Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = delta-switch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2363 KB  
Article
Low-Power CT-DS ADC for High-Sensitivity Automotive-Grade Sub-1 GHz Receiver
by Ying Li, Wenyuan Li and Qingsheng Hu
Electronics 2025, 14(18), 3606; https://doi.org/10.3390/electronics14183606 - 11 Sep 2025
Viewed by 249
Abstract
This paper presents a low-power continuous-time delta-sigma (CT-DS) analog-to-digital converter (ADC) for use in high-sensitivity automotive-grade sub-1 GHz receivers in emerging wireless sensors network applications. The proposed ADC employs a third-order Cascade of Integrators FeedForward and Feedback (CIFF-B) loop filter operating at a [...] Read more.
This paper presents a low-power continuous-time delta-sigma (CT-DS) analog-to-digital converter (ADC) for use in high-sensitivity automotive-grade sub-1 GHz receivers in emerging wireless sensors network applications. The proposed ADC employs a third-order Cascade of Integrators FeedForward and Feedback (CIFF-B) loop filter operating at a sampling frequency of 150 MHz to achieve high energy efficiency and robust noise shaping. A low-noise phase-locked loop (PLL) is integrated to provide high-precision clock signals. The loop filter combines active-RC and GmC integrators with the source degeneration technique to optimize power consumption and linearity. To minimize complexity and enhance stability, a 1-bit quantizer with isolation switches and return-to-zero (RZ) digital-to-analog converters (DACs) are used in the modulator. With a 500 kHz bandwidth, the sensitivity of the receiver is −105.5 dBm. Fabricated in a 180 nm standard CMOS process, the prototype achieves a peak signal-to-noise ratio (SNR) of 76.1 dB and a signal-to-noise and distortion ratio (SNDR) of 75.3 dB, resulting in a Schreier figure of merit (FoM) of 160.7 dB based on SNDR, while consuming only 0.8 mA from a 1.8 V supply. Full article
Show Figures

Figure 1

23 pages, 5541 KB  
Article
Innovative Double Dumbbell-Shaped Flux-Switching Linear Tube Generator for Ocean Wave Energy Conversion: Design, Simulation, and Experimental Validation
by Pooja Khatri, Zhenwei Liu, James Rudolph, Elie Al Shami and Xu Wang
Vibration 2025, 8(2), 32; https://doi.org/10.3390/vibration8020032 - 13 Jun 2025
Viewed by 808
Abstract
This study introduces a novel double dumbbell-shaped flux-switching linear tube generator (DDFSLG) for ocean wave energy conversion. The innovative architecture features a uniquely shaped stator and translator, distinguishing it from conventional linear generators. Unlike traditional systems, the DDFSLG is housed in a cylindrical [...] Read more.
This study introduces a novel double dumbbell-shaped flux-switching linear tube generator (DDFSLG) for ocean wave energy conversion. The innovative architecture features a uniquely shaped stator and translator, distinguishing it from conventional linear generators. Unlike traditional systems, the DDFSLG is housed in a cylindrical buoy. The translator oscillates axially within the stator. This eliminates the need for motion rectification and reduces mechanical friction losses in the power take-off (PTO) system. These design advancements result in high power output and improved performance. The DDFSLG’s three-phase coil circuit is another key innovation, improving electrical performance and stability in irregular wave conditions. We conducted comprehensive experimental validation using an MTS-250 kN testing system, which demonstrated strong agreement between theoretical predictions and measured results. We compared star and delta coil connections to assess how circuit configuration affects power output and efficiency. Furthermore, hydrodynamic simulations using the JONSWAP spectrum and ANSYS AQWA software (Ansys 13.0) provide detailed insight into the system’s dynamic response under realistic oceanic conditions. Full article
Show Figures

Figure 1

23 pages, 2098 KB  
Article
Innovative Control Techniques for Enhancing Signal Quality in Power Applications: Mitigating Electromagnetic Interference
by N. Manoj Kumar, Yousef Farhaoui, R. Vimala, M. Anandan, M. Aiswarya and A. Radhika
Algorithms 2025, 18(5), 288; https://doi.org/10.3390/a18050288 - 18 May 2025
Viewed by 554
Abstract
Electromagnetic interference (EMI) remains a difficult task in the design and operation of contemporary power electronic systems, especially in those applications where signal quality has a direct impact on the overall performance and efficiency. Conventional control schemes that have evolved to counteract the [...] Read more.
Electromagnetic interference (EMI) remains a difficult task in the design and operation of contemporary power electronic systems, especially in those applications where signal quality has a direct impact on the overall performance and efficiency. Conventional control schemes that have evolved to counteract the effects of EMI generally tend to have greater design complexity, greater error rates, poor control accuracy, and large amounts of harmonic distortion. In order to overcome these constraints, this paper introduces an intelligent and advanced control approach founded on the signal randomization principle. The suggested approach controls the switching activity of a DC–DC converter by dynamically tuned parameters like duty cycle, switching frequency, and signal modulation. A boost interleaved topology is utilized to maximize the current distribution and minimize ripple, and an innovative space vector-dithered sigma delta modulation (SV-DiSDM) scheme is proposed for cancelling harmonics via a digitalized control action. The used modulation scheme can effectively distribute the harmonic energy across a larger range of frequencies to largely eliminate EMI and boost the stability of the system. High-performance analysis is conducted by employing significant measures like total harmonic distortion (THD), switching frequency deviation, switching loss, and distortion product. Verification against conventional control models confirms the increased efficiency, less EMI, and greater signal integrity of the proposed method, and hence, it can be a viable alternative for EMI-aware power electronics applications. Full article
(This article belongs to the Special Issue Emerging Trends in Distributed AI for Smart Environments)
Show Figures

Figure 1

22 pages, 38738 KB  
Article
A 0.6 V 68.2 dB 0.42 µW SAR-ΣΔ ADC for ASIC Chip in 0.18 µm CMOS
by Xinyu Li, Kentaro Yoshioka, Zhongfeng Wang, Jun Lin and Congyi Zhu
Electronics 2025, 14(10), 2030; https://doi.org/10.3390/electronics14102030 - 16 May 2025
Viewed by 587
Abstract
This paper presents a successive approximation register (SAR) and incremental sigma-delta modulator (ISDM) hybrid analog-to-digital converter (ADC) that operated at a minimum voltage supply of 0.575 V. A thorough analysis of the non-linearities caused by PVT variations and common-mode voltage (VCM) shifts in [...] Read more.
This paper presents a successive approximation register (SAR) and incremental sigma-delta modulator (ISDM) hybrid analog-to-digital converter (ADC) that operated at a minimum voltage supply of 0.575 V. A thorough analysis of the non-linearities caused by PVT variations and common-mode voltage (VCM) shifts in the ISDM stage is presented. The ADC employs an improved high-precision double-bootstrapped switch, and the synchronous clock is also double-bootstrapped to work under the low supply voltage. A modified merged capacitor switching (MCS) approach is presented to maintain a stable VCM at the differential input. The chip was fabricated using a 0.18 µm CMOS process, with a core area of 0.21 mm2. It consumed only 0.42 µW at a 0.6 V supply and a sampling rate of 10 kS/s, which achieved an effective number of bits (ENOB) of 11.03. The resulting figure of merit (FOMW) was 20.05 fJ/conversion-step, which is the lowest reported for ADCs of this architecture in a 0.18 µm process. Full article
(This article belongs to the Special Issue Analog/Mixed Signal Integrated Circuit Design)
Show Figures

Figure 1

40 pages, 12974 KB  
Article
Delta Modulation Technique and Harmonic Analysis for the Modified Quadruple-Diode Boost Regulator Without and With a Voltage Multiplier Unit (VMU)
by Walid Emar, Ahmad Aljanaideh, Ala Jaber, Mohammad Musleh, Ali Emar and Mohammed Al-Nairat
Energies 2025, 18(10), 2492; https://doi.org/10.3390/en18102492 - 12 May 2025
Viewed by 518
Abstract
The authors of this study suggest an improvement to their recently released quadruple-diode boost regulator (QDBC), which may be used in two configurations: without or with a voltage multiplier unit (VMU). This voltage multiplier unit consists of two switch capacitors diagonally connected across [...] Read more.
The authors of this study suggest an improvement to their recently released quadruple-diode boost regulator (QDBC), which may be used in two configurations: without or with a voltage multiplier unit (VMU). This voltage multiplier unit consists of two switch capacitors diagonally connected across two diodes, or vice versa. During each operational cycle, energy can be stored and released through the switch capacitive filters and inductive chokes, increasing voltage gain and decreasing output fluctuation. ANSOFT/SIMPLORER 7, PLECS 4.9.5, and SIMULINK 2021a are further used to simulate the proposed regulator’s linearized version to investigate its frequency response and stability. Hence, to improve the harmonic performance of the proposed regulator, the authors of this study used a delta modulation current regulator (DMCR), sometimes referred to as a variable bandwidth delta modulation current regulator. The findings show that the QDBC has, when using the DMCR, a voltage gain of 1+D/(1D)2, an efficiency of 97%, and a shorter settling time of 0.04 s when compared to other DC-DC regulators (SEPIC, boost, and quadratic boost). Finally, to validate the theoretical analysis and simulation results of the proposed QDBC structure, a 250 W regulator prototype was built utilizing similar design exercise requirements. Full article
(This article belongs to the Section B1: Energy and Climate Change)
Show Figures

Figure 1

25 pages, 12348 KB  
Article
A Novel Modified Delta-Connected CHB Multilevel Inverter with Improved Line–Line Voltage Levels
by Abdullah M. Noman
Electronics 2025, 14(9), 1711; https://doi.org/10.3390/electronics14091711 - 23 Apr 2025
Viewed by 670
Abstract
Numerous cascaded inverter configurations have been developed to generate higher voltage levels, thereby improving performance and lowering costs. Comparing conventional delta-connected cascaded H-bridge (CHB) multilevel inverters to star-connected CHB multilevel inverters reveals a disadvantage. In conventional delta-connected CHB multilevel inverters, more switches are [...] Read more.
Numerous cascaded inverter configurations have been developed to generate higher voltage levels, thereby improving performance and lowering costs. Comparing conventional delta-connected cascaded H-bridge (CHB) multilevel inverters to star-connected CHB multilevel inverters reveals a disadvantage. In conventional delta-connected CHB multilevel inverters, more switches are unavoidably needed to achieve the same line-to-line grid voltage, since more H-bridges cascaded in series are required than in a star-connected CHB. This paper presents a modified topology based on the delta-connected CHB multilevel configuration to provide the same number of line-to-line voltage levels as a star-connected CHB, using an equivalent number of switches. The number of switches in the proposed multilevel inverter is decreased compared to conventional delta-connected CHB MLIs at the same voltage levels. The mathematical modeling of the proposed topology and the simulation results using a fixed load and a PV-grid connection are provided to validate the efficacy and dependability of the proposed topology. To validate the usefulness of the proposed configuration, it was practically implemented in the laboratory. Data acquisition and generation of gating signals to fire the switches were implemented using a MicroLabBox real-time controller. The prototype was examined under a resistive–inductive load and tested under different modulation indices. To demonstrate the effectiveness and the functionality of the topology, the experimental results are also provided. Full article
(This article belongs to the Special Issue Power Electronics in Renewable Systems)
Show Figures

Figure 1

16 pages, 887 KB  
Hypothesis
The Current Landscape of Hypotheses Describing the Contribution of CD4+ Heterogeneous Populations to ALS
by Mariusz Sacharczuk, Michel-Edwar Mickael, Norwin Kubick, Agnieszka Kamińska, Jarosław Olav Horbańczuk, Atanas G. Atanasov, Piotr Religa and Michał Ławiński
Curr. Issues Mol. Biol. 2024, 46(8), 7846-7861; https://doi.org/10.3390/cimb46080465 - 23 Jul 2024
Cited by 2 | Viewed by 1657
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a poorly understood and fatal disease. It has a low prevalence and a 2–4 year survival period. Various theories and hypotheses relating to its development process have been proposed, albeit with no breakthrough in its treatment. Recently, the [...] Read more.
Amyotrophic Lateral Sclerosis (ALS) is a poorly understood and fatal disease. It has a low prevalence and a 2–4 year survival period. Various theories and hypotheses relating to its development process have been proposed, albeit with no breakthrough in its treatment. Recently, the role of the adaptive immune system in ALS, particularly CD4+ T cells, has begun to be investigated. CD4+ T cells are a heterogeneous group of immune cells. They include highly pro-inflammatory types such as Th1 and Th17, as well as highly anti-inflammatory cells such as Tregs. However, the landscape of the role of CD4+ T cells in ALS is still not clearly understood. This review covers current hypotheses that elucidate how various CD4+ T cells can contribute to ALS development. These hypotheses include the SWITCH model, which suggests that, in the early stages of the disease, Tregs are highly capable of regulating the immune response. However, in the later stages of the disease, it seems that pro-inflammatory cells such as Th1 and Th17 are capable of overwhelming Treg function. The reason why this occurs is not known. Several research groups have proposed that CD4+ T cells as a whole might experience aging. Others have proposed that gamma delta T cells might directly target Tregs. Additionally, other research groups have argued that less well-known CD4+ T cells, such as Emoes+ CD4+ T cells, may be directly responsible for neuron death by producing granzyme B. We propose that the ALS landscape is highly complicated and that there is more than one feasible hypothesis. However, it is critical to take into consideration the differences in the ability of different populations of CD4+ T cells to infiltrate the blood–brain barrier, taking into account the brain region and the time of infiltration. Shedding more light on these still obscure factors can help to create a personalized therapy capable of regaining the balance of power in the battle between the anti-inflammatory and pro-inflammatory cells in the central nervous system of ALS patients. Full article
Show Figures

Figure 1

14 pages, 6262 KB  
Article
A 0.055 mm2 Total Area Triple-Loop Wideband Fractional-N All-Digital Phase-Locked Loop Architecture for 1.9–6.1 GHz Frequency Tuning
by Byeongseok Kang, Youngsik Kim, Hyunwoo Son and Shinwoong Kim
Electronics 2024, 13(13), 2638; https://doi.org/10.3390/electronics13132638 - 5 Jul 2024
Cited by 1 | Viewed by 1484
Abstract
This paper presents a wideband fractional-N all-digital phase-locked loop (WBPLL) architecture featuring a triple-loop configuration capable of tuning frequencies from 1.9 to 6.1 GHz. The first and second loops, automatic frequency control (AFC) and counter-assisted phase-locked loop (CAPLL), respectively, perform coarse locking, while [...] Read more.
This paper presents a wideband fractional-N all-digital phase-locked loop (WBPLL) architecture featuring a triple-loop configuration capable of tuning frequencies from 1.9 to 6.1 GHz. The first and second loops, automatic frequency control (AFC) and counter-assisted phase-locked loop (CAPLL), respectively, perform coarse locking, while the third loop employs a digital sub-sampling architecture without a frequency divider for fine locking. In this third loop, fractional-N frequency synthesis is achieved using a delta-sigma modulator (DSM) and digital-to-time converter (DTC). To minimize area, digital modules such as counters, comparators, and differentiators used in the AFC and CAPLL loops are reused. Furthermore, a moving average filter (MAF) is employed to reduce the frequency overlap ratio of the digitally controlled oscillator (DCO) between the second and third loops, ensuring stable loop switching. The total power consumption of the WBPLL varies with the frequency range, consuming between 8.8 mW at the WBPLL minimum output frequency of 1.9 GHz and 12.8 mW at the WBPLL maximum output frequency of 6.1 GHz, all at a 1.0 V supply. Implemented in a 28 nm CMOS process, the WBPLL occupies an area of 0.055 mm2. Full article
(This article belongs to the Special Issue CMOS Integrated Circuits Design)
Show Figures

Figure 1

15 pages, 3327 KB  
Article
Enzymatic Metabolic Switches of Astrocyte Response to Lipotoxicity as Potential Therapeutic Targets for Nervous System Diseases
by Andrea Angarita-Rodríguez, J. Manuel Matiz-González, Andrés Pinzón, Andrés Felipe Aristizabal, David Ramírez, George E. Barreto and Janneth González
Pharmaceuticals 2024, 17(5), 648; https://doi.org/10.3390/ph17050648 - 16 May 2024
Cited by 3 | Viewed by 2315
Abstract
Astrocytes play a pivotal role in maintaining brain homeostasis. Recent research has highlighted the significance of palmitic acid (PA) in triggering pro-inflammatory pathways contributing to neurotoxicity. Furthermore, Genomic-scale metabolic models and control theory have revealed that metabolic switches (MSs) are metabolic pathway regulators [...] Read more.
Astrocytes play a pivotal role in maintaining brain homeostasis. Recent research has highlighted the significance of palmitic acid (PA) in triggering pro-inflammatory pathways contributing to neurotoxicity. Furthermore, Genomic-scale metabolic models and control theory have revealed that metabolic switches (MSs) are metabolic pathway regulators by potentially exacerbating neurotoxicity, thereby offering promising therapeutic targets. Herein, we characterized these enzymatic MSs in silico as potential therapeutic targets, employing protein–protein and drug–protein interaction networks alongside structural characterization techniques. Our findings indicate that five MSs (P00558, P04406, Q08426, P09110, and O76062) were functionally linked to nervous system drug targets and may be indirectly regulated by specific neurological drugs, some of which exhibit polypharmacological potential (e.g., Trifluperidol, Trifluoperazine, Disulfiram, and Haloperidol). Furthermore, four MSs (P00558, P04406, Q08426, and P09110) feature ligand-binding or allosteric cavities with druggable potential. Our results advocate for a focused exploration of P00558 (phosphoglycerate kinase 1), P04406 (glyceraldehyde-3-phosphate dehydrogenase), Q08426 (peroxisomal bifunctional enzyme, enoyl-CoA hydratase, and 3-hydroxyacyl CoA dehydrogenase), P09110 (peroxisomal 3-ketoacyl-CoA thiolase), and O76062 (Delta(14)-sterol reductase) as promising targets for the development or repurposing of pharmacological compounds, which could have the potential to modulate lipotoxic-altered metabolic pathways, offering new avenues for the treatment of related human diseases such as neurological diseases. Full article
(This article belongs to the Special Issue Multi-target Drug Treatments for Neurodegenerative Disease)
Show Figures

Figure 1

22 pages, 3870 KB  
Article
Changes in the Adaptive Cellular Repertoire after Infection with Different SARS-CoV-2 VOCs in a Cohort of Vaccinated Healthcare Workers
by Sara Caldrer, Silvia Accordini, Cristina Mazzi, Natalia Tiberti, Michela Deiana, Andrea Matucci, Eleonora Rizzi, Stefano Tais, Fabio Filippo, Matteo Verzè, Paolo Cattaneo, Gian Paolo Chiecchi, Concetta Castilletti, Massimo Delledonne, Federico Gobbi and Chiara Piubelli
Vaccines 2024, 12(3), 230; https://doi.org/10.3390/vaccines12030230 - 23 Feb 2024
Cited by 2 | Viewed by 1768
Abstract
Background: Currently approved vaccines are highly effective in protecting against hospitalization and severe COVID-19 infections. How pre-existing immunity responds to new variants with mutated antigens is crucial information for elucidating the functional interplay between antibodies and B and T cell responses during infection [...] Read more.
Background: Currently approved vaccines are highly effective in protecting against hospitalization and severe COVID-19 infections. How pre-existing immunity responds to new variants with mutated antigens is crucial information for elucidating the functional interplay between antibodies and B and T cell responses during infection with new SARS-CoV-2 variants. Methods: In this study, we monitored the dynamics and persistence of the immune response versus different SARS-CoV-2 variants of concern that emerged during the pandemic period (2021–2022) in a cohort of vaccinated healthcare workers, who experienced breakthrough infection in the Pre-Delta, Delta, and Omicron waves. We evaluated both the humoral and cell-mediated responses after infection. We also evaluated the anti-SARS-CoV-2 antibodies levels produced by infection in comparison with those produced after vaccination. Results: Our results highlighted that the immune response against the Delta VOC mainly involved an adaptive humoral and switched memory B cells component, even 3 months after the last vaccine dose, conversely showing a high percentage of depleted adaptive T cells. Omicron infections triggered a consistent production of non-vaccine-associated anti-N antibodies, probably to balance the spike epitope immune escape mechanisms. Conclusion: Our results suggest a direct dependence between the VOC and different humoral and B and T cell balances in the post-infection period, despite the administration of a different number of vaccine doses and the elapsed time since the last vaccination. Full article
(This article belongs to the Special Issue Challenges to SARS-CoV-2 Vaccines: Infection, Variants, Reinfection)
Show Figures

Figure 1

16 pages, 3546 KB  
Article
A Novel Three-Dimensional Sigma–Delta Modulation for High-Switching-Frequency Three-Phase Four-Wire Active Power Filters
by David Lumbreras, Jordi Zaragoza, Manel Lamich, Néstor Berbel and Enrique Romero-Cadaval
Electronics 2024, 13(3), 553; https://doi.org/10.3390/electronics13030553 - 30 Jan 2024
Cited by 6 | Viewed by 1757
Abstract
This article presents a new modulation technique called three-dimensional sigma–delta (3D-ΣΔ) modulation for high-frequency three-leg four-wire voltage source converters (VSCs) that use wide-bandgap (WBG) semiconductors. These WBG devices allow for the use of high switching frequencies with a greater efficiency [...] Read more.
This article presents a new modulation technique called three-dimensional sigma–delta (3D-ΣΔ) modulation for high-frequency three-leg four-wire voltage source converters (VSCs) that use wide-bandgap (WBG) semiconductors. These WBG devices allow for the use of high switching frequencies with a greater efficiency than silicon devices. The proposed 3D-ΣΔ technique enables operation at a variable switching frequency, resulting in a significant reduction in switching losses compared to classical pulse-width modulation (PWM) techniques. Moreover, the 3D-ΣΔ technique uses a fast-processing 3D quantiser that simplifies implementation and considerably reduces computational costs. The behaviour of the 3D-ΣΔ modulation is analysed using MATLAB/Simulink and PLECS. The experimental results performed on an active power filter that uses silicon carbide (SiC) MOSFETs demonstrate an improvement in converter efficiency compared to the conventional SPWM technique. Additionally, the experimental results show how 3D-ΣΔ allows for the compensation of harmonics and homopolar currents, thereby balancing the electrical grid currents. The experiments also show that the proposed 3D-ΣΔ modulation outperforms an SPWM technique in terms of power quality, since the former achieves a larger reduction in the harmonic content of the power grid. In conclusion, the proposed modulation technique is an attractive option for improving the performance of four-wire converters in active power filter applications. Full article
Show Figures

Figure 1

14 pages, 1858 KB  
Article
Resistance and Aerobic Training Were Effective in Activating Different Markers of the Browning Process in Obesity
by Lidia Passinho Paz Pontes, Fernanda Cristina Alves Nakakura, Nelson Inácio Pinto Neto, Valter Tadeu Boldarine, Paloma Korehisa Maza, Paloma Freire Santos, Felipe Avila, Artur Francisco Silva-Neto, Hanna Karen Moreira Antunes, Ana Raimunda Dâmaso and Lila Missae Oyama
Int. J. Mol. Sci. 2024, 25(1), 275; https://doi.org/10.3390/ijms25010275 - 24 Dec 2023
Cited by 1 | Viewed by 2119
Abstract
Lifestyle changes regarding diet composition and exercise training have been widely used as a non-pharmacological clinical strategy in the treatment of obesity, a complex and difficult-to-control disease. Taking the potential of exercise in the browning process and in increasing thermogenesis into account, the [...] Read more.
Lifestyle changes regarding diet composition and exercise training have been widely used as a non-pharmacological clinical strategy in the treatment of obesity, a complex and difficult-to-control disease. Taking the potential of exercise in the browning process and in increasing thermogenesis into account, the aim of this paper was to evaluate the effect of resistance, aerobic, and combination training on markers of browning of white adipose tissue from rats with obesity who were switched to a balanced diet with normal calorie intake. Different types of training groups promote a reduction in the adipose tissue and delta mass compared to the sedentary high-fat diet group (HS). Interestingly, irisin in adipose tissues was higher in the resistance exercise (RE) and aerobic exercise (AE) groups compared to control groups. Moreover, in adipose tissue, the fibroblast growth factor 21 (FGF21), coactivator 1 α (PGC1α), and peroxisome proliferator-activated receptor gamma (PPARγ) were higher in response to resistance training RE compared with the control groups, respectively. Additionally, uncoupling protein 1 (UCP1) showed higher levels in response to group AE compared to the HS group. In conclusion, the browning process in white adipose tissue responds differently toward different training exercise protocols, with resistance and aerobic training efficient in activating different biomarkers of the browning process, upregulating irisin, FGF21, PGC1α, PPARγ, and UCP1 in WAT, which together may suggest an improvement in the thermogenic process in the adipose tissue. Considering the experimental conditions of the present investigation, we suggest future research to pave new avenues to be applied in clinical practices to combat obesity. Full article
Show Figures

Graphical abstract

13 pages, 2277 KB  
Communication
A 22.3-Bit Third-Order Delta-Sigma Modulator for EEG Signal Acquisition Systems
by Qianqian Wang, Fei Liu, Liyin Fu, Qianhui Li, Jing Kang, Ke Chen and Zongliang Huo
Electronics 2023, 12(23), 4866; https://doi.org/10.3390/electronics12234866 - 2 Dec 2023
Cited by 1 | Viewed by 2163
Abstract
This paper presents a high resolution delta-sigma modulator for continuous acquisition of electroencephalography (EEG) signals. The third-order single-loop architecture with a 1-bit quantizer is adopted to achieve 22.3-bit resolution. The effects of thermal noise on the performance of the delta-sigma modulator are analyzed [...] Read more.
This paper presents a high resolution delta-sigma modulator for continuous acquisition of electroencephalography (EEG) signals. The third-order single-loop architecture with a 1-bit quantizer is adopted to achieve 22.3-bit resolution. The effects of thermal noise on the performance of the delta-sigma modulator are analyzed to reasonably allocate the switched-capacitor sizes for optimal signal to noise ratio (SNR) and minimum chip area. The coefficients in feedback path and input path are optimized to avoid the signal distortion under the full-scale input voltage range with almost no increase in total capacitance sizes. Fabricated in 0.5 µm CMOS technology and powered by a 5 V voltage supply, the proposed delta-sigma modulator can achieve 136 dB peak SNR with 16 Hz input and 137 dB dynamic range in 100 Hz signal bandwidth with an oversampling ratio of 512. The modulator dissipates 700 µA. The core chip area is 1.96 mm2. The modulator occupies 1.41 mm2 and the decimator occupies 0.55 mm2. Full article
(This article belongs to the Special Issue Design of Mixed Analog/Digital Circuits, Volume 2)
Show Figures

Figure 1

15 pages, 4559 KB  
Article
Study of a High-Precision Read-Out Integrated Circuit for Bridge Sensors
by Xiangyu Li, Pengjun Wang, Hao Ye, Haonan He and Xiaowei Zhang
Micromachines 2023, 14(11), 2013; https://doi.org/10.3390/mi14112013 - 29 Oct 2023
Cited by 1 | Viewed by 1642
Abstract
Bridge sensors are widely used in military and civilian fields, and their demand gradually increases each year. Digital sensors are widely used in the military and civilian fields. High-precision and low-power analog-to-digital converters (ADCs) as sensor read-out circuits are a research hotspot. Sigma-delta [...] Read more.
Bridge sensors are widely used in military and civilian fields, and their demand gradually increases each year. Digital sensors are widely used in the military and civilian fields. High-precision and low-power analog-to-digital converters (ADCs) as sensor read-out circuits are a research hotspot. Sigma-delta ADC circuits based on switched-capacitor topology have the advantages of high signal-to-noise ratio (SNR), good linearity, and better compatibility with CMOS processes. In this work, a fourth-order feed-forward sigma-delta modulator and a digital decimation filter are designed and implemented with a correlated double sampling technique (CDS) to suppress pre-integrator low-frequency noise. This work used an active pre-compensator circuit for deep phase compensation to improve the system’s stability in the sigma-delta modulator. The modulator’s local feedback factor is designed to be adjustable off-chip to eliminate the effect of process errors. A three-stage cascade structure was chosen for the post-stage digital filter, significantly reducing the number of operations and the required memory cells in the digital circuit. Finally, the layout design and engineering circuit were fabricated by a standard 0.35 μm CMOS process from Shanghai Hua Hong with a chip area of 9 mm2. At a 5 V voltage supply and sampling frequency of 6.144 MHz, the modulator power consumption is 13 mW, the maximum input signal amplitude is −3 dBFs, the 1 Hz dynamic range is about 118 dB, the modulator signal-to-noise ratio can reach 110.5 dB when the signal bandwidth is 24 kHz, the practical bit is about 18.05 bits, and the harmonic distortion is about −113 dB, which meets the design requirements. The output bit stream is 24 bits. Full article
(This article belongs to the Special Issue New Generation of MEMS/NEMS Sensors and Actuators)
Show Figures

Figure 1

15 pages, 1930 KB  
Article
Drought-Induced Salinity Intrusion Affects Nitrogen Removal in a Deltaic Ecosystem (Po River Delta, Northern Italy)
by Maria Pia Gervasio, Elisa Soana, Fabio Vincenzi, Monia Magri and Giuseppe Castaldelli
Water 2023, 15(13), 2405; https://doi.org/10.3390/w15132405 - 29 Jun 2023
Cited by 12 | Viewed by 2946
Abstract
In the summer of 2022, the Po River Delta (Northern Italy), a eutrophication hotspot, was severely affected by high temperatures, exceptional lack of rainfall and saline water intrusion. The effect of saline intrusion on benthic nitrogen dynamics, and in particular the N removal [...] Read more.
In the summer of 2022, the Po River Delta (Northern Italy), a eutrophication hotspot, was severely affected by high temperatures, exceptional lack of rainfall and saline water intrusion. The effect of saline intrusion on benthic nitrogen dynamics, and in particular the N removal capacity, was investigated during extreme drought conditions. Laboratory incubations of intact sediment cores were used to determine denitrification and DNRA rates at three sites along a salinity gradient in the Po di Goro, an arm of the Po River Delta. Denitrification was found to be the main process responsible for nitrate reduction in freshwater and slightly saline sites, whereas DNRA predominated in the most saline site, highlighting a switch in N cycling between removal and recycling. These results provide evidence that salinity is a key factor in regulating benthic N metabolism in transitional environments. In a climate change scenario, salinity intrusion, resulting from long periods of low river discharge, may become an unrecognized driver of coastal eutrophication by promoting the dissimilatory nitrate reduction to ammonium and N recycling of bioactive nitrogen within the ecosystem, rather than its permanent removal by denitrification. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

Back to TopTop