Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = demagnetizing field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4780 KiB  
Article
Impact of Chirality on the Dynamic Susceptibility of Concentric Nanotori
by Ulises Guevara, Eduardo Saavedra, Liliana Pedraja-Rejas, Miguel-Angel Garrido-Tamayo, Solange Aranzubia, Eduardo Cisternas, Pablo Díaz and David Laroze
Nanomaterials 2025, 15(13), 989; https://doi.org/10.3390/nano15130989 - 26 Jun 2025
Viewed by 263
Abstract
This study investigates the influence of chirality on the dynamic susceptibility of concentric nanotori via micromagnetic simulations. The aim is to analyze the ferromagnetic resonance characteristics of coupled nanotori structures and compare them across various ring separation distances, thus providing an insight into [...] Read more.
This study investigates the influence of chirality on the dynamic susceptibility of concentric nanotori via micromagnetic simulations. The aim is to analyze the ferromagnetic resonance characteristics of coupled nanotori structures and compare them across various ring separation distances, thus providing an insight into how vortex configurations with identical or differing chiralities affect their dynamic properties. We analyze the energetic differences between the two vortex configurations and find them to be negligible; however, these minor differences suffice to explain the significant discrepancies in the demagnetization field observed between the nanotori. We examine the dynamic susceptibility spectrum and the spatial localization of the ferromagnetic resonance modes for different nanotori separations. Our findings demonstrate that the resonant oscillation frequencies are significantly influenced by the magnetostatic interactions between the nanotori, which can be effectively modulated by varying the distance between them. Furthermore, for smaller separations, the frequency peaks in the dynamic susceptibility markedly diverge between the two vortex configurations, demonstrating that the observed differences in the demagnetization field between the rings strongly influence the frequency response. In summary, our results indicate that both the inter-ring distance and the vortex configuration play a crucial role in determining the frequency response of the system. Full article
(This article belongs to the Special Issue Theoretical Chemistry and Computational Simulations in Nanomaterials)
Show Figures

Figure 1

25 pages, 11913 KiB  
Article
Research on the Remanence Measurement Method of Transformers Based on the Degaussing Hysteresis Loop
by Dingyuan Li, Jing Zhou, Zhanlong Zhang, Yu Yang, Zijian Dong, Wenhao He, Xichen Pei, Jiatai Gao, Siyang Chen and Zhicheng Pan
Appl. Sci. 2025, 15(10), 5375; https://doi.org/10.3390/app15105375 - 12 May 2025
Viewed by 328
Abstract
The residual magnetism of the iron core of power transformers can cause an excitation inrush current, posing a threat to the safe and stable operation of the power grid. This paper proposes a transformer remanence measurement method based on a demagnetization hysteresis loop [...] Read more.
The residual magnetism of the iron core of power transformers can cause an excitation inrush current, posing a threat to the safe and stable operation of the power grid. This paper proposes a transformer remanence measurement method based on a demagnetization hysteresis loop to address the problems of large errors, complex operation, and poor universality in existing remanence measurement methods. This method is designed for off-grid transformers to avoid potential interference to the power grid caused by current pulses during the measurement process. This method constructs an RLC oscillation circuit that utilizes capacitor energy storage and iron core magnetic field energy conversion, combined with the dynamic characteristics of hysteresis loops, to achieve accurate measurement of residual magnetism and synchronous demagnetization. The effectiveness of this method has been verified through residual magnetism measurement experiments on ring transformers and large converter transformers, and it can be applied in specific engineering practice operations. Theoretical analysis shows that the charging range of energy storage capacitors is affected by the hysteresis characteristics of the iron core and the saturation magnetic flux, and the residual magnetization value can be directly calculated based on the difference in the intersection point of the longitudinal axis of the demagnetization hysteresis loop. Simulation and experimental results show that the measurement error of the proposed method is less than 5%—significantly better than traditional methods. This method does not require complex control strategies, has high precision and efficiency, and can provide reliable technical support for residual magnetism detection and suppression of off-grid power transformers. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

15 pages, 4289 KiB  
Article
Advanced 3D Nonlinear Magnetic Equivalent Circuit Model for Overhang-Type WRSM Design
by Hyun-Soo Seol
Electronics 2025, 14(7), 1304; https://doi.org/10.3390/electronics14071304 - 26 Mar 2025
Cited by 1 | Viewed by 339
Abstract
The instability in rare-earth material supply and rising costs have driven research into rare-earth-free electric motors. Among various alternatives, wound rotor synchronous motors (WRSMs) stand out due to their adjustable excitation, enabling high torque at low speeds, and efficient field weakening at high [...] Read more.
The instability in rare-earth material supply and rising costs have driven research into rare-earth-free electric motors. Among various alternatives, wound rotor synchronous motors (WRSMs) stand out due to their adjustable excitation, enabling high torque at low speeds, and efficient field weakening at high speeds. Unlike permanent magnet synchronous motors (PMSMs), WRSMs offer greater operational flexibility and eliminate the risk of demagnetization. However, accurately modeling WRSMs remains challenging, especially when considering axial fringing flux and leakage components, which significantly affect motor performance. To address this challenge, this paper proposes a 3D nonlinear magnetic equivalent circuit (MEC) model that explicitly incorporates axial flux components and leakage paths in WRSMs with overhang rotor structures. Unlike conventional 2D MEC models, which fail to capture axial flux interactions, the proposed approach improves prediction accuracy while significantly reducing computational costs compared to full 3D finite element analysis (FEA). The model was validated through comparisons with 3D FEA simulations and experimental back-EMF measurements, demonstrating its accuracy and computational efficiency. The results confirm that the 3D nonlinear MEC model effectively captures axial flux paths and leakage components, making it a valuable tool for WRSM design and analysis. Future research will focus on further refining the model, incorporating hysteresis loss modeling, and developing hybrid MEC–FEA simulation techniques to enhance its applicability. Full article
Show Figures

Figure 1

19 pages, 4160 KiB  
Article
Archaeomagnetic Insights into Pre-Hispanic Mayan Lime Production: Chronological Framework and Evidence of an Apparent 500-Year Hiatus in the Yucatán Peninsula
by Jocelyne Martínez Landín, Avto Goguitchaichvili, Soledad Ortiz, Oscar de Lucio, Vadim A. Kravchinsky, Rubén Cejudo, Miguel Cervantes, Rafael García-Ruiz, Juan Morales, Francisco Bautista, Ángel Gongora Salas, Iliana Ancona Aragon, Wilberth Cruz Alvardo and Carlos Peraza Lope
Quaternary 2025, 8(1), 15; https://doi.org/10.3390/quat8010015 - 20 Mar 2025
Viewed by 820
Abstract
The Yucatán Peninsula, a key region of the ancient Maya civilization, has long presented challenges in establishing absolute chronological frameworks for its cultural practices. While the central regions of Mesoamerica have been extensively studied, the southern areas, including the Yucatán, remain underexplored. Limekilns, [...] Read more.
The Yucatán Peninsula, a key region of the ancient Maya civilization, has long presented challenges in establishing absolute chronological frameworks for its cultural practices. While the central regions of Mesoamerica have been extensively studied, the southern areas, including the Yucatán, remain underexplored. Limekilns, integral to lime production in pre-Hispanic Maya society, are well suited for archaeomagnetic studies due to the high temperatures (>700 °C) required for their operation. This study analyzed 108 specimens from 12 limekilns near Mérida, Yucatán, using rock-magnetic experiments and progressive alternating field demagnetization to refine the absolute chronology and determine the continuity of the lime production technology. Thermoremanent magnetization was predominantly carried by magnetite-like phases. Archaeomagnetic directions were successfully obtained for ten kilns with robust precision parameters. Age intervals were calculated using global geomagnetic models (SHA.DIF.14K, SHAWQ.2K), local paleosecular variation curves, and a Bootstrap resampling method. The analysis identified apparently two distinct chronological clusters: one between 900 and 1000 AD, associated with the Late–Terminal Classic period, and another near 1500 AD, just prior to the Spanish conquest. These findings reveal an apparent 500-year hiatus in lime production, followed by the potential reuse of kilns. Our study refines the chronological framework for Mayan lime production and its cultural and technological evolution. The integration of archaeomagnetic methods demonstrates their far-reaching applicability in addressing questions of continuity, reuse, and technological adaptation, contributing to broader debates on ancient pyrotechnological practices and their socioeconomic implications. Full article
Show Figures

Figure 1

14 pages, 1334 KiB  
Article
Performance Comparison Between Microstepping and Field-Oriented Control for Hybrid Stepper Motors
by Emilio Carfagna, Giovanni Migliazza, Marcello Medici and Emilio Lorenzani
Energies 2025, 18(3), 553; https://doi.org/10.3390/en18030553 - 24 Jan 2025
Cited by 2 | Viewed by 1152
Abstract
With their cost-effective manufacturing process, hybrid stepper motors (HSMs) are a popular choice for position control in low-power industrial applications. These versatile motors offer a compelling solution for reducing system costs and size since at standstill/low speeds, HSMs typically have higher torque density [...] Read more.
With their cost-effective manufacturing process, hybrid stepper motors (HSMs) are a popular choice for position control in low-power industrial applications. These versatile motors offer a compelling solution for reducing system costs and size since at standstill/low speeds, HSMs typically have higher torque density with respect to low-power permanent magnet (PM) motors. This higher torque density determines a reduced use of rare-earth PMs and, therefore, a lower environmental footprint. In practical applications, the commonly used microstepping control faces low efficiency, low dynamic performance, vibrations, and a variable maximum continuous torque depending on the working point. In this paper, the operating region of an HSM is extended in the field-weakening (FW) region, showing how field-oriented control (FOC) with FW allows one to strongly increase the drive performance with a slight cost increase thanks to the availability of low-cost magnetic encoders. Due to the fact that FOC provides only the requested current, the HSM faces lower temperatures, lower insulation degradation, and lower permanent magnet demagnetization issues. An experimental evaluation comparing the commonly used microstepping and the proposed FOC with FW is performed on four commercial HSMs with different DC voltage power supplies using an industrial test bench. In particular, the experimental campaign has a focus on steady-state conditions in the case of the maximum continuous torque, showing the advantages of FOC with FW because the advantages in transient conditions are well known. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

17 pages, 4113 KiB  
Review
Electron Holography for Advanced Characterization of Permanent Magnets: Demagnetization Field Mapping and Enhanced Precision in Phase Analysis
by Sujin Lee
Nanomaterials 2024, 14(24), 2046; https://doi.org/10.3390/nano14242046 - 20 Dec 2024
Viewed by 1095
Abstract
This review explores a method of visualizing a demagnetization field (Hd) within a thin-foiled Nd2Fe14B specimen using electron holography observation. Mapping the Hd is critical in electron holography as it provides the only information on [...] Read more.
This review explores a method of visualizing a demagnetization field (Hd) within a thin-foiled Nd2Fe14B specimen using electron holography observation. Mapping the Hd is critical in electron holography as it provides the only information on magnetic flux density. The Hd map within a Nd2Fe14B thin foil, derived from this method, showed good agreement with the micromagnetic simulation result, providing valuable insights related to coercivity. Furthermore, this review examines the application of the wavelet hidden Markov model (WHMM) for noise suppression in thin-foiled Nd2Fe14B crystals. The results show significant suppression of artificial phase jumps in the reconstructed phase images due to the poor visibility of electron holograms under the narrowest fringe spacing required for spatial resolution in electron holography. These techniques substantially enhance the precision of phase analysis and are applicable to a wide range of magnetic materials, enabling more accurate magnetic characterization. Full article
(This article belongs to the Special Issue Exploring Nanomaterials through Electron Microscopy and Spectroscopy)
Show Figures

Figure 1

14 pages, 6806 KiB  
Article
Conceptual Approach to Permanent Magnet Synchronous Motor Turn-to-Turn Short Circuit and Uniform Demagnetization Fault Diagnosis
by Yinquan Yu, Chun Yuan, Dequan Zeng, Giuseppe Carbone, Yiming Hu and Jinwen Yang
Actuators 2024, 13(12), 511; https://doi.org/10.3390/act13120511 - 9 Dec 2024
Cited by 2 | Viewed by 1201
Abstract
Permanent magnet synchronous motors (PMSMs) play a crucial role in industrial production, and in response to the problem of PMSM turn-to-turn short-circuit and demagnetization faults affecting production safety, this paper proposes a PMSM turn-to-turn short-circuit and demagnetization fault diagnostic method based on a [...] Read more.
Permanent magnet synchronous motors (PMSMs) play a crucial role in industrial production, and in response to the problem of PMSM turn-to-turn short-circuit and demagnetization faults affecting production safety, this paper proposes a PMSM turn-to-turn short-circuit and demagnetization fault diagnostic method based on a convolutional neural network and bidirectional long and short-term memory neural network (CNN-BiLSTM). Firstly, analyzing the PMSM turn-to-turn short-circuit and demagnetization faults, one takes the PMSM stator current as the fault signal and optimizes the variational modal decomposition (VMD) by using the Gray Wolf Optimization (GWO) algorithm in order to achieve efficient noise reduction processing of the stator current signal and improve the fault feature content in the stator current signal. Finally, the fault diagnostics are classified by using the CNN-BiLSTM, which collects advanced optimization algorithms and deep learning networks. The effectiveness of the method is verified by simulation experiment results. This scheme has high practical value and broad application prospects in the field of PMSM turn-to-turn short circuit and demagnetization fault diagnosis. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

17 pages, 9016 KiB  
Article
Optimization of an Asymmetric-Rotor Permanent Magnet-Assisted Synchronous Reluctance Motor for Improved Anti-Demagnetization Performance
by Feng Xing, Jiajia Zhang, Feng Zuo and Yuge Gao
Appl. Sci. 2024, 14(23), 11233; https://doi.org/10.3390/app142311233 - 2 Dec 2024
Cited by 1 | Viewed by 1409
Abstract
Permanent magnet-assisted synchronous reluctance motors (PMA-SynRMs) are widely used in various fields due to their significant advantages, including strong torque output, high efficiency, excellent speed regulation, and low cost. The PMA-SynRM with asymmetric-rotor structure has a weaker anti-demagnetization performance than the conventional PMA-SynRM [...] Read more.
Permanent magnet-assisted synchronous reluctance motors (PMA-SynRMs) are widely used in various fields due to their significant advantages, including strong torque output, high efficiency, excellent speed regulation, and low cost. The PMA-SynRM with asymmetric-rotor structure has a weaker anti-demagnetization performance than the conventional PMA-SynRM due to its multi-layer and thin permanent magnets construction. According to the finite element (FEM) simulation analysis, the anti-demagnetization performance of the asymmetric-rotor PMA-SynRM can be improved by adding bypass magnetic bridges on the ribs of the flux barriers and by changing the positions of the permanent magnets. The rotor structure of the proposed model is globally optimized by combining the two methods. Anti-demagnetization performance is improved as much as possible under the premise of ensuring the torque performance of the basic model. After multi-objective optimization, there is almost no difference between the optimized model and the basic model in terms of no-load air-gap flux density, no-load Back-electromotive force (EMF), and average torque. The maximum demagnetization rate of the optimized model is reduced by 81.44% compared with the basic model, and the anti-demagnetization performance is significantly improved. At the same time, the torque ripple is also reduced by 44.14%, which is obviously reduced. Compared with the basic model, the optimized model has better stability and reliability. Full article
(This article belongs to the Collection Modeling, Design and Control of Electric Machines: Volume II)
Show Figures

Figure 1

12 pages, 2324 KiB  
Article
Fast Degaussing Procedure for a Magnetically Shielded Room
by Peter A. Koss, Jens Voigt, Ronja Rasser and Allard Schnabel
Materials 2024, 17(23), 5877; https://doi.org/10.3390/ma17235877 - 30 Nov 2024
Viewed by 3916
Abstract
A demagnetization study was conducted on a magnetically shielded room (MSR) at Fraunhofer IPM, designed for applications such as magnetoencephalography (MEG) and material testing. With a composite of two layers of mu-metal and an intermediate aluminum layer, the MSR must provide a residual [...] Read more.
A demagnetization study was conducted on a magnetically shielded room (MSR) at Fraunhofer IPM, designed for applications such as magnetoencephalography (MEG) and material testing. With a composite of two layers of mu-metal and an intermediate aluminum layer, the MSR must provide a residual field under 5 nT for the successful operation of optically pumped magnetometers (OPMs). The degaussing process, employing six individual coils, reached the necessary residual magnetic field within the central 1 m3 volume in under four minutes. Due to the low-frequency shielding factor of 100, the obtained average residual field is shown to be limited by environmental residual field changes after degaussing and not by the degaussing procedure. Full article
Show Figures

Figure 1

12 pages, 1800 KiB  
Article
A Bifurcated Reconnecting Current Sheet in the Turbulent Magnetosheath
by Shimou Wang, Rongsheng Wang, Kai Huang and Jin Guo
Magnetochemistry 2024, 10(11), 89; https://doi.org/10.3390/magnetochemistry10110089 - 11 Nov 2024
Viewed by 1155
Abstract
We report the Magnetospheric Multiscale (MMS) observation of a bifurcated reconnecting current sheet in Earth’s dayside magnetosheath. Typical signatures of the ion diffusion region, including sub-Alfvénic demagnetized ion outflow, super-Alfvénic electron flows, Hall magnetic fields, electron heating, and energy dissipation, were found when [...] Read more.
We report the Magnetospheric Multiscale (MMS) observation of a bifurcated reconnecting current sheet in Earth’s dayside magnetosheath. Typical signatures of the ion diffusion region, including sub-Alfvénic demagnetized ion outflow, super-Alfvénic electron flows, Hall magnetic fields, electron heating, and energy dissipation, were found when MMS traversed the current sheet. The weak ion exhaust at the current sheet center was bounded by two current peaks in which super-Alfvénic electron flow directed toward and away from the X line were observed, respectively. Both off-center current peaks were primarily carried by electrons, one of which was supported by field-aligned current, while the other was mainly supported by current driven by electric field drift. The two current peaks also exhibit other differences, including electron heating, electron pitch angle distributions, electron nongyrotropy, energy dissipation, and magnetic field curvature. An ion-scale magnetic flux rope was detected between the two current peaks where electrons showed field-aligned bidirectional distribution, in contrast to field-aligned distribution parallel to the magnetic field in two current peaks. The observed current sheet was embedded in a background shear flow. This shear flow worked together with the guide field and asymmetric field and density to affect the electron dynamics. Our results reveal the reconnection properties in this special plasma and field regime which may be common in turbulent environments. Full article
(This article belongs to the Special Issue New Insight into the Magnetosheath)
Show Figures

Figure 1

19 pages, 5942 KiB  
Article
Research on Pipeline Stress Detection Method Based on Double Magnetic Coupling Technology
by Guoqing Wang, Qi Xia, Hong Yan, Shicheng Bei, Huakai Zhang, Hao Geng and Yuhan Zhao
Sensors 2024, 24(19), 6463; https://doi.org/10.3390/s24196463 - 7 Oct 2024
Cited by 1 | Viewed by 1371
Abstract
Oil and gas pipelines are subject to soil corrosion and medium pressure factors, resulting in stress concentration and pipe rupture and explosion. Non-destructive testing technology can identify the stress concentration and defect corrosion area of the pipeline to ensure the safety of pipeline [...] Read more.
Oil and gas pipelines are subject to soil corrosion and medium pressure factors, resulting in stress concentration and pipe rupture and explosion. Non-destructive testing technology can identify the stress concentration and defect corrosion area of the pipeline to ensure the safety of pipeline transportation. In view of the problem that the traditional pipeline inspection cannot identify the stress signal at the defect, this paper proposes a detection method using strong and weak magnetic coupling technology. Based on the traditional J-A (Jiles–Atherton) model, the pinning coefficient is optimized and the stress demagnetization factor is added to establish the defect of the ferromagnetic material. The force-magnetic relationship optimization model is used to calculate the best detection magnetic field strength. The force-magnetic coupling simulation of Q235 steel material is carried out by ANSYS 2019 R1 software based on the improved J-A force-magnetic model. The results show that the effect of the stress on the pipe on the magnetic induction increases first and then decreases with the increase in the excitation magnetic field strength, and the magnetic signal has the maximum proportion of the stress signal during the excitation process; the magnetic induction at the pipe defect increases linearly with the increase in the stress trend. Through the strong and weak magnetic scanning detection of cracked pipeline materials, the correctness of the theoretical analysis and the validity of the engineering application of the strong and weak magnetic detection method are verified. Full article
Show Figures

Figure 1

18 pages, 63250 KiB  
Article
Mechanism-Based Fault Diagnosis Deep Learning Method for Permanent Magnet Synchronous Motor
by Li Li, Shenghui Liao, Beiji Zou and Jiantao Liu
Sensors 2024, 24(19), 6349; https://doi.org/10.3390/s24196349 - 30 Sep 2024
Cited by 3 | Viewed by 4625
Abstract
As an important driving device, the permanent magnet synchronous motor (PMSM) plays a critical role in modern industrial fields. Given the harsh working environment, research into accurate PMSM fault diagnosis methods is of practical significance. Time–frequency analysis captures the rich features of PMSM [...] Read more.
As an important driving device, the permanent magnet synchronous motor (PMSM) plays a critical role in modern industrial fields. Given the harsh working environment, research into accurate PMSM fault diagnosis methods is of practical significance. Time–frequency analysis captures the rich features of PMSM operating conditions, and convolutional neural networks (CNNs) offer excellent feature extraction capabilities. This study proposes an intelligent fault diagnosis method based on continuous wavelet transform (CWT) and CNNs. Initially, a mechanism analysis is conducted on the inter-turn short-circuit and demagnetization faults of PMSMs, identifying and displaying the key feature frequency range in a time–frequency format. Subsequently, a CNN model is developed to extract and classify these time–frequency images. The feature extraction and diagnosis results are visualized with t-distributed stochastic neighbor embedding (t-SNE). The results demonstrate that our method achieves an accuracy rate of over 98.6% for inter-turn short-circuit and demagnetization faults in PMSMs of various severities. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

11 pages, 8371 KiB  
Article
In Situ Visualization of Inhomogeneities in the Magnetic Properties of Permanent Magnets
by Maximilian Lanz, Gerhard Martinek, Gerhard Schneider and Dagmar Goll
Metrology 2024, 4(3), 506-516; https://doi.org/10.3390/metrology4030031 - 22 Sep 2024
Viewed by 1697
Abstract
Irreversible demagnetization processes in high-performance Fe-Nd-B magnets were investigated using a novel test rig. Designed to capture local magnetic field distributions and integral average magnetization in situ, the rig operates under field and temperature conditions similar to those found in electric motors. Validation [...] Read more.
Irreversible demagnetization processes in high-performance Fe-Nd-B magnets were investigated using a novel test rig. Designed to capture local magnetic field distributions and integral average magnetization in situ, the rig operates under field and temperature conditions similar to those found in electric motors. Validation against established techniques such as the hysteresisgraph and Hall mapper confirmed its accuracy. Furthermore, we observed the ability to detect even small variations of less than 2.5% in coercive field strength across the sample volume using field scans. The system significantly reduces measurement times from days to hours, enabling efficient in situ detection of magnetic field distributions during the whole demagnetization process. Full article
(This article belongs to the Special Issue Advances in Magnetic Measurements)
Show Figures

Figure 1

16 pages, 11416 KiB  
Article
Electromagnetic–Thermal Characteristics Analysis of a Tubular Permanent Magnet Linear Generator for Free-Piston Engines
by Wenzhen Liu, Huihua Feng, Jian Li and Boru Jia
Appl. Sci. 2024, 14(5), 1900; https://doi.org/10.3390/app14051900 - 26 Feb 2024
Viewed by 1557
Abstract
Temperature rise of the tubular permanent magnet linear generator (TPMLG) might lead to insulation failure and demagnetization of permanent magnets, affecting the safe and stable operation of other equipment and the entire system. Herein, a bidirectional electromagnetic–thermal coupling method for analyzing the electromagnetic [...] Read more.
Temperature rise of the tubular permanent magnet linear generator (TPMLG) might lead to insulation failure and demagnetization of permanent magnets, affecting the safe and stable operation of other equipment and the entire system. Herein, a bidirectional electromagnetic–thermal coupling method for analyzing the electromagnetic loss and thermal characteristics of a TPMLG considering the effect of increased temperature on the permanent magnet was proposed. To study the electromagnetic–thermal characteristics of the TPMLG under stable power generation, a two-dimensional electromagnetic field model and a three-dimensional temperature field model were established and coupled. The temperature field of the TPMLG was numerically calculated using computational fluid dynamics over finite volume method under natural air cooling and forced air cooling conditions. Effects of loss and air flow velocity on the steady temperature field were investigated. Results indicated that copper loss increased by 24.5% considering the influence of temperature rise. The windings’ top central position in the TPMLG was the spot with the highest temperature of 127.8 °C and there was a potential demagnetization risk for the permanent magnets. Some reference for future research of clarifying thermal characteristics and cooling design was provided. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

18 pages, 8033 KiB  
Article
Influence of Demagnetization and Microstructure Non-Homogeneity on Barkhausen Noise in the High-Strength Low-Alloyed Steel 1100 MC
by Martin Pitoňák, Nikolaj Ganev, Katarína Zgútová, Jiří Čapek, Miroslav Neslušan and Karel Trojan
Appl. Sci. 2024, 14(4), 1511; https://doi.org/10.3390/app14041511 - 13 Feb 2024
Cited by 2 | Viewed by 4842
Abstract
This study deals with two different aspects of the high-strength low-alloyed 1100 MC steel. The first is associated with the remarkable heterogeneity (linked with surface decarburization) in the surface state produced during sheet rolling with respect to the sheet width. The variable thickness [...] Read more.
This study deals with two different aspects of the high-strength low-alloyed 1100 MC steel. The first is associated with the remarkable heterogeneity (linked with surface decarburization) in the surface state produced during sheet rolling with respect to the sheet width. The variable thickness surface layer exhibits a microstructure different from that of the deeper bulk. Variation in the thickness of the thermally softened near-surface region strongly affects Barkhausen noise as well. This technique can be considered a reliable tool for monitoring the aforementioned heterogeneity. It can also be reported that the opposite sides of the sheet are different with respect to the surface state, the heterogeneity distribution, and the corresponding Barkhausen noise. These aspects indicate different conditions during hot rolling followed by rapid quenching on the upper and lower rollers. Furthermore, it was found that the degree of decarburizing and the corresponding surface heterogeneity is also a function of C content, and steels with lower C content exhibit less pronounced surface heterogeneity. The second aspect is related to the remarkable asymmetry in Barkhausen noise emission with respect to two consecutive bursts. This asymmetry is due to the presence of remnant magnetization in the sheet produced during manufacturing. The remnant magnetization is coupled to the magnetic field produced by the excitation coil of the Barkhausen noise sensor and strongly contributes to the aforementioned asymmetry. The remnant magnetization attenuates the domain wall mobility, which results in weaker Barkhausen noise. Moreover, the Barkhausen noise envelopes and the extracted features such as the position of the envelope maximum and its width are strongly affected by the remnant magnetization. Insufficient demagnetization makes the body magnetically softer and makes a wider range of magnetic fields in which Barkhausen noise emission can be detected. As soon as sufficient removal of this remnant magnetization is carried out in the vanishing magnetic field (demagnetization), the aforementioned remarkable asymmetry is fully lost. Full article
(This article belongs to the Special Issue Advanced Processing of Steels and Their Alloys)
Show Figures

Figure 1

Back to TopTop