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Abstract: Ultraviolet (UV) photodetectors are key devices required in the industrial, military, space,
environmental, and biological fields. The Schottky barrier (SB)-MOSFET, with its high hole and
electron barrier, and given its extremely low dark current, has broad development prospects in
the optoelectronics field. We analyze the effects of trap states on the output characteristics of an
inversion mode n-channel GaN SB-MOSFET using TCAD simulations. At the oxide/GaN interface
below the gate, it was demonstrated that shallow donor-like traps were responsible for degrading the
subthreshold swing (SS) and off-state current density (Ioff), while deep donor-like traps below the
Fermi energy level were insignificant. In addition, shallow acceptor-like traps shifted the threshold
voltage (Vt) positively and deteriorated the SS and on-state current density (Ion), while deep acceptor-
like traps acted on a fixed charge. The output characteristics of the GaN SB-MOSFET were related
to the resistive GaN path and the tunneling rate due to the traps at the metal (source, drain)/GaN
interface. For the UV responses, the main mechanism for the negative Vt shift and the increases in the
Ion and spectral responsivity was related to the photo-gating effect caused by light-generated holes
trapped in the shallow trap states. These results will provide insights for UV detection technology
and for a high-performance monolithic integration of the GaN SB-MOSFET.

Keywords: gallium nitride; Schottky barrier-MOSFET; UV optoelectronics; interface defect

1. Introduction

The ability to characterize ultraviolet (UV) emission spectra is important because it can
provide important insights into the semiconductor industry, military aircraft survivability
equipment, space-based communication, solar science, and even biological agents [1–11].
Within the semiconductor industry, extreme UV (EUV) lithography technology using a wave-
length of 13.5 nm has facilitated the creation of a complex integrated circuit fabrication process
for the most advanced microchips (7, 5, and 3 nm modes). Moreover, EUV detectors are the
key components used for monitoring and calibrating photon beam intensity [4–6]. In the
military field, missile warning receivers (MWRs) using UV signal detection have been studied
to counter missile systems such as man-portable air defense systems (MANPADS) [8,9]. In
these systems, spectra from 240 to 280 nm are applied to detect the tail flames of approaching
missiles. In addition, UV reflection monitoring technologies, such as spaceborne imagers
(e.g., satellites) and unmanned aerial vehicles (UAVs), are important components for the
tracking and managing of missiles, aircraft, and the Earth’s resources [11]. Accordingly, there
is increasing demand for advanced-performance UV photodetectors that can detect light in
the UV spectral region and for the monolithic integration of UV optoelectronic devices.

Materials related to gallium nitride (GaN), which have a direct wide bandgap, are
excellent candidates for UV photodetectors due to their excellent solar blindness, high
quantum efficiency, and superior thermal and chemical stability [12–15]. Ternary alloys,
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such as aluminum gallium nitride (AlxGa1−xN), are suitable semiconductors for UV detec-
tion applications because AlxGa1−xN has an energy gap that is tunable from 3.4 to 6.2 eV
depending on the Al mole fraction. Moreover, the cut-off wavelength according to the Al
mole fraction of AlGaN can be controlled from 365 to 200 nm [16].

Among the various types of GaN-based UV photodetectors, the metal–semiconductor–
metal (MSM) type is an attractive candidate because of its very simple fabrication process
and high UV-to-visible rejection ratio (UVRR) due to the back-to-back Schottky barrier
structure. In addition, Schottky barrier (SB)-MOSFETs have the same structure as MSM-
type photodetectors (except for the gate region), meaning that they can be easily integrated
at both the circuit and system levels. In our recent study, we demonstrated the operation of
a hybrid GaN UV active pixel sensor (APS) with an Si CMOS APS controller and a GaN
UV passive pixel sensor (PPS) using a GaN SB-MOSFET, both of which applied MSM-type
UV photodetectors [17,18]. However, the sensing performance of these fabricated APS
and PPS devices exhibited a high dark current, low responsivity, and poor UVRR, which
was attributed to their low-quality epitaxial layer and high defect density. A high dark
current caused by trap-assisted leakage through defects deteriorates the photo-response
characteristics of UV photodetectors, resulting in poor detection capability [19–22]. More-
over, during imaging processes, the high noise (fixed pattern and temporal) caused by
the defects decreases the signal-to-noise ratio (SNR), adversely affecting the quality of
the sensing image [11,22–27]. Moreover, since these defects result in current collapse and
poor breakdown voltages in GaN-based power semiconductors, reducing both the defects
and the dark current are essential challenges to be addressed. Ultimately, it is necessary
to investigate the causality of defects and interface traps quantitatively to achieve high-
performance optoelectronic integrated circuits, such as UV pixel sensors. Owing to their
high hole and electron barrier due to the p-type GaN, and given their extremely low dark
current and simple fabrication process, inversion mode n-channel GaN SB-MOSFETs are
expected to become promising candidates for use as UV photodetectors.

Based on the reported information about traps in GaN materials, we conducted a
simulation to examine the effects of both donor- and acceptor-like trap states at the GaN
interface, including the quantitative values of defects. We also analyzed the electrical
characteristics of inversion mode n-channel SB-MOSFETs according to the interface trap
state levels moving from the band edge to the midgap. By adjusting the defect density in
the simulation, the output current (ID) was closely matched to the measured data from
published work, providing insights into the interface defects distributed in fabricated
devices. For UV optoelectronics, it was confirmed that the Vt shift and spectral responsivity
were related to the photo-gating effect caused by light-generated holes trapped in the
shallow states.

2. Device Simulation Methodology
2.1. Device Structure and Simulation Models

Figure 1 display two-dimensional view of a simulated inversion mode n-channel GaN
Schottky barrier (SB)-MOSFET, which can be applied as UV photodetectors and switching
transistors in image sensors [28,29]. All the device parameters of the GaN SB-MOSFET
reported in [28] were repeated for this simulation study. The carrier concentration of the
bulk p-type GaN used in the simulation was set to 2.7 × 1017 cm−3, which was slightly
lower than the reported value of 8.6 × 1017 cm−3. The trap regions A and B refer to the
different models of the trap state distribution. In the Silvaco Atlas 2D simulation, the
distribution of the trap states is defined using two models: discrete trap state distribution
and Gaussian trap state distribution. In this simulation study, the discrete trap state
distribution model was used for trap states under the metal (source, drain)/GaN interface,
and the Gaussian trap state distribution model was employed for trap states under the
SiO2/GaN interface [30]. Table 1 lists the device parameters of the reported and simulated
inversion mode n-channel GaN SB-MOSFETs used in the Silvaco Atlas 2D simulator.
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Figure 1. Schematic cross-sectional view of a simulated inversion mode n-channel GaN SB-MOSFET
(directly extracted from the TCAD simulation results).

Table 1. Device parameters for the reported and simulated GaN SB-MOSFETs.

Device Parameter Reported Values [28] Simulated Values

S-D Schottky barrier [eV] 0.2–0.3 0.3

SiO2 thickness [nm] 20 20

p-GaN carrier density [cm−3] 8.6 × 1017 2.7 × 1017

GaN thickness [µm] 0.7 0.7

Gate work function [eV] 5.0–5.1 5.0

Gate length [µm] 10 10

Gate width [µm] 30 30

The Silvaco Atlas 2D simulations were performed using the universal Schottky tunnel-
ing model (UST) and the tunneling probability was determined using the WKB approxima-
tion. In this model, the tunneling current is represented by the localized tunneling rates
at grid locations near the Schottky contact. In addition, the thermionic emission model,
image force barrier lowering model, Shockley–Read–Hall (SRH) recombination, Auger
recombination, the field-dependent mobility model, and the inversion layer mobility model
reported by Lombadi were employed [30].

2.2. Defect Models

Most of the interface traps were experimentally identified using the DLTS/DLOS
method. In this simulation study, two types of interface trap states present in the observed
GaN were studied. First, donor-like trap states were considered, which originated from
the nitrogen vacancies (VN) and interstitial carbon (CI). The formation energies of the
VN have been reported as shallow donor levels of 0.06 eV [31] and 0.25 eV [32] from the
conduction band edge. Moreover, during decomposition and reformation in GaN epitaxial
growth at temperatures of 600–1100 ◦C, nitrogen dissociated from the GaN surface and
formed N2 and NH3 molecules, resulting in a nitrogen-segregated surface that could be
a source of VN [33–35]. In contrast, the CI was related to dislocations and/or residual
carbon impurities that occurred during epitaxial growth, which manifested as deep donor
behavior in p-type GaN [36–38]. These states were reported to be shallow donor levels with
energies of 1.28 [36] and 1.35 eV [37] from the conduction band edge. Second, acceptor-like
trap states were considered that originated from gallium vacancies (VGa), residual MgGa,
residual C, and substitutional carbon (CN) [33,37,39]. Trap states located at Ec−1.5 eV have
been employed in various GaN-based device [40–43]. The positive interface fixed charge
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density (Nf) was considered as 2.2 × 1012 cm−2. It has also been reported that the Ga-face
of GaN crystals has a positive surface polarization charge of 1013 cm−2, while the N-face of
GaN has a negative value [44–46].

As depicted in Figures 1 and 2, and in Table 2, the donor- and acceptor-like trap states
were defined as a defect model using the Gaussian distribution in the SiO2/GaN interface
and a trap model using the discrete trap level at the metal/GaN interface [30,47,48]. Table 2
presents a summary of the trap energy positions and origins of the trap states in the c-plane
GaN applied in this simulation study.
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Table 2. Summary of the interface trap states for c-plane p-type GaN used in the simulation study.

Position Distribution Nature Origin Trap Level
from Ec

Reported
Density [cm−3]

Used Density in This Work
[cm−2eV−1]

Metal/GaN
interface (Trap

Region A)
Discrete level

Donor

VN * 0.06 — 2.1 × 1017 cm−3

VN or
carbon-related 0.25 1.7×1014 7.0 × 1017 cm−3

Acceptor
— 1.5 2.4×1016 7.0 × 1017 cm−3

VGa, VGa-H
complexes 2.6 2.6×1016 1.0 × 1017 cm−3

SiO2/GaN
interface (Trap

Region B)
Gaussian

Donor

VN 0.06 — 2.5 × 1012

VN or
carbon-related 0.25 1.7×1014 4.0 × 1012

CI * 1.28 1.0×1014 4.2 × 1011

CI 1.35 7.2×1015 7.8 × 1011

Acceptor

VGa *, VGa-H
complexes 2.6 2.6×1016 1.5 × 1011

Residual MgGa
and C acceptor 3.22 1.3×1016 2.5 × 1011

CN * 3.28 3.6×1016 4.0 × 1011

* VN is the nitrogen vacancy, VGa is the gallium vacancy, CI is the interstitial carbon, and CN is the substitu-
tional carbon.

Figure 3a displays the simulated and experimental transfer curves of the inversion
mode n-channel GaN SB-MOSFET achieved using the combinations of interface traps listed
in Table 2. Figure 3b displays the simulated and experimental output characteristics, which
established the validity of the simulation used in this study.
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2.3. Effect of Interface Trap States

Interface traps modify the localized electric field and energy band profiles, and they
change the barrier parameters. The ionization probabilities of the trap state are expressed
as follows [49]:

N+
TD = NTD/

(
1 + gDe

EF−ET
kT

)
, (1)

N−
TA = NTA/

(
1 + gAe

ET−EF
kT

)
, (2)

where N+
TD and N−

TA are the numbers of ionized interface donor- and acceptor-like traps,
NTD and NTA are the total interface trap state densities, gD and gA are the degeneracy
factors, and ET and EF are the trap and Fermi energy levels, respectively.

Figure 4a shows the energy band diagram of the simulated inversion mode n-channel
GaN SB-MOSFET extracted along the cutline of X−X’ of Figure 1. Figure 4b displays a
contour map of the current density at a VGS of 4.0 V and a VDS of 1.0 V according to the type
of trap state at the SiO2/GaN interface, where both the donor- and acceptor-like trap state
densities were 5.0 × 1012 cm−2eV−1. The current densities according to the no-trap state
condition, donor-like trap states, and acceptor-like trap states were determined as 9.7 × 104,
1.2 × 105, and 1.5 × 103 A/cm2, respectively. The SiO2/GaN interface traps changed the
electron concentration in the channel, which significantly affected the Ioff, on-state current
(Ion), Vt, SS, Ron, and BV of the MOSFETs.

As displayed in Figure 5a,b, energy band diagrams at the metal/GaN interface were
extracted along the cutlines of Y−Y’ and Z−Z’ at a VGS of 4.0 V. The energy band diagram
corresponding to the cutlines of Y−Y’ and Z−Z’ means that variations in the Schottky
barrier height and depletion width due to the trap states are affected by the gate bias
voltage. Owing to band bending by the gate bias voltage, the barrier height and depletion
width decrease as the metal/GaN interface approaches closer to the gate electrode.

Figure 5a,b demonstrate that the Schottky barrier height and the depletion width changed
depending on the ionized traps at the metal/GaN interface and band bending by the gate
bias voltage. This resulted in changes in the Schottky barrier tunneling probability and,
consequently, the tunneling current (JT) due to thermionic field emissions (TFEs) [50,51].
Figure 5c displays a contour map of the current density at a VGS of 4.0 V and a VDS of 1.0 V
according to the type of trap state at the metal/GaN interface. The donor- and acceptor-like
trap state densities were set to 1.0 × 1017 cm−3. The current densities according to the no-trap
state condition, donor-like trap states, and acceptor-like trap states were revealed as 9.7 × 104,
1.5 × 105, and 4.4 × 104 A/cm2, respectively. As shown in Figure 5, movement of electrons
supplied from the source is expected to be the dominant cutline of Y−Y’.
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Figure 5. (a) Energy band diagram at the metal/GaN interface along the cutline of Y−Y’ (which has
a strong influence on the gate bias voltage) at a VGS of 4.0 V in Figure 1; (b) metal/GaN interface
along the cutline of Z−Z’ (which has a weak influence on the gate bias voltage) at a VGS of 4.0 V in
Figure 1. Inset is an energy band diagram of the metal/GaN interface under the zero-bias condition;
and (c) contour map of the total current density at a VGS of 4.0 V and VDS of 1.0 V according to the
type of trap state at the metal/GaN interface.
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3. Results and Discussion
3.1. Static Characteristics of the GaN SB-MOSFET

Figure 6a,b display the transfer characteristics of the inversion mode n-channel GaN
SB-MOSFETs as the SiO2/GaN interface trap state levels move from the band edge to the
midgap. The concentration of donor- and acceptor-like traps was set to 5.0 × 1012 cm−2eV−1,
and the captured cross-sections of the electrons and holes were set to 1.1 × 10−15 cm−2.
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As displayed in Figure 6a, the Ioff for the GaN SB-MOSFET without trap states was
2.6 × 10−21 A/mm, although it increased significantly to 2.6 × 10−10 and 3.1 × 10−13 A/mm
when the donor-like traps of (Ec−0.06) and (Ec−0.25) associated with the VN were dis-
tributed, respectively. This result indicated that a large number of shallow donor-like
trap states had already ionized under the zero-bias condition because the (EF−ET) was
sufficiently low to ionize most of the trap states, as demonstrated in Equation (1). The
positive ionized donor-like traps increased the electric potential of the SiO2/GaN interface
and accumulated electrons in the channel. Owing to this high electron concentration in
the channel, the depletion regions of both the source and drain ends of the channel were
further reduced, resulting in the barrier tunneling, as indicated in Figure 5a.

The subthreshold swings (SSs) in the shallow trap conditions of (Ec−0.06) and (Ec−0.25)
were 358 and 227 mV/decade, respectively. The positive gate bias (VGS) shifted the trap
energy level closer to the Fermi energy level, which modified the ionization rate of the
donor-like trap states, which resulted in increases in the interface capacitance (Cit) and
SS. In comparison, the Ioff and SS for the deep donor-like trap states of (Ec−1.28) and
(Ec−1.35) were unchanged when compared to that of the GaN SB-MOSFET without trap
states. Importantly, since the (Ec−EF) of the SiO2/GaN interface in this simulation study
was 1.09 eV, the trap states of (Ec−1.28) and (Ec−1.35) located below the Fermi energy
level resulted in a high probability of being filled with electrons, causing a poor number
of ionized donor-like traps. Unlike Figure 6b, the Vt and Ion barely altered, which was
attributed to the reduced ionization as the conduction band approached the Fermi energy
level due to the positive VGS. From the simulation results, we concluded that the shallow
trap-related nitrogen vacancy (VN) shall be carefully reduced in the top epitaxial layer of
the MOSFET.

As displayed in Figure 6b, the Ion of the GaN SB-MOSFET without trap states at a VGS
of 5.0 V was 5.16 mA/mm, although this decreased to 2.32 mA/mm when the acceptor-like
trap states were distributed. In particular, the Ion of the GaN SB-MOSFET in consideration of
all the acceptor-like trap states was 7.2 × 10−12 mA/mm, which was an order of magnitude
of approximately 10−12 lower than for the GaN-SB MOSFET without the trap states. This
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result indicated that the negative charge property corresponding to the sum of the ionized
acceptor-like traps significantly reduced the electric potential at the SiO2/GaN interface,
resulting in an increase in the Vt. The ionized acceptor-like traps would enhance impurity
ion scattering and channel resistance, while electrons accumulated due to ionized donor-
like traps screened the electric field associated with the positive charge of the ionized
donor-like traps at the interface. Furthermore, due to the low electron concentration of
the channel, the depletion width near the Schottky interface expanded. This resulted in
enhanced relaxation of the electric field near the Schottky interface, causing the low barrier
tunneling probability and Ion. The Vt of the GaN SB-MOSFET with an acceptor-like trap
state density of 5.0 × 1012 cm−2eV−1 was 2.5 V, representing an increase compared with
the value of 1.7 V without trap states. In the subthreshold region, the acceptor-like trap
state exhibited a different inversion process as it moved from a deep to a shallow trap state.
The trap states of (Ec−3.28), (Ec−3.22), and (Ec−2.6) were distributed deeply below the
Fermi energy level under a zero-bias condition, which resulted in an ionization probability
of 1.0. This indicated that there was no deterioration in the SS because the charge variation
of the ionized acceptor-like trap according to the positive VGS was insignificant. Moreover,
the trap states of (Ec−0.6) and (Ec−0.4) were distributed above the Fermi energy level
under a zero-bias condition. When the VGS was applied, each trap state level sequentially
approached the Fermi energy level, causing a high ionization probability. Owing to the
charge variation caused by the generation of the ionized acceptor-like traps at the VGS
values of 0.56 and 0.78 V, as displayed in Figure 6b, the SS increased to 273 mV/decade.
This result indicated a deterioration compared with the value of 65 mV/decade without
trap states. Hence, this affected the device’s switching performance significantly, while
the donor-like traps had no significant effect on the device’s on-state performance due to
their neutral-only behavior according to the positive VGS. In addition, the trap densities of
the shallower levels (such as VN) and the dislocation-related point defects due to the poor
epitaxial growth should initially be reduced for improved switching performance.

Figure 7 displays the transfer characteristics of the GaN SB-MOSFET according to the
donor- and acceptor-like trap states at the metal/GaN interface. Figure 8 also displays
the energy band diagram and tunneling rate of the GaN SB-MOSFET from the source to
drain according to the trap state at the metal/GaN interface, as extracted using a TCAD
simulation. In Figure 7a, the Ioff of the GaN SB-MOSFET with donor-like trap states at the
drain/GaN interface was 9.2 × 10−19 A/mm, indicating a substantive reduction compared
with the value of 2.6 × 10−21 A/mm with donor-like trap states at the source/GaN interface.
As displayed in Figure 8a, the ionized donor-like traps accumulated electrons near the
Schottky interface, reduced the depletion region, and fully connected the channel to the
donor-like trap region. This resulted in an increase in the tunneling rate and a decrease
in the series resistance (R1 and R2) between the source/drain end of the channel and
the source/drain electrode [52]. Fortunately, when the ionized donor-like traps were
distributed only at the source/GaN interface, electrons supplied from the source were
blocked by the high barrier of the p-type GaN. In comparison, the ionized donor-like traps
distributed on the drain/GaN interface reduced the R2 and decreased the high resistive
carrier path from the channel to the drain contact, meaning electrons could pass more
easily through the drain contact at a VDS of 1.0 V. Moreover, when a VDS of 1.0 V was
applied, as the electric field increased in the drain/GaN interface, the JT through the
TFE increased significantly. In addition, the thermionic emission current (Jth) remained
approximately constant, resulting in an increased tunneling rate at the drain/GaN interface.
This off-state performance would significantly degrade the dark current and photo-response
characteristics, resulting in poor sensing performance. The Ion of the GaN SB-MOSFET
due to the ionized donor-like traps on the drain/GaN interface at a VGS of 5.0 V was
5.5 mA/mm. This increased to 6.3 mA/mm considering the ionized donor-like traps of the
source/GaN interface, which indicated that the on-state current of the GaN SB-MOSFET
was dominated by the tunneling current supplied from the source contact.
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As demonstrated in Figure 7b, the Ioff of the GaN SB-MOSFET due to the acceptor-like
trap states at the drain/GaN interface was 2.6 × 10−22 A/mm, which was slightly lower
than the value of 8.8 × 10−22 A/mm due to trap states at the source/GaN interface. This
result was attributed to the barrier height and depletion width due to the ionized acceptor-
like traps at the drain/GaN interface. Moreover, the ionized acceptor-like traps established
a high series resistance (R3 and R4). The effective high resistive carrier path from the
channel to the source/drain electrode was longer when the ionized acceptor-like traps was
distributed at the metal/GaN interface, as displayed in Figure 8b, which resulted in an
decrease in the tunneling rate. At a VGS = 2.0 V and a VDS = 1.0 V, the Ion of the GaN SB-
MOSFET due to the acceptor-like trap states at the source/GaN interface and drain/GaN
interface were 1.8 × 10−10 A/mm and 5.2 × 10−7 A/mm, respectively. This result indicated
that the high barrier due to the ionized acceptor-like traps at the source/GaN interface
blocked the movement of electrons supplied from the source, significantly reducing the
number of electrons contributing to the tunneling current compared to the barrier at the
drain/GaN interface. We carefully concluded that the formation of a high-quality interface
and barrier on the drain side would reduce the dark current caused by current leakage.

3.2. Output Characteristics Related to the Acceptor-like Trap State

Figure 9 displays the output characteristics of the GaN SB-MOSFET related to the
acceptor-like trap states at the metal/GaN interface. The inset in the figure displays the
energy band diagram from source to drain for the three operation modes of the GaN SB-
MOSFET. As depicted in Figure 9a, at a VDS of 5.0 V, the saturation current density (IDsat)
of the GaN SB-MOSFET due to the acceptor-like trap states at the source/GaN interface
was 0.2 mA/mm, which was significantly lower than the value of 1.0 mA/mm without the
trap states.
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variations for the different acceptor-like trap state densities at the drain/GaN interface. The inset
displays the schematic energy band diagrams from source to drain for the three operation modes.

The saturation voltage (VDSsat) of the GaN SB-MOSFET due to the acceptor-like trap
states at the drain/GaN interface shifted from 1.32 to 5.0 V, while the IDsat of the GaN
SB-MOSFET was 0.9 mA/mm. This was attributed to electrons accumulated at the drain
end of the channel. The current saturation resulted in the increase in the electric field from
the source to drain slowing down due to the channel debiasing at a high VDS. Eventually,
the electric field did not increase any further, resulting in the velocity saturation of the
electrons extracted from the source. Under this condition, a depletion region formed at
the drain end of the channel, meaning that the electron concentration dropped below the
acceptor concentration in the p-type GaN. As displayed in the inset of Figure 9b, during
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the on-state of the high VDS, the Schottky barrier height and depletion width formed by the
ionized acceptor-like traps accumulated some of the electrons moving from the source to
the drain. Hence, the drain end of the channel was not depleted, resulting in no electric
field saturation from the source. The Schottky barrier height and depletion width of the
drain side due to the ionized acceptor-like traps increased both the Ron and VDSsat of
the GaN SB-MOSFET, while the effect of the ionized donor-like traps on the drain side
was insignificant.

3.3. Photo-Response Characteristics of SB-MOSFET

Conventionally, active pixel UV image sensors are 3T APS and 4T APS through a
CMOS process [53,54]. The pixel circuitry of these types of devices consists of a reset
transistor, a source follower (i.e., a buffer), a switching transistor, and a photodetector.
Among the reported APS circuitries, Hong et al. achieved high APS sensitivity by adopting
a phototransistor as a photodetector [29]. However, their APS suffered from low spectral
responsivity (Rph) and a poor signal-to-noise ratio (SNR) caused by the dark current (Idark)
due to the unintended tunneling and SRH generation [25,27]. Moreover, current leakage
associated with defects in the transistor can be responsible for a high Idark.

Figure 10 displays the availability of the GaN SB-MOSFET as a phototransistor and
the effect of the photo response characteristics according to the type of the trap state. In this
simulation study, a GaN SB-MOSFET composed of a transparent top gate and an opaque
source/drain was employed, as displayed in Figure 10a. The traps were distributed at
the SiO2/GaN interface and the bulk GaN area, and the concentration of the donor- and
acceptor-like trap states was set to 1018 cm−3. The trap energy levels of the donor- and
acceptor-like trap state were set to (Ec−3.1) and (Ec−3.28), respectively. Areas A and B
refer to areas near the SiO2/GaN interface and slightly away from the SiO2/GaN interface,
respectively. Figure 10b displays the photo-induced transfer characteristics of the GaN
SB-MOSFET with and without the donor-like trap states at incident power densities (Pinc)
ranging from 0.001 to 0.1 W/cm2. Under UV irradiation, the conductivity of the channel
increased due to the generated electron–hole pairs (EHPs), and this photoconductive
(PC) effect resulted in an increase in the Ioff of the GaN SB-MOSFET. The Ioff of the GaN
SB-MOSFET without trap states under dark conditions was 2.5 × 10−21 A/mm, which
increased to 1.4 × 10−8, 1.3 × 10−7, and 1.3 × 10−6 A/mm for Pinc values of 0.001, 0.01,
and 0.1 W/cm2, respectively, during UV irradiation.

Under the dark condition of a VGS = 3.0 V, the Ion of the GaN SB-MOSFET with
donor-like trap states was 5.5 × 10−4 A/mm, indicating an increase compared with the
value of 4.3 × 10−4 A/mm without trap states. This result was attributed to the positively
ionized donor-like traps in Areas A and B, except for the SiO2/GaN interface. Under UV
irradiation with a VGS = 3.0 V, the Ion of the GaN SB-MOSFET with donor-like trap states
were 5.9 × 10−4, 9.1 × 10−4, and 3.4 × 10−3 A/mm at Pinc values ranging from 0.001 to
0.1 W/cm2, which indicated an increase compared with the value of 4.3 × 10−4 A/mm
without trap states. This result indicated that light-generated holes in Areas A and B
were captured in donor-like trap states located near the valence band, resulting in the
accumulation of more positively ionized donor-like traps and a reduction in the conduction
band (i.e., the photo-gating [PG] effect). Moreover, the Vt decreased because the holes
trapped in the states acted as local gates, and the JT through the TFE increased due to
the narrower depletion width at the source/drain Schottky interface. The Vt of the GaN
SB-MOSFET without trap states was 1.7 V, regardless of the value of Pinc. However, for
conditions with donor-like trap states, the Vt shifted negatively to 1.5, 1.47, 1.4, and 0.6 V
for the dark condition and Pinc had values of 0.001, 0.01, and 0.1 W/cm2, respectively,
which were attributed to the PG effect.
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according to difference between the Fermi energy level and trap state level across the MOS interface.

Figure 10c displays the Rph of the GaN SB-MOSFET according to the type of the trap
state. In the absence of a trap state, the peak Rph of the GaN SB-MOSFET at an incident
wavelength of 360 nm was 0.012 A/W, although this increased to 0.021 A/W in the presence
of donor-like trap states. Moreover, there was no change in the Rph except around the
wavelength of 365 nm, which corresponded to the cut-off wavelength of the GaN. This
result was attributed to current leakage due to the PG effect. The PG effect was responsible
for both the accumulation of positively ionized donor-like traps in Areas A and B and
an increase in the Idark. The Idark increased due to the depletion width of the thinned
source/drain interface. In particular, as demonstrated in Figure 10a,d, the Idark passing
through Area B (where the trap states existed above the Fermi energy level) was considered
to be quite high, resulting in a poor photo-current (Iphoto). Ultra-thin-body (UTB) MOSFETs
and gate-all-around (GAA) transistors (such as vertical GaN nanowire MOSFETs and
stacked nanosheet transistors) are fully depleted below the gate metal. Therefore, it is
expected that a high Rph value can be obtained by blocking the leakage path, although
further study would be required to ensure compatibility with CMOS technology.

In the presence of the acceptor-like trap states, the Rph of the GaN SB-MOSFET tended
to decrease overall across the whole wavelength. This result was attributed to the significant
decrease in the total current (Idark, Iphoto) due to the large Schottky barrier height and high
channel resistance caused by the ionized acceptor-like traps in both Areas A and B. The
peak Rph of the GaN SB-MOSFET at 360 nm was 0.007 A/W, which decreased sharply as
the trap concentration increased (not shown in the figure).
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4. Conclusions

In this paper, we analyzed the effects of interface traps on the output characteristics of
an inversion mode n-channel GaN Schottky barrier (SB)-MOSFET using a TCAD simulation.
The Ioff of the GaN SB-MSOFET with shallow donor-like trap states of (Ec−0.06) and
(Ec−0.25) were 2.6 × 10−10 and 3.1 × 10−13 A/mm, respectively, indicating an increase
compared with the value of 2.6 × 10−21 A/mm without trap states. The subthreshold
swings (SSs) in this shallow trap state level were 358 and 227 mV/decade, respectively,
which were considerably degraded compared to the no-trap condition with an SS of
65 mV/decade. In the presence of acceptor-like trap states at the SiO2/GaN interface, the
Ion of the GaN SB-MOSFET at a VGS of 5.0 V reduced to 2.32 mA/mm, which was attributed
to the increased Vt and decreased tunneling current.

The Ioff of the GaN SB-MOSFET with the donor-like trap states at the drain/GaN
interface was 9.2 × 10−19 A/mm, indicating a significant increase compared with the value
of 2.6 × 10−21 A/mm with donor-like trap states at the source/GaN interface. This result
was attributed to a reduction in the resistive GaN path and the high tunneling rate at the
drain/GaN interface. In the presence of the acceptor-like trap states at the drain/GaN
interface, the VDSsat and Ron increased considerably.

For the UV response, the photo-induced transfer characteristics of the GaN SB-
MOSFET demonstrated that the photo-gating (PG) effect was the main mechanism causing
the negative Vt shift and improved Ion. The peak spectral responsivity due to the presence
of shallow donor-like trap states considerably increased (near 365 nm) compared to the
presence of the shallow acceptor-like trap states. In the presence of shallow acceptor-like
trap states, the Rph of the GaN SB-MOSFET tended to decrease over the whole wavelength.

For the improvement of the electrical performance of the GaN SB-MOSFET, high-
quality GaN epitaxial growth, surface pre-treatment, and passivation technology are re-
quired to reduce the trap states. It is also necessary to identify the physical causality of
the defects and interfacial trap states through GaN-based devices. We concluded that
the shallow traps (such as VN) and the dislocation-related point defects shall be carefully
reduced in the top epitaxial layer of the MOSFET. The simulation results demonstrated
that the shallow trap affected the device’s switching performance and photo-response
characteristics significantly, while the deep trap had a significant effect on the device’s
on-state performance.
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