Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = deep-ultraviolet (UV) photodetectors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3437 KB  
Article
O2-to-Ar Ratio-Controlled Growth of Ga2O3 Thin Films by Plasma-Enhanced Thermal Oxidation for Solar-Blind Photodetectors
by Rujun Jiang, Bohan Xiao, Yuna Lu, Zheng Liang and Qijin Cheng
Nanomaterials 2025, 15(18), 1397; https://doi.org/10.3390/nano15181397 - 11 Sep 2025
Viewed by 803
Abstract
Ga2O3 is an ultra-wide bandgap semiconductor material that has attracted significant attention for deep ultraviolet photodetector applications due to its excellent UV absorption capability and reliable stability. In this study, a novel plasma-enhanced thermal oxidation (PETO) method has been proposed [...] Read more.
Ga2O3 is an ultra-wide bandgap semiconductor material that has attracted significant attention for deep ultraviolet photodetector applications due to its excellent UV absorption capability and reliable stability. In this study, a novel plasma-enhanced thermal oxidation (PETO) method has been proposed to fabricate Ga2O3 thin films on the GaN/sapphire substrate in the gas mixture of Ar and O2. By adjusting the O2-to-Ar ratio (2:1, 4:1, and 8:1), the structural, morphological, and photoelectric properties of the synthesized Ga2O3 films are systematically studied as a function of the oxidizing atmosphere. It is demonstrated that, at an optimal O2-to-Ar ratio of 4:1, the synthesized Ga2O3 thin film has the largest grain size of 31.4 nm, the fastest growth rate of 427.5 nm/h, as well as the lowest oxygen vacancy concentration of 16.61%. Furthermore, the nucleation and growth of Ga2O3 thin films on the GaN/sapphire substrate by PETO is proposed. Finally, at the optimized O2-to-Ar ratio of 4:1, the metal–semiconductor–metal-structured Ga2O3-based photodetector achieves a specific detectivity of 2.74×1013 Jones and a solar-blind/visible rejection ratio as high as 116 under a 10 V bias. This work provides a promising approach for the cost-effective fabrication of Ga2O3 thin films for UV photodetector applications. Full article
(This article belongs to the Special Issue State-of-the-Art Nanostructured Photodetectors)
Show Figures

Graphical abstract

19 pages, 4429 KB  
Article
Self-Powered Deep-Ultraviolet Photodetector Driven by Combined Piezoelectric/Ferroelectric Effects
by Vo Pham Hoang Huy and Chung Wung Bark
Nanomaterials 2024, 14(23), 1903; https://doi.org/10.3390/nano14231903 - 27 Nov 2024
Cited by 6 | Viewed by 2013
Abstract
In this study, in situ piezoelectricity was incorporated into the photoactive region to prepare a self-powered deep-ultraviolet photodetector based on a mixture of polyvinylidene fluoride (PVDF)@Ga2O3 and polyethyleneimine (PEI)/carbon quantum dots (CQDs). A ferroelectric composite layer was prepared using β-Ga [...] Read more.
In this study, in situ piezoelectricity was incorporated into the photoactive region to prepare a self-powered deep-ultraviolet photodetector based on a mixture of polyvinylidene fluoride (PVDF)@Ga2O3 and polyethyleneimine (PEI)/carbon quantum dots (CQDs). A ferroelectric composite layer was prepared using β-Ga2O3 as a filler, and the β-phase of PVDF was used as the polymer matrix. The strong piezoelectricity of β-PVDF can facilitate the separation and transport of photogenerated carriers in the depletion region and significantly reduce the dark current when the device is biased with an external bias, resulting in a high on/off ratio and high detection capability. The self-powered PD exhibited specific detectivity (D* = 3.5 × 1010 Jones), an on/off ratio of 2.7, and a response speed of 0.11/0.33 s. Furthermore, the prepared PD exhibits excellent photoresponse stability under continuous UV light, with the photocurrent retaining 83% of its initial value after about 500 s of irradiation. Our findings suggest a new approach for developing cost-effective UV PDs for optoelectronic applications in related fields. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Figure 1

11 pages, 3323 KB  
Article
Effect of Methylammonium Iodide (MACl) on MAPbI3-Based Perovskite UV-C Photodetectors
by Dong Jae Shin, Sangmo Kim and Hyung Wook Choi
Appl. Sci. 2024, 14(14), 6223; https://doi.org/10.3390/app14146223 - 17 Jul 2024
Viewed by 2211
Abstract
In this study, we fabricated deep ultraviolet (DUV) photodetectors based on perovskite thin films doped with halide materials using formamidinium bromide (FABr) and methylammonium iodide (MAI). The device was fabricated using a simple surface engineering technique by post-treating the MAPbI3 perovskite film [...] Read more.
In this study, we fabricated deep ultraviolet (DUV) photodetectors based on perovskite thin films doped with halide materials using formamidinium bromide (FABr) and methylammonium iodide (MAI). The device was fabricated using a simple surface engineering technique by post-treating the MAPbI3 perovskite film with an FABr solution. This film acts as a light absorption layer, like a depletion layer with a p-i-n (PIN) structure, with n-type of SnO2-SDBS and p-type of spiro-OMeTAD. Adding 0.10 M MACl to the MAPbI3 precursor solution during the manufacturing process could effectively reduce the trap density compared with existing films. Films with MACl added in the two-step process can control a wide band gap and improve crystallinity. In addition, the Cl atom has a smaller atomic radius than iodine and a higher electronegativity of 3.16, which can improve phase stability, and the effect of the added Cl increases the electron mobility of the perovskite, showing a fast response. Full article
Show Figures

Figure 1

11 pages, 3532 KB  
Article
Enhancement of Perovskite Photodetector Using MAPbI3 with Formamidinium Bromide
by Dong Jae Shin and Hyung Wook Choi
Energies 2024, 17(9), 2183; https://doi.org/10.3390/en17092183 - 2 May 2024
Cited by 4 | Viewed by 1780
Abstract
In this study, a perovskite-based mixed cation/anion ultraviolet photodetector with an added halide material is fabricated using perovskite combined with an ABX_3 structure. Mixed cation/anion perovskite thin films of MAPbI3/FABr are manufactured through a relatively simple solution process and employed as [...] Read more.
In this study, a perovskite-based mixed cation/anion ultraviolet photodetector with an added halide material is fabricated using perovskite combined with an ABX_3 structure. Mixed cation/anion perovskite thin films of MAPbI3/FABr are manufactured through a relatively simple solution process and employed as light-absorption layers. In the produced thin film, SnO2–sodium dodecylbenzenesulfonate acts as an electron transport layer and spiro-OMeTAD acts as a hole injection layer. Compared to a single cation/anion perovskite, the fabricated device exhibits phase stability and optoelectronic properties, and demonstrates a responsivity of 72.2 mA/W and a detectability of 4.67 × 1013 Jones. In addition, the films show an external quantum efficiency of 56%. This suggests that mixed cation/anion films can replace single cation/anion perovskite films. Thus, photodetectors based on lead halides that can be applied in various fields have recently been manufactured. Full article
(This article belongs to the Section D1: Advanced Energy Materials)
Show Figures

Figure 1

12 pages, 3185 KB  
Article
Design and Performance Evaluation of a Deep Ultraviolet LED-Based Ozone Sensor for Semiconductor Industry Applications
by Maosen Xu, Xin Tian, Yuzhe Lin, Yan Xu and Jifang Tao
Micromachines 2024, 15(4), 476; https://doi.org/10.3390/mi15040476 - 30 Mar 2024
Cited by 1 | Viewed by 2506
Abstract
Ozone (O3) is a critical gas in various industrial applications, particularly in semiconductor manufacturing, where it is used for wafer cleaning and oxidation processes. Accurate and reliable detection of ozone concentration is essential for process control, ensuring product quality, and safeguarding [...] Read more.
Ozone (O3) is a critical gas in various industrial applications, particularly in semiconductor manufacturing, where it is used for wafer cleaning and oxidation processes. Accurate and reliable detection of ozone concentration is essential for process control, ensuring product quality, and safeguarding workplace safety. By studying the UV absorption characteristics of O3 and combining the specific operational needs of semiconductor process gas analysis, a pressure-insensitive ozone gas sensor has been developed. In its optical structure, a straight-through design without corners was adopted, achieving a coupling efficiency of 52% in the gas chamber. This device can operate reliably in a temperature range from 0 °C to 50 °C, with only ±0.3% full-scale error across the entire temperature range. The sensor consists of a deep ultraviolet light-emitting diode in a narrow spectrum centered at 254 nm, a photodetector, and a gas chamber, with dimensions of 85 mm × 25 mm × 35 mm. The performance of the sensor has been meticulously evaluated through simulation and experimental analysis. The sensor’s gas detection accuracy is 750 ppb, with a rapid response time (t90) of 7 s, and a limit of detection of 2.26 ppm. It has the potential to be applied in various fields for ozone monitoring, including the semiconductor industry, water treatment facilities, and environmental research. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

15 pages, 3779 KB  
Communication
Interface Trap Effect on the n-Channel GaN Schottky Barrier-Metal–Oxide Semiconductor Field-Effect Transistor for Ultraviolet Optoelectronic Integration
by Byeong-Jun Park, Han-Sol Kim and Sung-Ho Hahm
Nanomaterials 2024, 14(1), 59; https://doi.org/10.3390/nano14010059 - 25 Dec 2023
Cited by 1 | Viewed by 3057
Abstract
Ultraviolet (UV) photodetectors are key devices required in the industrial, military, space, environmental, and biological fields. The Schottky barrier (SB)-MOSFET, with its high hole and electron barrier, and given its extremely low dark current, has broad development prospects in the optoelectronics field. We [...] Read more.
Ultraviolet (UV) photodetectors are key devices required in the industrial, military, space, environmental, and biological fields. The Schottky barrier (SB)-MOSFET, with its high hole and electron barrier, and given its extremely low dark current, has broad development prospects in the optoelectronics field. We analyze the effects of trap states on the output characteristics of an inversion mode n-channel GaN SB-MOSFET using TCAD simulations. At the oxide/GaN interface below the gate, it was demonstrated that shallow donor-like traps were responsible for degrading the subthreshold swing (SS) and off-state current density (Ioff), while deep donor-like traps below the Fermi energy level were insignificant. In addition, shallow acceptor-like traps shifted the threshold voltage (Vt) positively and deteriorated the SS and on-state current density (Ion), while deep acceptor-like traps acted on a fixed charge. The output characteristics of the GaN SB-MOSFET were related to the resistive GaN path and the tunneling rate due to the traps at the metal (source, drain)/GaN interface. For the UV responses, the main mechanism for the negative Vt shift and the increases in the Ion and spectral responsivity was related to the photo-gating effect caused by light-generated holes trapped in the shallow trap states. These results will provide insights for UV detection technology and for a high-performance monolithic integration of the GaN SB-MOSFET. Full article
(This article belongs to the Special Issue Nanoelectronics: Materials, Devices and Applications)
Show Figures

Figure 1

13 pages, 1985 KB  
Article
Deep-Ultraviolet Transparent Electrode Design for High-Performance and Self-Powered Perovskite Photodetector
by Thi My Huyen Nguyen, Manh Hoang Tran and Chung Wung Bark
Nanomaterials 2023, 13(22), 2979; https://doi.org/10.3390/nano13222979 - 20 Nov 2023
Cited by 10 | Viewed by 2494
Abstract
In this study, a highly crystalline and transparent indium-tin-oxide (ITO) thin film was prepared on a quartz substrate via RF sputtering to fabricate an efficient bottom-to-top illuminated electrode for an ultraviolet C (UVC) photodetector. Accordingly, the 26.6 nm thick ITO thin film, which [...] Read more.
In this study, a highly crystalline and transparent indium-tin-oxide (ITO) thin film was prepared on a quartz substrate via RF sputtering to fabricate an efficient bottom-to-top illuminated electrode for an ultraviolet C (UVC) photodetector. Accordingly, the 26.6 nm thick ITO thin film, which was deposited using the sputtering method followed by post-annealing treatment, exhibited good transparency to deep-UV spectra (67% at a wavelength of 254 nm), along with high electrical conductivity (11.3 S/cm). Under 254 nm UVC illumination, the lead-halide-perovskite-based photodetector developed on the prepared ITO electrode in a vertical structure exhibited an excellent on/off ratio of 1.05 × 104, a superb responsivity of 250.98 mA/W, and a high specific detectivity of 4.71 × 1012 Jones without external energy consumption. This study indicates that post-annealed ITO ultrathin films can be used as electrodes that satisfy both the electrical conductivity and deep-UV transparency requirements for high-performance bottom-illuminated optoelectronic devices, particularly for use in UVC photodetectors. Full article
Show Figures

Figure 1

15 pages, 7617 KB  
Article
Growth of β-Ga2O3 Single-Crystal Microbelts by the Optical Vapor Supersaturated Precipitation Method
by Yongman Pan, Qiang Wang, Yinzhou Yan, Lixue Yang, Lingyu Wan, Rongcheng Yao and Yijian Jiang
Crystals 2023, 13(5), 801; https://doi.org/10.3390/cryst13050801 - 10 May 2023
Cited by 9 | Viewed by 3289
Abstract
Monoclinic β-Ga2O3 microbelts were successfully fabricated using a one-step optical vapor supersaturated precipitation method, which exhibited advantages including a free-standing substrate, prefect surface, and low cost. The as-grown microbelts possessed a well-defined geometry and perfect crystallinity. The dimensions [...] Read more.
Monoclinic β-Ga2O3 microbelts were successfully fabricated using a one-step optical vapor supersaturated precipitation method, which exhibited advantages including a free-standing substrate, prefect surface, and low cost. The as-grown microbelts possessed a well-defined geometry and perfect crystallinity. The dimensions of individual β-Ga2O3 microbelts were a width of ~50 μm, length of ~5 mm, and thickness of ~3 μm. The SEM, XRD, HRTEM, XPS, and Raman spectra demonstrated the high single-crystalline structure of β-Ga2O3 microbelts. Twelve frequency modes were activated in Raman spectra. The optical band gap of the β-Ga2O3 microbelt was calculated to be ~4.45 eV. Upon 266 nm excitation, 2 strong UV emissions occurred in photoluminescence spectra through the radiative recombination of self-trapped excitons, and the blue emission band was attributed to the presence of donor-acceptor-pair transition. The individual β-Ga2O3 microbelt was employed as metal-semiconductor-metal deep-ultraviolet photodetector, which exhibits the photoresponse under 254 nm. This work provides a simple and economical route to fabricate high-quality β-Ga2O3 single-crystal microbelts, which should be a potential synthetic strategy for ultra-wide bandgap semiconductor materials. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

11 pages, 5509 KB  
Article
Improved Performance of Perovskite Deep-Ultraviolet Photodetector Using FAPb(I/Br)3 as Light Absorption Layer
by Soo Beom Hong, Sangmo Kim and Hyung Wook Choi
Coatings 2023, 13(2), 341; https://doi.org/10.3390/coatings13020341 - 2 Feb 2023
Cited by 4 | Viewed by 2531
Abstract
Constitutive engineering by adding halide anions is one effective way to improve the performance of photodetectors by adjusting the bandgap. In this study, a mixed-anion perovskite thin film was facile fabricated by post-processing of a pure FAPbI3 film with a formamidinium bromide [...] Read more.
Constitutive engineering by adding halide anions is one effective way to improve the performance of photodetectors by adjusting the bandgap. In this study, a mixed-anion perovskite thin film was facile fabricated by post-processing of a pure FAPbI3 film with a formamidinium bromide (FABr) solution. In addition, the manufactured thin film was used as the light absorption layer, SnO2-SDBS as the electron transport layer, and spiro-OMeTAD as the hole injection layer to fabricate a deep ultraviolet(UV) photodetector. The device exhibited a response of 43.8 mA/W−1, a detectability of 3.56 × 1013 Jones, and an external quantum efficiency of 38%. Therefore, this study is promising for various applications in the deep-UV wavelength region. Full article
(This article belongs to the Special Issue Optical Thin Film and Photovoltaic (PV) Related Technologies)
Show Figures

Figure 1

11 pages, 3521 KB  
Article
Study on a Mixed-Cation Halide Perovskite-Based Deep-Ultraviolet Photodetector
by Ga In Choi, Chung Wung Bark and Hyung Wook Choi
Coatings 2023, 13(2), 248; https://doi.org/10.3390/coatings13020248 - 20 Jan 2023
Cited by 7 | Viewed by 3391
Abstract
Deep-ultraviolet (UV) sensing has attracted significant interest because of its wide range of applications. A mixed-cation halide perovskite-based photodetector prepared by mixing CH3NH3PbX3 (X = I, Br, and Cl) and HC(NH2)PbX3 (X = I, Br, [...] Read more.
Deep-ultraviolet (UV) sensing has attracted significant interest because of its wide range of applications. A mixed-cation halide perovskite-based photodetector prepared by mixing CH3NH3PbX3 (X = I, Br, and Cl) and HC(NH2)PbX3 (X = I, Br, and Cl) exhibits high stability and excellent light absorption. In this study, perovskite was prepared by mixing CH3NH3+ (FA+) and HC(NH2)2+ (MA+) cations using I, Br, and Cl halide anions. The bandgaps of the prepared perovskites increased to 1.48, 2.25, and 2.90 eV with I-, Br-, and Cl-, respectively, and the light absorption spectra shifted to shorter wavelengths. An increase in the redshift of the light absorption led to an increase in the photocurrent. The FAPbCl3-MAPbCl3-based photodetector showed a high responsivity of 5.64 mA/W, a detectivity of 4.03 × 1011, and an external quantum efficiency of 27.3%. The results suggested that the FAPbCl3-MAPbCl3 perovskite is suitable for deep-UV light sensing and is an excellent candidate for the fabrication of a sensitive photodetector. Full article
(This article belongs to the Special Issue Optical Thin Film and Photovoltaic (PV) Related Technologies)
Show Figures

Figure 1

10 pages, 1970 KB  
Communication
Enhancing the UV Response of All-Inorganic Perovskite Photodetectors by Introducing the Mist-CVD-Grown Gallium Oxide Layer
by Zeyulin Zhang, Yanshuang Ba, Dazheng Chen, Pengru Yan, Qingwen Song, Yuming Zhang, Weidong Zhu, Chunfu Zhang and Yue Hao
Appl. Sci. 2023, 13(2), 1112; https://doi.org/10.3390/app13021112 - 13 Jan 2023
Cited by 4 | Viewed by 3027
Abstract
All-inorganic perovskites, with their low-cost, simple processes and superior heat stability, have become potential candidate materials for photodetectors (PDs). However, they have no representative responsivity in the deep-ultraviolet (UV) wavelength region. As a new-generation semiconductor, gallium oxide (Ga2O3), which [...] Read more.
All-inorganic perovskites, with their low-cost, simple processes and superior heat stability, have become potential candidate materials for photodetectors (PDs). However, they have no representative responsivity in the deep-ultraviolet (UV) wavelength region. As a new-generation semiconductor, gallium oxide (Ga2O3), which has an ultrawide bandgap, is appropriate for solar-blind (200 nm–280 nm) deep-UV detection. In this work, ultrawide-bandgap Ga2O3 was introduced into an inorganic perovskite device with a structure of sapphire/β-Ga2O3/Indium Zinc Oxide (IZO)/CsPbBr3. The performance of this perovskite PD was obviously enhanced in the deep UV region. A low-cost, vacuum-free Mist-CVD was used to realize the epitaxial growth of β-Ga2O3 film on sapphire. By introducing the Ga2O3 layer, the light current of this heterojunction PD was obviously enhanced from 10−8 to 10−7, which leds its detectivity (D*) to reach 1.04 × 1012 Jones under a 254 nm light illumination with an intensity of 500 μW/cm2 at a 5 V bias. Full article
Show Figures

Figure 1

9 pages, 2192 KB  
Article
Lead-Free Copper-Based Perovskite Nanonets for Deep Ultraviolet Photodetectors with High Stability and Better Performance
by Shuhong Xu, Jieqin Tang, Junfeng Qu, Pengfei Xia, Kai Zhu, Haibao Shao and Chunlei Wang
Nanomaterials 2022, 12(19), 3264; https://doi.org/10.3390/nano12193264 - 20 Sep 2022
Cited by 11 | Viewed by 2781
Abstract
Considering practical application and commercialization, the research of non-toxic and stable halide perovskite and its application in the field of photoelectric detection have received great attention. However, there are relatively few studies on deep ultraviolet photodetectors, and the perovskite films prepared by traditional [...] Read more.
Considering practical application and commercialization, the research of non-toxic and stable halide perovskite and its application in the field of photoelectric detection have received great attention. However, there are relatively few studies on deep ultraviolet photodetectors, and the perovskite films prepared by traditional spin-coating method have disadvantages such as uneven grain size and irregular agglomeration, which limit their device performance. Herein, uniform and ordered Cs3Cu2I5 nanonet arrays are fabricated based on monolayer colloidal crystal (MCC) templates prepared with 1 μm polystyrene (PS) spheres, which enhance light-harvesting ability. Furthermore, the performance of the lateral photodetector (PD) is significantly enhanced when using Cs3Cu2I5 nanonet compared to the pure Cs3Cu2I5 film. Under deep ultraviolet light, the Cs3Cu2I5 nanonet PD exhibits a high light responsivity of 1.66 AW−1 and a high detection up to 2.48 × 1012 Jones. Meanwhile, the unencapsulated PD has almost no response to light above 330 nm and shows remarkable stability. The above results prove that Cs3Cu2I5 nanonet can be a great potential light-absorbing layer for solar-blind deep ultraviolet PD, which can be used as light absorption layer of UV solar cell. Full article
(This article belongs to the Special Issue Solar Thin Film Nanomaterials and Nanodevices)
Show Figures

Figure 1

11 pages, 2135 KB  
Article
Enhanced Deep Ultraviolet Photoresponse in Ga doped ZnMgO Thin Film
by Mao Ye, Dongbo Wang, Shujie Jiao and Lang Chen
Micromachines 2022, 13(7), 1140; https://doi.org/10.3390/mi13071140 - 19 Jul 2022
Cited by 4 | Viewed by 2207
Abstract
High Mg content (60%) ZnMgO samples with and without Ga dope were grown by an RF magnetron sputtering system. The effect of Ga dope on the ZnMgO sample and the respective ultraviolet photodetectors (UVPD) device’s performance were carefully studied by various experimental methods. [...] Read more.
High Mg content (60%) ZnMgO samples with and without Ga dope were grown by an RF magnetron sputtering system. The effect of Ga dope on the ZnMgO sample and the respective ultraviolet photodetectors (UVPD) device’s performance were carefully studied by various experimental methods. The investigations of the structure and optical properties of the ZnMgO sample established that the Ga doped sample has a better crystal quality and larger band gap (5.54 eV). The current-voltage characteristics indicate that both the photocurrent and dark current were enhanced after Ga dope. Under 12 V bias, the undoped UVPD show two spectral response peaks at 244 nm and 271 nm with a responsivity of 1.9 A/W and 0.38 A/W, respectively. While the Ga doped UVPD showed only one response peak at 241 nm and the deep UV responsibility up to 8.9 A/W;, as the bias increased from 12 V to 60 V, the responsiveness raised to 52 A/W, with a signal to noise ratio (241 nm/700 nm) as high as 105. Combining the results of XRD, PL spectrum and XPS, the enhanced ultraviolet photoresponse of the Ga dope device contributed to improving the crystal quality and “dopant-defect pairing effect” caused by Ga doping, which led to a considerable reduction in the number of ionized impurities in the scatting centers, and enhanced the carrier’s mobility. Our work demonstrates that even a high Mg content ZnMgO can exhibit enhanced UV performance after a Ga dope due to the dopant-defect pairing effect, which confirmed the advantage of the use of ZnMgO in the deep-UV region. Full article
(This article belongs to the Special Issue Emerging Technologies in Wide-Bandgap Semiconductor Devices)
Show Figures

Figure 1

10 pages, 2075 KB  
Communication
Improvement of Schottky Contacts of Gallium Oxide (Ga2O3) Nanowires for UV Applications
by Badriyah Alhalaili, Ahmad Al-Duweesh, Ileana Nicoleta Popescu, Ruxandra Vidu, Luige Vladareanu and M. Saif Islam
Sensors 2022, 22(5), 2048; https://doi.org/10.3390/s22052048 - 6 Mar 2022
Cited by 11 | Viewed by 4256
Abstract
Interest in the synthesis and fabrication of gallium oxide (Ga2O3) nanostructures as wide bandgap semiconductor-based ultraviolet (UV) photodetectors has recently increased due to their importance in cases of deep-UV photodetectors operating in high power/temperature conditions. Due to their unique [...] Read more.
Interest in the synthesis and fabrication of gallium oxide (Ga2O3) nanostructures as wide bandgap semiconductor-based ultraviolet (UV) photodetectors has recently increased due to their importance in cases of deep-UV photodetectors operating in high power/temperature conditions. Due to their unique properties, i.e., higher surface-to-volume ratio and quantum effects, these nanostructures can significantly enhance the sensitivity of detection. In this work, two Ga2O3 nanostructured films with different nanowire densities and sizes obtained by thermal oxidation of Ga on quartz, in the presence and absence of Ag catalyst, were investigated. The electrical properties influenced by the density of Ga2O3 nanowires (NWs) were analyzed to define the configuration of UV detection. The electrical measurements were performed on two different electric contacts and were located at distances of 1 and 3 mm. Factors affecting the detection performance of Ga2O3 NWs film, such as the distance between metal contacts (1 and 3 mm apart), voltages (5–20 V) and transient photocurrents were discussed in relation to the composition and nanostructure of the Ga2O3 NWs film. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

9 pages, 36682 KB  
Article
Ultrafast Deep-Ultraviolet Laser-Induced Voltage Response of Pyrite
by Xuecong Liu, Yudong Li, Haoqiang Wu, Yawen Yu, Honglei Zhan, Xinyang Miao and Kun Zhao
Micromachines 2021, 12(12), 1555; https://doi.org/10.3390/mi12121555 - 13 Dec 2021
Cited by 8 | Viewed by 2784
Abstract
Ultrafast, high-sensitivity deep-ultraviolet (UV) photodetectors are crucial for practical applications, including optical communication, ozone layer monitoring, flame detection, etc. However, fast-response UV photodetectors based on traditional materials suffer from issues of expensive production processes. Here, we focused on pyrite with simultaneously cheap production [...] Read more.
Ultrafast, high-sensitivity deep-ultraviolet (UV) photodetectors are crucial for practical applications, including optical communication, ozone layer monitoring, flame detection, etc. However, fast-response UV photodetectors based on traditional materials suffer from issues of expensive production processes. Here, we focused on pyrite with simultaneously cheap production processes and ultrafast response speed. Nanoseconds photovoltaic response was observed under UV pulsed laser irradiation without an applied bias at room temperature. In addition, the response time of the laser-induced voltage (LIV) signals was ~20 ns, which was the same as the UV laser pulse width. The maximum value of the responsivity is 0.52 V/mJ and the minimum value of detectivity was about to ~1.4 × 1013 Jones. When there exists nonuniform illumination, a process of diffusion occurs by which the carriers migrate from the region of high concentration toward the region of low concentration. The response speed is limited by a factor of the diffusion of the carriers. With an increment in laser energy, the response speed of LIV is greatly improved. The high response speed combined with low-cost fabrication makes these UV photodetectors highly attractive for applications in ultrafast detection. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in Materials and Processing 2021)
Show Figures

Figure 1

Back to TopTop