Angles-Only Navigation via Optical Satellite Measurement with Prior Altitude Constrained
Abstract
1. Introduction
2. Methodology
2.1. Angles-Only Navigation Based on Optical Observation of the Satellite
2.2. Simplified Angles-Only Navigation with Prior Altitude Constraint
3. Positioning Error Theory of the AON Method
3.1. Satellite Ephemerides Error
3.2. Satellite LOS Direction Error
3.3. The Error of Geocentric Radius of the Observer
4. Numerical Simulation and Error Analysis
4.1. Geolocation Error Induced by Satellite Position Error
4.2. Positioning Error Induced by LOS Error
4.3. Positioning Error Induced by Altitude Error of Observer
5. Experimental Results and Discussion
5.1. Experimental Setup
5.2. Experimental Result
5.3. Positioning Error Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Allen, J.A. Basic principles of celestial navigation. Am. J. Phys. 2004, 72, 1418–1424. [Google Scholar] [CrossRef]
- Pappalardi, F.; Dunham, S.J.; LeBlang, M.E.; Jones, T.E.; Bangert, J.; Kaplan, G. Alternatives to GPS. In Proceedings of the MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No. 01CH37295), Honolulu, HI, USA, 5–8 November 2001; pp. 1452–1459. [Google Scholar]
- Pierros, F. Stand-alone celestial navigation positioning method. J. Navig. 2018, 71, 1344–1362. [Google Scholar] [CrossRef]
- Ni, Y.; Tan, W.; Dai, D.; Wang, X.; Qin, S. A stellar/inertial integrated navigation method based on the observation of the star centroid prediction error. Rev. Sci. Instrum. 2021, 92, 035001. [Google Scholar] [CrossRef] [PubMed]
- Willhite, W.B. An Analysis of ICBM Navigation Using Optical Observations of Existing Space Objects. Master’s Thesis, Massachusetts Institute of Technology, Boston, MA, USA, 2004. [Google Scholar]
- Busse, F.D. An efficient algorithm for performing orbital celestial navigation. In Proceedings of the 2010 International Technical Meeting of the Institute of Navigation, San Diego, CA, USA, 25–27 January 2010; pp. 514–519. [Google Scholar]
- Kaplan, G.H. System and Method for Angles-Only Position and Velocity Determination Using Closed-form Triangulation. U.S. Patent 20090552534A1, 27 October 2023. [Google Scholar]
- Kaplan, G.H. Angles-only navigation: Position and velocity solution from absolute triangulation. Navigation 2011, 58, 187–201. [Google Scholar] [CrossRef]
- Mikhail, B.; Donald, B.; Timothy, B. Angles Only Navigation System. U.S. Patent 20090177398A1, 9 July 2009. [Google Scholar]
- Mikhail, S.B.; Timothy, B. Angles Only Navigation System. U.S. Patent 009217643B1, 22 December 2015. [Google Scholar]
- Mikhail, B.; Timothy, B. High Precision—Automated Celestial Navigation System. U.S. Patent 201916602070A1, 4 February 2021. [Google Scholar]
- Pierce, S.; Raquet, J.; Dorland, B.; Hennessey, G. A performance model of an integrated navigation solution using satellite observations from star trackers. In Proceedings of the 2013 International Technical Meeting of the Institute of Navigation, San Diego, CA, USA, 28–30 January 2013; pp. 604–613. [Google Scholar]
- Kim, M.S.; Pierce, S.J.; Brink, K.M. Celestial aided inertial navigation by tracking high altitude vehicles. In Proceedings of the 2017 International Technical Meeting of the Institute of Navigation, Monterey, CA, USA, 30 January–2 February 2017; pp. 1287–1301. [Google Scholar] [CrossRef]
- Diaz, J.E.; Pierce, S.J. Satellite ephemeris correction via remote site observation for star tracker navigation performance improvement. In Proceedings of the 2016 International Technical Meeting of the Institute of Navigation, Monterey, CA, USA, 25–28 January 2016; pp. 90–97. [Google Scholar] [CrossRef]
- Pierce, S.J. Modeling Navigation System Performance of a Satellite-Observing Star Tracker Tightly Integrated with an Inertial Measurement Unit. Ph.D. Thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH, USA, 2015. [Google Scholar]
- Wang, J.; Yang, W.; Yang, G.; Tian, Y.; Ding, X. INS/Stellar/RSO tightly coupled celestial navigation. In Proceedings of the 2024 International Conference on Guidance, Navigation and Control, Changsha, China, 9–11 August 2024; Springer Nature: Singapore, 2024; pp. 3–15. [Google Scholar]
- Ahjay, R. Honeywell Successfully Demonstrates Alternative Navigation Capabilities in GPS-Denied Environments. Available online: https://aerospace.honeywell.com/us/en/about-us/press-release/2022/04/honeywell-demonstrates-alternative-navigation-capabilities (accessed on 8 May 2023).
- Li, R.; Tsao, T.C.; Klotz, H.A.A., Jr.; Pope, B.M.; Haug, P.J. Celestial Navigation System and Method. U.S. Patent 201916271105A1, 18 March 2024. [Google Scholar]
- Jungwirth, M.; Hawkinson, W.; Mosor, S. Risley Prism Based Star Tracker and Celestial Navigation Systems. U.S. Patent 201715604501A1, 18 March 2024. [Google Scholar]
- Biren, M.A.; Bortolami, S.B.; Bresler, B.J. Ephemerides-Free Celestial Navigation. U.S. Patent 201816037094A1, 18 March 2024. [Google Scholar]
- Rosenwinkel, A.M.; Mercurio, J.; Bucha, K. Geoposition Determination Using Satellite Ephemerides. U.S. Patent 20110986661A1, 16 September 2014. [Google Scholar]
- Caddy, S.E.; Spitler, L.R.; Ellis, S.C. An optical daytime astronomy pathfinder for the Huntsman telescope. Publ. Astron. Soc. Aust. 2024, 41, e056. [Google Scholar] [CrossRef]
- Shaddix, C.R.; Shaddix, J.W.L.; Chavez, M.A.; Blaes, J.G. Daytime GEO tracking with ‘Aquila’: Approach and results from a new ground-based SWIR small telescope system. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies (AMOS) Conference, Wailea, HI, USA, 17–20 September 2019; pp. 1–10. [Google Scholar]
- Liebe, C.C. Accuracy performance of star trackers—A tutorial. IEEE Trans. Aerosp. Electron. Syst. 2002, 38, 587–599. [Google Scholar] [CrossRef]
- Tan, W.; Dai, D.; Wu, W.; Wang, X.; Qin, S. A comprehensive calibration method for a star tracker and gyroscope units integrated system. Sensors 2018, 18, 3106. [Google Scholar] [CrossRef]
- Kozhaya, S.; Kanj, H.; Kassas, Z.M. Multi-constellation blind beacon estimation, Doppler tracking, and opportunistic positioning with OneWeb, Starlink, Iridium NEXT, and Orbcomm LEO satellites. In Proceedings of the 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 24–27 April 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1184–1195. [Google Scholar] [CrossRef]
- Bassa, C.G.; Hainaut, O.R.; Galadí-Enríquez, D. Analytical simulations of the effect of satellite constellations on optical and near-infrared observations. Astron. Astrophys. 2022, 657, A75. [Google Scholar] [CrossRef]
- Vallado, D.A.; Cefola, P.J. Two-line element sets—Practice and use. In Proceedings of the 63rd International Astronautical Congress, Naples, Italy, 1–5 October 2012; IAF: Paris, France, 2012; pp. 1–14. [Google Scholar]
- Li, B.; Zhang, Y.; Huang, J.; Sang, J. Improved orbit predictions using two-line elements through error pattern mining and transferring. Acta Astronaut. 2021, 188, 405–415. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, J. Refraction surface-based stellar atmospheric refraction correction and error estimation for terrestrial star tracker. IEEE Sens. J. 2022, 22, 9685–9696. [Google Scholar] [CrossRef]
- Bennett, J.; Sang, J.; Smith, C. An analysis of debris orbit prediction accuracy from short-arc orbit determination using optical and laser tracking data. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Wailea, HI, USA, 9–12 September 2014; AMOS: Kihei, HI, USA, 2014; pp. E60–E78. [Google Scholar]
Satellite | On-Orbit Number | Mean Orbit Height | Apparent Magnitude |
---|---|---|---|
Globalstar | 103 | 1500 km | Mv6~Mv10 |
Starlink | >8000 | 550 km | Mv4.5~Mv7.2 |
Optical Module | Parameter | Value |
---|---|---|
Camera | Resolution | 1392 × 1040 |
Pixel size | 6.45 μm | |
Quantum efficiency | 65% | |
Read out the noise | 6~8 e− | |
Non-uniform noise | <1% | |
Exposure time | 150 ms | |
Spectral response | 380~780 nm | |
Lens | Focal length | 50 mm |
Optical aperture | 30 mm | |
Field of view | 10.3° × 7.7° | |
Transmittance | >0.8 | |
Distortion | <0.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, D.; Ni, Y.; Yu, Y.; Li, J.; Qin, S. Angles-Only Navigation via Optical Satellite Measurement with Prior Altitude Constrained. Sensors 2025, 25, 6149. https://doi.org/10.3390/s25196149
Dai D, Ni Y, Yu Y, Li J, Qin S. Angles-Only Navigation via Optical Satellite Measurement with Prior Altitude Constrained. Sensors. 2025; 25(19):6149. https://doi.org/10.3390/s25196149
Chicago/Turabian StyleDai, Dongkai, Yuanman Ni, Ying Yu, Jiaxuan Li, and Shiqiao Qin. 2025. "Angles-Only Navigation via Optical Satellite Measurement with Prior Altitude Constrained" Sensors 25, no. 19: 6149. https://doi.org/10.3390/s25196149
APA StyleDai, D., Ni, Y., Yu, Y., Li, J., & Qin, S. (2025). Angles-Only Navigation via Optical Satellite Measurement with Prior Altitude Constrained. Sensors, 25(19), 6149. https://doi.org/10.3390/s25196149