Article
Real-Time Vehicle Sticker Recognition for Smart Gate Control with YOLOv8 and Raspberry Pi 4
by Serosh Karim Noon, Ali Hassan Noor, Abdul Mannan, Miqdam Arshad, Turab Haider and Muhammad Abdullah
Automation 2025, 6(4), 63; https://doi.org/10.3390/automation6040063 - 29 Oct 2025
Viewed by 227
Abstract
In today’s fast-paced world, secure and efficient access control is crucial for places like schools, gated communities, and corporate campuses. The system must overcome the issues of manual checking and record maintenance of traditional methods like RFID cards or license plate recognition. Our [...] Read more.
In today’s fast-paced world, secure and efficient access control is crucial for places like schools, gated communities, and corporate campuses. The system must overcome the issues of manual checking and record maintenance of traditional methods like RFID cards or license plate recognition. Our work introduces a budget-friendly, automated solution. A prototype was developed for a vehicle sticker recognition system to control and monitor gate access at NFC IET University as a case study. The automated system design will replace manual checking by detecting the car stickers issued to each vehicle by the university administration. An optimized lightweight YOLOv8 model is trained to identify three categories: IET stickers (authorized for access), non-IET stickers (unauthorized), and no sticker (denied access). A webcam connected to the Raspberry Pi 4 scans approaching vehicles. Authorized vehicles are allowed when the relevant class is detected, which signals a servo motor to open the gate. Otherwise, access to the gate is denied, and infrared (IR) sensors close the gates. A second set of IR sensors and a servo motor was also added to manage the exit side, preventing unauthorized tailgating. The system’s modular design makes it adaptable for different environments, and its use of affordable hardware and open-source tools keeps costs low, which is ideal for smaller institutions or communities. The prototype model is tested and trained on self-collected datasets comprising 506 images. Full article
(This article belongs to the Section Robotics and Autonomous Systems)
Show Figures

Figure 1

27 pages, 7961 KB  
Review
Marine-Inspired Multimodal Sensor Fusion and Neuromorphic Processing for Autonomous Navigation in Unstructured Subaquatic Environments
by Chandan Sheikder, Weimin Zhang, Xiaopeng Chen, Fangxing Li, Yichang Liu, Zhengqing Zuo, Xiaohai He and Xinyan Tan
Sensors 2025, 25(21), 6627; https://doi.org/10.3390/s25216627 - 28 Oct 2025
Viewed by 965
Abstract
Autonomous navigation in GPS-denied, unstructured environments such as murky waters or complex seabeds remains a formidable challenge for robotic systems, primarily due to sensory degradation and the computational inefficiency of conventional algorithms. Drawing inspiration from the robust navigation strategies of marine species such [...] Read more.
Autonomous navigation in GPS-denied, unstructured environments such as murky waters or complex seabeds remains a formidable challenge for robotic systems, primarily due to sensory degradation and the computational inefficiency of conventional algorithms. Drawing inspiration from the robust navigation strategies of marine species such as the sea turtle’s quantum-assisted magnetoreception, the octopus’s tactile-chemotactic integration, and the jellyfish’s energy-efficient flow sensing this study introduces a novel neuromorphic framework for resilient robotic navigation, fundamentally based on the co-design of marine-inspired sensors and event-based neuromorphic processors. Current systems lack the dynamic, context-aware multisensory fusion observed in these animals, leading to heightened susceptibility to sensor failures and environmental perturbations, as well as high power consumption. This work directly bridges this gap. Our primary contribution is a hybrid sensor fusion model that co-designs advanced sensing replicating the distributed neural processing of cephalopods and the quantum coherence mechanisms of migratory marine fauna with a neuromorphic processing backbone. Enabling real-time, energy-efficient path integration and cognitive mapping without reliance on traditional methods. This proposed framework has the potential to significantly enhance navigational robustness by overcoming the limitations of state-of-the-art solutions. The findings suggest the potential of marine bio-inspired design for advancing autonomous systems in critical applications such as deep-sea exploration, environmental monitoring, and underwater infrastructure inspection. Full article
Show Figures

Figure 1

20 pages, 322 KB  
Article
Water, Noise, and Energy: The Story of Irish Hydropower in Three Plays
by Katherine M. Huber
Humanities 2025, 14(11), 214; https://doi.org/10.3390/h14110214 - 28 Oct 2025
Viewed by 121
Abstract
Hydroelectric power projects were an integral part of twentieth-century postcolonial modernisation in Ireland. In 1925, the Cumann na nGaedheal government began the Shannon Scheme, which created the then-largest dam in Europe at Ardnacrusha. Hydroelectric power stations have since emerged across Ireland, from Poulaphouca [...] Read more.
Hydroelectric power projects were an integral part of twentieth-century postcolonial modernisation in Ireland. In 1925, the Cumann na nGaedheal government began the Shannon Scheme, which created the then-largest dam in Europe at Ardnacrusha. Hydroelectric power stations have since emerged across Ireland, from Poulaphouca and Ballyshannon to Inniscarra and Carrigadrohid. Despite the importance of hydropower in shaping Irish environments, ecocritical scholars like Matthew Henry and Sharae Deckard have shown that depictions of hydropower are generally understudied in the environmental and energy humanities and in Irish studies. This article traces twentieth-century hydroelectric power projects in Ireland through three plays: Denis Johnston’s The Moon in the Yellow River (1931), Frank Harvey’s Farewell to Every White Cascade (1958), and Conor McPherson’s The Weir (1997). Depictions of hydropower in these stage and radio dramas reveal an ongoing cultural awareness of one of modernity’s more insidious pollutants, namely, noise pollution. Exploring sound elements in representations of hydropower across diverse media and genres requires grappling with the legacy of colonialism on material environments in technocratic solutions to postcolonial national development and to planetary crises like climate change. Using postcolonial ecocritical and ecomedia studies lenses, this article analyses aural environments in Johnston, Harvey, and McPherson’s plays to elucidate intersections of medium, energy extraction, and hydropower that continue to resonate across Ireland. Besides providing historical insight into changing relationships with material environments, these plays also expose environmental and multispecies injustices caused by energy extraction projects on Ireland’s rivers. The aural environments in these plays also raise questions about what kind of modernisation and infrastructure projects would support multispecies modernities for more just and decolonial futures. Ultimately, this article demonstrates how these twentieth-century literary representations of hydroelectric energy extraction imagine alternative possibilities to anthropocentric modernisation through attending to multisensory and multispecies attachments to place. Full article
(This article belongs to the Special Issue Modernist Ecologies in Irish Literature)
42 pages, 104137 KB  
Article
A Hierarchical Absolute Visual Localization System for Low-Altitude Drones in GNSS-Denied Environments
by Qing Zhou, Haochen Tang, Zhaoxiang Zhang, Yuelei Xu, Feng Xiao and Yulong Jia
Remote Sens. 2025, 17(20), 3470; https://doi.org/10.3390/rs17203470 - 17 Oct 2025
Viewed by 818
Abstract
Current drone navigation systems primarily rely on Global Navigation Satellite Systems (GNSSs), but their signals are susceptible to interference, spoofing, or suppression in complex environments, leading to degraded positioning performance or even failure. To enhance the positioning accuracy and robustness of low-altitude drones [...] Read more.
Current drone navigation systems primarily rely on Global Navigation Satellite Systems (GNSSs), but their signals are susceptible to interference, spoofing, or suppression in complex environments, leading to degraded positioning performance or even failure. To enhance the positioning accuracy and robustness of low-altitude drones in satellite-denied environments, this paper investigates an absolute visual localization solution. This method achieves precise localization by matching real-time images with reference images that have absolute position information. To address the issue of insufficient feature generalization capability due to the complex and variable nature of ground scenes, a visual-based image retrieval algorithm is proposed, which utilizes a fusion of shallow spatial features and deep semantic features, combined with generalized average pooling to enhance feature representation capabilities. To tackle the registration errors caused by differences in perspective and scale between images, an image registration algorithm based on cyclic consistency matching is designed, incorporating a reprojection error loss function, a multi-scale feature fusion mechanism, and a structural reparameterization strategy to improve matching accuracy and inference efficiency. Based on the above methods, a hierarchical absolute visual localization system is constructed, achieving coarse localization through image retrieval and fine localization through image registration, while also integrating IMU prior correction and a sliding window update strategy to mitigate the effects of scale and rotation differences. The system is implemented on the ROS platform and experimentally validated in a real-world environment. The results show that the localization success rates for the h, s, v, and w trajectories are 95.02%, 64.50%, 64.84%, and 91.09%, respectively. Compared to similar algorithms, it demonstrates higher accuracy and better adaptability to complex scenarios. These results indicate that the proposed technology can achieve high-precision and robust absolute visual localization without the need for initial conditions, highlighting its potential for application in GNSS-denied environments. Full article
Show Figures

Graphical abstract

23 pages, 11567 KB  
Article
Georeferenced UAV Localization in Mountainous Terrain Under GNSS-Denied Conditions
by Inseop Lee, Chang-Ky Sung, Hyungsub Lee, Seongho Nam, Juhyun Oh, Keunuk Lee and Chansik Park
Drones 2025, 9(10), 709; https://doi.org/10.3390/drones9100709 - 14 Oct 2025
Viewed by 621
Abstract
In Global Navigation Satellite System (GNSS)-denied environments, unmanned aerial vehicles (UAVs) relying on Vision-Based Navigation (VBN) in high-altitude, mountainous terrain face severe challenges due to geometric distortions in aerial imagery. This paper proposes a georeferenced localization framework that integrates orthorectified aerial imagery with [...] Read more.
In Global Navigation Satellite System (GNSS)-denied environments, unmanned aerial vehicles (UAVs) relying on Vision-Based Navigation (VBN) in high-altitude, mountainous terrain face severe challenges due to geometric distortions in aerial imagery. This paper proposes a georeferenced localization framework that integrates orthorectified aerial imagery with Scene Matching (SM) to achieve robust positioning. The method employs a camera projection model combined with Digital Elevation Model (DEM) to orthorectify UAV images, thereby mitigating distortions from central projection and terrain relief. Pre-processing steps enhance consistency with reference orthophoto maps, after which template matching is performed using normalized cross-correlation (NCC). Sensor fusion is achieved through extended Kalman filters (EKFs) incorporating Inertial Navigation System (INS), GNSS (when available), barometric altimeter, and SM outputs. The framework was validated through flight tests with an aircraft over 45 km trajectories at altitudes of 2.5 km and 3.5 km in mountainous terrain. The results demonstrate that orthorectification improves image similarity and significantly reduces localization error, yielding lower 2D RMSE compared to conventional rectification. The proposed approach enhances VBN by mitigating terrain-induced distortions, providing a practical solution for UAV localization in GNSS-denied scenarios. Full article
(This article belongs to the Special Issue Autonomous Drone Navigation in GPS-Denied Environments)
Show Figures

Figure 1

21 pages, 8957 KB  
Article
Autonomous Navigation of Unmanned Ground Vehicles Based on Micro-Shell Resonator Gyroscope Rotary INS Aided by LDV
by Hangbin Cao, Yuxuan Wu, Longkang Chang, Yunlong Kong, Hongfu Sun, Wenqi Wu, Jiangkun Sun, Yongmeng Zhang, Xiang Xi and Tongqiao Miao
Drones 2025, 9(10), 706; https://doi.org/10.3390/drones9100706 - 13 Oct 2025
Viewed by 320
Abstract
Micro-Shell Resonator Gyroscopes have obvious SWaP (Size, Weight and Power) advantages and applicable accuracy for the autonomous navigation of Unmanned Ground Vehicles (UGVs), especially under GNSS-denied environments. When the Micro-Shell Resonator Gyroscope Rotary Inertial Navigation System (MSRG–RINS) operates in the whole-angle mode, its [...] Read more.
Micro-Shell Resonator Gyroscopes have obvious SWaP (Size, Weight and Power) advantages and applicable accuracy for the autonomous navigation of Unmanned Ground Vehicles (UGVs), especially under GNSS-denied environments. When the Micro-Shell Resonator Gyroscope Rotary Inertial Navigation System (MSRG–RINS) operates in the whole-angle mode, its bias varies as an even-harmonic function of the pattern angle, which leads to difficulty in estimating and compensating the bias based on the MSRG in the process of attitude measurement. In this paper, an attitude measurement method based on virtual rotation self-calibration and rotary modulation is proposed for the MSRG–RINS to address this problem. The method utilizes the characteristics of the two operating modes of the MSRG, the force-rebalanced mode and whole-angle mode, to perform virtual rotation self-calibration, thereby eliminating the characteristic bias of the MSRG. In addition, the reciprocating rotary modulation method is used to suppress the residual bias of the MSRG. Furthermore, the magnetometer-aided initial alignment of the MSRG–RINS is carried out and the state-transformation extended Kalman filter is adopted to solve the large misalignment-angle problem under magnetometer assistance so as to enhance the rapidity and accuracy of initial attitude acquisition. Results from real-world experiments substantiated that the proposed method can effectively suppress the influence of MSRG’s bias on attitude measurement, thereby achieving high-precision autonomous navigation in GNSS-denied environments. In the 1 h, 3.7 km, long-range in-vehicle autonomous navigation experiments, the MSRG–RINS, integrated with a Laser Doppler Velocimetry (LDV), attained a heading accuracy of 0.35° (RMS), a horizontal positioning error of 4.9 m (RMS), and a distance-traveled accuracy of 0.24% D. Full article
Show Figures

Figure 1

14 pages, 789 KB  
Systematic Review
Contraceptive Barriers and Psychological Well-Being After Repeat Induced Abortion: A Systematic Review
by Bogdan Dumitriu, Alina Dumitriu, Flavius George Socol, Ioana Denisa Socol and Adrian Gluhovschi
Behav. Sci. 2025, 15(10), 1363; https://doi.org/10.3390/bs15101363 - 6 Oct 2025
Viewed by 727
Abstract
Background: Repeat induced abortion (defined as ≥two lifetime procedures) is becoming more common worldwide, yet its independent influence on women’s psychological health remains contested, particularly in settings where access to modern contraception is restricted. Objectives: This review sought to quantify the burden of [...] Read more.
Background: Repeat induced abortion (defined as ≥two lifetime procedures) is becoming more common worldwide, yet its independent influence on women’s psychological health remains contested, particularly in settings where access to modern contraception is restricted. Objectives: This review sought to quantify the burden of depression, anxiety, stress, and generic quality of life (QoL) among women with repeat abortions and to determine how barriers to contraceptive access alter those outcomes. Methods: Following the preregistered PRISMA-2020 protocol, PubMed, Embase and Scopus were searched from inception to 31 June 2025. Results: Eight eligible studies comprising approximately 262,000 participants (individual sample sizes up to 79,609) revealed wide variation in psychological morbidity. Prevalence of clinically significant symptoms ranged from 5.5% to 24.8% for depression, 8.3% to 31.2% for anxiety, and 18.8% to 27% for perceived stress; frequent mental distress affected 12.3% of women in neutral policy environments but rose to 21.9% under highly restrictive abortion legislation. Having three or more abortions, compared with none or one, increased the odds of depressive symptoms by roughly one-third (pooled OR ≈ 1.37, 95% CI 1.13–1.67). Contextual factors exerted comparable or stronger effects: abortions sought for socioeconomic reasons elevated depression odds by 34%, unwanted disclosure of the abortion episode increased depressive scores by 0.62 standard deviations, and low partner support raised them by 0.67 SD. At the structural level, every standard deviation improvement in a state’s reproductive rights index reduced frequent mental distress odds by 5%, whereas enactment of a near-total legal ban produced an absolute increase of 6.8 percentage points. QoL outcomes were less frequently reported; where measured, denied or heavily delayed abortions were associated with a 0.41-unit decrement on a seven-point life satisfaction scale. Conclusions: Psychological morbidity after abortion clusters where legal hostility, financial hardship, or interpersonal coercion constrain contraceptive autonomy while, in comparison, the mere number of procedures is a weaker predictor. Interventions that integrate stigma-free mental health support with confidential, affordable, and rights-based contraception are essential to protect well-being in women who experience repeat abortions. Full article
Show Figures

Figure 1

18 pages, 5036 KB  
Article
Angles-Only Navigation via Optical Satellite Measurement with Prior Altitude Constrained
by Dongkai Dai, Yuanman Ni, Ying Yu, Jiaxuan Li and Shiqiao Qin
Sensors 2025, 25(19), 6149; https://doi.org/10.3390/s25196149 - 4 Oct 2025
Viewed by 414
Abstract
This paper presents an angles-only navigation (AON) method utilizing optical observations of a single satellite with known ephemeris and prior altitude constraints given by an altimeter or known topography, which can enable near-ground platforms to achieve autonomous navigation in GNSS-denied environments. By leveraging [...] Read more.
This paper presents an angles-only navigation (AON) method utilizing optical observations of a single satellite with known ephemeris and prior altitude constraints given by an altimeter or known topography, which can enable near-ground platforms to achieve autonomous navigation in GNSS-denied environments. By leveraging a star tracker to measure the line-of-sight (LOS) direction of a satellite against a star background, the observer’s location is resolved via triangulation under geometric constraints. Theoretical error models are derived to analyze the influence of satellite position errors, LOS direction errors, and altitude uncertainties on geolocation accuracy. Numerical simulations validate the error propagation mechanisms, demonstrating that geolocation error is primarily determined by the perpendicular projection of orbital error relative to the LOS, increases linearly with LOS distance, and is sensitive to altitude errors at low elevation angles. Ground-based experiments conducted using Globalstar satellites achieve geolocation accuracy within 250 m (RMS), consistent with theoretical predictions. The proposed method offers a practical, low-cost solution for high-precision passive navigation in maritime and terrestrial applications. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

20 pages, 7351 KB  
Article
A Sketch-Based Cross-Modal Retrieval Model for Building Localization Without Satellite Signals
by Haihua Du, Jiawei Fan, Yitao Huang, Longyang Lin and Jiuchao Qian
Electronics 2025, 14(19), 3936; https://doi.org/10.3390/electronics14193936 - 4 Oct 2025
Viewed by 500
Abstract
In existing non-satellite navigation systems, visual localization is widely adopted for its high precision. However, in scenarios with highly similar building structures, traditional visual localization methods that rely on direct coordinate prediction often suffer from decreased accuracy or even failure. Moreover, as scene [...] Read more.
In existing non-satellite navigation systems, visual localization is widely adopted for its high precision. However, in scenarios with highly similar building structures, traditional visual localization methods that rely on direct coordinate prediction often suffer from decreased accuracy or even failure. Moreover, as scene complexity increases, their robustness tends to decline. To address these challenges, this paper proposes a Sketch Line Information Consistency Generation (SLIC) model for indirect building localization. Instead of regressing geographic coordinates, the model retrieves candidate building images that correspond to hand-drawn sketches, and these retrieved results serve as proxies for localization in satellite-denied environments. Within the model, the Line-Attention Block and Relation Block are designed to extract fine-grained line features and structural correlations, thereby improving retrieval accuracy. Experiments on multiple architectural datasets demonstrate that the proposed approach achieves high precision and robustness, with mAP@2 values ranging from 0.87 to 1.00, providing a practical alternative to conventional coordinate-based localization methods. Full article
(This article belongs to the Special Issue Recent Advances in Autonomous Localization and Navigation System)
Show Figures

Figure 1

28 pages, 32815 KB  
Article
LiteSAM: Lightweight and Robust Feature Matching for Satellite and Aerial Imagery
by Boya Wang, Shuo Wang, Yibin Han, Linfeng Xu and Dong Ye
Remote Sens. 2025, 17(19), 3349; https://doi.org/10.3390/rs17193349 - 1 Oct 2025
Viewed by 453
Abstract
We present a (Light)weight (S)atellite–(A)erial feature (M)atching framework (LiteSAM) for robust UAV absolute visual localization (AVL) in GPS-denied environments. Existing satellite–aerial matching methods struggle with large appearance variations, texture-scarce regions, and limited efficiency for real-time UAV [...] Read more.
We present a (Light)weight (S)atellite–(A)erial feature (M)atching framework (LiteSAM) for robust UAV absolute visual localization (AVL) in GPS-denied environments. Existing satellite–aerial matching methods struggle with large appearance variations, texture-scarce regions, and limited efficiency for real-time UAV applications. LiteSAM integrates three key components to address these issues. First, efficient multi-scale feature extraction optimizes representation, reducing inference latency for edge devices. Second, a Token Aggregation–Interaction Transformer (TAIFormer) with a convolutional token mixer (CTM) models inter- and intra-image correlations, enabling robust global–local feature fusion. Third, a MinGRU-based dynamic subpixel refinement module adaptively learns spatial offsets, enhancing subpixel-level matching accuracy and cross-scenario generalization. The experiments show that LiteSAM achieves competitive performance across multiple datasets. On UAV-VisLoc, LiteSAM attains an RMSE@30 of 17.86 m, outperforming state-of-the-art semi-dense methods such as EfficientLoFTR. Its optimized variant, LiteSAM (opt., without dual softmax), delivers inference times of 61.98 ms on standard GPUs and 497.49 ms on NVIDIA Jetson AGX Orin, which are 22.9% and 19.8% faster than EfficientLoFTR (opt.), respectively. With 6.31M parameters, which is 2.4× fewer than EfficientLoFTR’s 15.05M, LiteSAM proves to be suitable for edge deployment. Extensive evaluations on natural image matching and downstream vision tasks confirm its superior accuracy and efficiency for general feature matching. Full article
Show Figures

Figure 1

22 pages, 17573 KB  
Article
Robust UAV Path Planning Using RSS in GPS-Denied and Dense Environments Based on Deep Reinforcement Learning
by Kyounghun Kim, Joonho Seon, Jinwook Kim, Jeongho Kim, Youngghyu Sun, Seongwoo Lee, Soohyun Kim, Byungsun Hwang, Mingyu Lee and Jinyoung Kim
Electronics 2025, 14(19), 3844; https://doi.org/10.3390/electronics14193844 - 28 Sep 2025
Viewed by 527
Abstract
A wide range of research has been conducted on path planning and collision avoidance to enhance the operational efficiency of unmanned aerial vehicles (UAVs). The existing works have mainly assumed an environment with static obstacles and global positioning system (GPS) signals. However, practical [...] Read more.
A wide range of research has been conducted on path planning and collision avoidance to enhance the operational efficiency of unmanned aerial vehicles (UAVs). The existing works have mainly assumed an environment with static obstacles and global positioning system (GPS) signals. However, practical environments have often been involved with dynamic obstacles, dense areas with numerous obstacles in confined spaces, and blocked GPS signals. In order to consider these issues for practical implementation, a deep reinforcement learning (DRL)-based method is proposed for path planning and collision avoidance in GPS-denied and dense environments. In the proposed method, robust path planning and collision avoidance can be conducted by using the received signal strength (RSS) value with the extended Kalman filter (EKF). Additionally, the attitude of the UAV is adopted as part of the action space to enable the generation of smooth trajectories. Performance was evaluated under single- and multi-target scenarios with numerous dynamic obstacles. Simulation results demonstrated that the proposed method can generate smoother trajectories and shorter path lengths while consistently maintaining a lower collision rate compared to conventional methods. Full article
Show Figures

Figure 1

16 pages, 290 KB  
Article
Antibiotic Use in Pediatrics: Perceptions and Practices of Romanian Physicians
by Alin Iuhas, Radu Galiș, Marius Rus, Codruța Diana Petcheși, Andreea Balmoș, Cristian Marinău, Larisa Niulaș, Zsolt Futaki, Dorina Matioc and Cristian Sava
Antibiotics 2025, 14(10), 976; https://doi.org/10.3390/antibiotics14100976 - 27 Sep 2025
Viewed by 472
Abstract
Background/Objectives: The global threat of antimicrobial resistance is a significant public health challenge, leading to prolonged hospitalizations, increased costs, and elevated mortality. Romania faces one of Europe’s highest burdens of antimicrobial consumption and resistance. This study aimed to investigate the factors that [...] Read more.
Background/Objectives: The global threat of antimicrobial resistance is a significant public health challenge, leading to prolonged hospitalizations, increased costs, and elevated mortality. Romania faces one of Europe’s highest burdens of antimicrobial consumption and resistance. This study aimed to investigate the factors that influence antibiotic prescribing practices among physicians in pediatric care in Romania. Method: This quantitative, cross-sectional study collected data using a self-administered, structured questionnaire from 154 healthcare professionals (family physicians, pediatricians, and other specialists) providing pediatric care in Romania. Participants were recruited via non-probability convenience sampling. The 29-question survey gathered demographic data and explored perceptions and practices regarding antibiotic therapy in children using a 5-point Likert scale. Results: The majority of participants were family physicians (64.94%) with over 15 years of experience (53.90%), primarily practicing in urban settings (61.69%). Only 21.43% had attended an antibiotic stewardship course in the last three years. Physicians generally base their prescribing on clinical symptoms. While physicians strongly agreed they follow guidelines, personal experience also held significant weight. High parental demand for antibiotics was perceived, but physicians largely denied ceding to parental tone or insistence without a medical indication. A strong consensus existed on antibiotic overuse in Romanian children, and a high interest in continuous education on rational antibiotic use was noted. Pediatricians showed significantly higher guideline adherence and diagnostic test use than family physicians. Rural physicians reported lower guideline adherence and less frequent diagnostic testing. Stewardship course participation and access to rapid diagnostic tests were associated with more evidence-based practices. Conclusions: Romanian physicians exhibit a nuanced approach to antibiotic prescribing, balancing guidelines with personal experience and facing significant perceived parental pressure. Professional profile (specialty, experience, practice environment) and access to diagnostic resources significantly influence prescribing decisions. Full article
24 pages, 3514 KB  
Article
Research on LiDAR-Assisted Optimization Algorithm for Terrain-Aided Navigation of eVTOL
by Guangming Zhang, Jing Zhou, Zhonghang Duan and Weiwei Zhao
Sensors 2025, 25(18), 5672; https://doi.org/10.3390/s25185672 - 11 Sep 2025
Viewed by 484
Abstract
To address the high-precision navigation requirements of urban low-altitude electric vertical take-off and landing (eVTOL) aircraft in environments where global navigation satellite systems (GNSSs) are denied and under complex urban terrain conditions, a terrain-matching optimization algorithm based on light detection and ranging (LiDAR) [...] Read more.
To address the high-precision navigation requirements of urban low-altitude electric vertical take-off and landing (eVTOL) aircraft in environments where global navigation satellite systems (GNSSs) are denied and under complex urban terrain conditions, a terrain-matching optimization algorithm based on light detection and ranging (LiDAR) is proposed. Given the issues of GNSS signal susceptibility to occlusion and interference in urban low-altitude environments, as well as the error accumulation in inertial navigation systems (INSs), this algorithm leverages LiDAR point cloud data to assist in constructing a digital elevation model (DEM). A terrain-matching optimization algorithm is then designed, incorporating enhanced feature description for key regions and an adaptive random sample consensus (RANSAC)-based misalignment detection mechanism. This approach enables efficient and robust terrain feature matching and dynamic correction of INS positioning errors. The simulation results demonstrate that the proposed algorithm achieves a positioning accuracy better than 2 m in complex scenarios such as typical urban canyons, representing a significant improvement of 25.0% and 31.4% compared to the traditional SIFT-RANSAC and SURF-RANSAC methods, respectively. It also elevates the feature matching accuracy rate to 90.4%; meanwhile, at a 95% confidence level, the proposed method significantly increases the localization success rate to 96.8%, substantially enhancing the navigation and localization accuracy and robustness of eVTOLs in complex low-altitude environments. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

24 pages, 23437 KB  
Article
Fusing Direct and Indirect Visual Odometry for SLAM: An ICM-Based Framework
by Jeremias Gaia, Javier Gimenez, Eugenio Orosco, Francisco Rossomando, Carlos Soria and Fernando Ulloa-Vásquez
World Electr. Veh. J. 2025, 16(9), 510; https://doi.org/10.3390/wevj16090510 - 10 Sep 2025
Viewed by 573
Abstract
The loss of localization in robots navigating GNSS-denied environments poses a critical challenge that can compromise mission success and safe operation. This article presents a method that fuses visual odometry outputs from both direct and feature-based (indirect) methods using Iterated Conditional Modes (ICMs), [...] Read more.
The loss of localization in robots navigating GNSS-denied environments poses a critical challenge that can compromise mission success and safe operation. This article presents a method that fuses visual odometry outputs from both direct and feature-based (indirect) methods using Iterated Conditional Modes (ICMs), an efficient iterative optimization algorithm that maximizes the posterior probability in Markov random fields, combined with uncertainty-aware gain adjustment to perform pose estimation and mapping. The proposed method enhances the performance of visual localization and mapping algorithms in low-texture or visually degraded scenarios. The method was validated using the TUM RGB-D benchmark dataset and through real-world tests in both indoor and outdoor environments. Outdoor experiments were conducted on an electric vehicle, where the method maintained stable tracking. These initial results suggest that the technique could be transferable to electric vehicle platforms and applicable in a variety of real-world conditions. Full article
Show Figures

Figure 1

Back to TopTop