Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = deep-learning non-destructive evaluation (NDE)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4688 KiB  
Article
Nondestructive Inspection of Steel Cables Based on YOLOv9 with Magnetic Flux Leakage Images
by Min Zhao, Ning Ding, Zehao Fang, Bingchun Jiang, Jiaming Zhong and Fuqin Deng
J. Sens. Actuator Netw. 2025, 14(4), 80; https://doi.org/10.3390/jsan14040080 (registering DOI) - 1 Aug 2025
Viewed by 125
Abstract
The magnetic flux leakage (MFL) method is widely acknowledged as a highly effective non-destructive evaluation (NDE) technique for detecting local damage in ferromagnetic structures such as steel wire ropes. In this study, a multi-channel MFL sensor module was developed, incorporating a purpose-designed Hall [...] Read more.
The magnetic flux leakage (MFL) method is widely acknowledged as a highly effective non-destructive evaluation (NDE) technique for detecting local damage in ferromagnetic structures such as steel wire ropes. In this study, a multi-channel MFL sensor module was developed, incorporating a purpose-designed Hall sensor array and magnetic yokes specifically shaped for steel cables. To validate the proposed damage detection method, artificial damages of varying degrees were inflicted on wire rope specimens through experimental testing. The MFL sensor module facilitated the scanning of the damaged specimens and measurement of the corresponding MFL signals. In order to improve the signal-to-noise ratio, a comprehensive set of signal processing steps, including channel equalization and normalization, was implemented. Subsequently, the detected MFL distribution surrounding wire rope defects was transformed into MFL images. These images were then analyzed and processed utilizing an object detection method, specifically employing the YOLOv9 network, which enables accurate identification and localization of defects. Furthermore, a quantitative defect detection method based on image size was introduced, which is effective for quantifying defects using the dimensions of the anchor frame. The experimental results demonstrated the effectiveness of the proposed approach in detecting and quantifying defects in steel cables, which combines deep learning-based analysis of MFL images with the non-destructive inspection of steel cables. Full article
Show Figures

Figure 1

25 pages, 1484 KiB  
Review
Advancements in Smart Nondestructive Evaluation of Industrial Machines: A Comprehensive Review of Computer Vision and AI Techniques for Infrastructure Maintenance
by Samira Mohammadi, Sasan Sattarpanah Karganroudi and Vahid Rahmanian
Machines 2025, 13(1), 11; https://doi.org/10.3390/machines13010011 - 28 Dec 2024
Cited by 2 | Viewed by 2591
Abstract
Infrastructure maintenance is critical to ensuring public safety and the longevity of essential structures. Nondestructive Evaluation (NDE) techniques allow for infrastructure inspection without causing damage. Computer vision has emerged as a powerful tool in this domain, providing automated, efficient, and accurate solutions for [...] Read more.
Infrastructure maintenance is critical to ensuring public safety and the longevity of essential structures. Nondestructive Evaluation (NDE) techniques allow for infrastructure inspection without causing damage. Computer vision has emerged as a powerful tool in this domain, providing automated, efficient, and accurate solutions for defect detection, structural monitoring, and real-time analysis. This review explores the current state of computer vision in NDE, discussing key techniques, applications across various infrastructure types, and the integration of deep learning models such as convolutional neural networks (CNNs), vision transformers (ViTs), and hybrid models. The review also highlights challenges, including data availability and scalability. It proposes future research directions, including real-time monitoring and the integration of Artificial Intelligence (AI) with Internet of Things (IoT) devices for comprehensive inspections. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

17 pages, 7103 KiB  
Article
Utilization of Synthetic Near-Infrared Spectra via Generative Adversarial Network to Improve Wood Stiffness Prediction
by Syed Danish Ali, Sameen Raut, Joseph Dahlen, Laurence Schimleck, Richard Bergman, Zhou Zhang and Vahid Nasir
Sensors 2024, 24(6), 1992; https://doi.org/10.3390/s24061992 - 21 Mar 2024
Cited by 10 | Viewed by 2784
Abstract
Near-infrared (NIR) spectroscopy is widely used as a nondestructive evaluation (NDE) tool for predicting wood properties. When deploying NIR models, one faces challenges in ensuring representative training data, which large datasets can mitigate but often at a significant cost. Machine learning and deep [...] Read more.
Near-infrared (NIR) spectroscopy is widely used as a nondestructive evaluation (NDE) tool for predicting wood properties. When deploying NIR models, one faces challenges in ensuring representative training data, which large datasets can mitigate but often at a significant cost. Machine learning and deep learning NIR models are at an even greater disadvantage because they typically require higher sample sizes for training. In this study, NIR spectra were collected to predict the modulus of elasticity (MOE) of southern pine lumber (training set = 573 samples, testing set = 145 samples). To account for the limited size of the training data, this study employed a generative adversarial network (GAN) to generate synthetic NIR spectra. The training dataset was fed into a GAN to generate 313, 573, and 1000 synthetic spectra. The original and enhanced datasets were used to train artificial neural networks (ANNs), convolutional neural networks (CNNs), and light gradient boosting machines (LGBMs) for MOE prediction. Overall, results showed that data augmentation using GAN improved the coefficient of determination (R2) by up to 7.02% and reduced the error of predictions by up to 4.29%. ANNs and CNNs benefited more from synthetic spectra than LGBMs, which only yielded slight improvement. All models showed optimal performance when 313 synthetic spectra were added to the original training data; further additions did not improve model performance because the quality of the datapoints generated by GAN beyond a certain threshold is poor, and one of the main reasons for this can be the size of the initial training data fed into the GAN. LGBMs showed superior performances than ANNs and CNNs on both the original and enhanced training datasets, which highlights the significance of selecting an appropriate machine learning or deep learning model for NIR spectral-data analysis. The results highlighted the positive impact of GAN on the predictive performance of models utilizing NIR spectroscopy as an NDE technique and monitoring tool for wood mechanical-property evaluation. Further studies should investigate the impact of the initial size of training data, the optimal number of generated synthetic spectra, and machine learning or deep learning models that could benefit more from data augmentation using GANs. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

23 pages, 7536 KiB  
Article
Evaluation of Infrared Thermography Dataset for Delamination Detection in Reinforced Concrete Bridge Decks
by Eberechi Ichi and Sattar Dorafshan
Appl. Sci. 2024, 14(6), 2455; https://doi.org/10.3390/app14062455 - 14 Mar 2024
Cited by 7 | Viewed by 1982
Abstract
Structural health monitoring and condition assessment of existing bridge decks is a growing challenge. Conventional manned inspections are costly, labor-intensive, and often risky to execute. Sub-surface delamination, a leading cause of deck replacement, can be autonomously and objectively detected using infrared thermography (IRT) [...] Read more.
Structural health monitoring and condition assessment of existing bridge decks is a growing challenge. Conventional manned inspections are costly, labor-intensive, and often risky to execute. Sub-surface delamination, a leading cause of deck replacement, can be autonomously and objectively detected using infrared thermography (IRT) data with developed deep learning AI models to address some of the limitations associated with manned inspection. As one of the most promising classifiers, deep convolutional neural networks (DCNNs) have not been utilized to their fullest potential for delamination detection, arguably due to the scarcity of realistic ground truth datasets. In this study, a common encoder–decoder semantic segmentation-based DCNN is adapted through domain adaptation. The model was tuned and trained on a publicly available dataset to detect subsurface delamination in IRT data collected from in-service bridge decks. The authors investigated the effect of dataset augmentation, class imbalance, the number of classes, and the effect of background removal in the training dataset, resulting in an overall number of seventy-five UNET models. Four out of five bridges were adopted for training and validation, and the fifth bridge was for testing. Most models averaged 80 iterations, and the training progress finally reached a training accuracy of 75% with a loss of about 0.6 without any overfitting. The result showed a substantial difference in the minimum and maximum values for the evaluated performance metrics (0.447 and 0.773 for global accuracy, 0.494 and 0.657 for mean accuracy, 0.239 and 0.716 for precision, 0.243 and 0.558 for true positive rate (TPR), 0.529 and 0.899 for true negative rate (TNR), 0.282 and 0.550 for F1-score. The results also indicated that the models trained on the raw annotated balanced dataset performed best for half of the metrics. In contrast, the models trained on raw data (with no dataset enhancement) performed better when only global accuracy was considered. Full article
(This article belongs to the Special Issue Non-destructive Testing of Materials and Structures - Volume II)
Show Figures

Figure 1

33 pages, 56720 KiB  
Article
Automatic Detection and Identification of Defects by Deep Learning Algorithms from Pulsed Thermography Data
by Qiang Fang, Clemente Ibarra-Castanedo, Iván Garrido, Yuxia Duan and Xavier Maldague
Sensors 2023, 23(9), 4444; https://doi.org/10.3390/s23094444 - 1 May 2023
Cited by 19 | Viewed by 6809
Abstract
Infrared thermography (IRT), is one of the most interesting techniques to identify different kinds of defects, such as delamination and damage existing for quality management of material. Objective detection and segmentation algorithms in deep learning have been widely applied in image processing, although [...] Read more.
Infrared thermography (IRT), is one of the most interesting techniques to identify different kinds of defects, such as delamination and damage existing for quality management of material. Objective detection and segmentation algorithms in deep learning have been widely applied in image processing, although very rarely in the IRT field. In this paper, spatial deep-learning image processing methods for defect detection and identification were discussed and investigated. The aim in this work is to integrate such deep-learning (DL) models to enable interpretations of thermal images automatically for quality management (QM). That requires achieving a high enough accuracy for each deep-learning method so that they can be used to assist human inspectors based on the training. There are several alternatives of deep Convolutional Neural Networks for detecting the images that were employed in this work. These included: 1. The instance segmentation methods Mask–RCNN (Mask Region-based Convolutional Neural Networks) and Center–Mask; 2. The independent semantic segmentation methods: U-net and Resnet–U-net; 3. The objective localization methods: You Only Look Once (YOLO-v3) and Faster Region-based Convolutional Neural Networks (Fast-er-RCNN). In addition, a regular infrared image segmentation processing combination method (Absolute thermal contrast (ATC) and global threshold) was introduced for comparison. A series of academic samples composed of different materials and containing artificial defects of different shapes and nature (flat-bottom holes, Teflon inserts) were evaluated, and all results were studied to evaluate the efficacy and performance of the proposed algorithms. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

23 pages, 8510 KiB  
Data Descriptor
SDNET2021: Annotated NDE Dataset for Subsurface Structural Defects Detection in Concrete Bridge Decks
by Eberechi Ichi, Faezeh Jafari and Sattar Dorafshan
Infrastructures 2022, 7(9), 107; https://doi.org/10.3390/infrastructures7090107 - 23 Aug 2022
Cited by 21 | Viewed by 4595
Abstract
Annotated datasets play a significant role in developing advanced Artificial Intelligence (AI) models that can detect bridge structure defects autonomously. Most defect datasets contain visual images of surface defects; however, subsurface defect data such as delamination which are critical for effective bridge deck [...] Read more.
Annotated datasets play a significant role in developing advanced Artificial Intelligence (AI) models that can detect bridge structure defects autonomously. Most defect datasets contain visual images of surface defects; however, subsurface defect data such as delamination which are critical for effective bridge deck evaluations are typically rare or limited to laboratory specimens. Three Non-Destructive Evaluation (NDE) methods (Infrared Thermography (IRT), Impact Echo (IE), and Ground Penetrating Radar (GPR)) were used for concrete delamination detection and reinforcement corrosion detection. The authors have developed a unique NDE dataset, Structural Defect Network 2021 (SDNET2021), which consists of IRT, IE, and GPR data collected from five in-service reinforced concrete bridge decks. A delamination survey map locating the areas, extent and classes of delamination served as the ground truth for annotating IRT, IE and GPR field tests’ data in this study. The IRT were processed to create an ortho-mosaic maps for each deck and were aligned with the ground truth maps using image registration, affine transformation, image binarization, morphological operations, connected components and region props techniques to execute a semi-automatic pixel–wise annotation. Conventional methods such as Fast Fourier transform (FFT)/peak frequency and B-Scan were used for preliminary analysis for the IE and GPR signal data respectively. The quality of NDE data was verified using conventional Image Quality Assessment (IQA) techniques. SDNET2021 dataset consists of 557 delaminated and 1379 sound IE signals, 214,943 delaminated and 448,159 sound GPR signals, and about 1,718,083 delaminated and 2,862,597 sound IRT pixels. SDNET2021 addresses one of the major gaps in benchmarking, developing, training, and testing advanced deep learning models for concrete bridge evaluation by providing a publicly available annotated and validated NDE dataset. Full article
Show Figures

Figure 1

20 pages, 6272 KiB  
Article
A Novel Decision Support System for Long-Term Management of Bridge Networks
by Enes Karaaslan, Ulas Bagci and Necati Catbas
Appl. Sci. 2021, 11(13), 5928; https://doi.org/10.3390/app11135928 - 25 Jun 2021
Cited by 12 | Viewed by 3340
Abstract
Developing a bridge management strategy at the network level with efficient use of capital is very important for optimal infrastructure remediation. This paper introduces a novel decision support system that considers many aspects of bridge management and successfully implements the investigated methodology in [...] Read more.
Developing a bridge management strategy at the network level with efficient use of capital is very important for optimal infrastructure remediation. This paper introduces a novel decision support system that considers many aspects of bridge management and successfully implements the investigated methodology in a web-based platform. The proposed decision support system uses advanced prediction models, decision trees, and incremental machine learning algorithms to generate an optimal decision strategy. The system aims to achieve adaptive and flexible decision making while entailing powerful utilization of nondestructive evaluation (NDE) methods. The NDE data integration and visualization allow automatic retrieval of inspection results and overlaying the defects on a 3D bridge model. Furthermore, a deep learning-based damage growth prediction model estimates the future condition of the bridge elements and utilizes this information in the decision-making process. The decision ranking takes into account a wide range of factors including structural safety, serviceability, rehabilitation cost, life cycle cost, and societal and political factors to generate optimal maintenance strategies with multiple decision alternatives. This study aims to bring a complementary solution to currently in-use systems with the utilization of advanced machine-learning models and NDE data integration while still equipped with main bridge management functions of bridge management systems and capable of transferring data to other systems. Full article
Show Figures

Figure 1

21 pages, 7004 KiB  
Article
Automatic Defects Segmentation and Identification by Deep Learning Algorithm with Pulsed Thermography: Synthetic and Experimental Data
by Qiang Fang, Clemente Ibarra-Castanedo and Xavier Maldague
Big Data Cogn. Comput. 2021, 5(1), 9; https://doi.org/10.3390/bdcc5010009 - 26 Feb 2021
Cited by 45 | Viewed by 6663
Abstract
In quality evaluation (QE) of the industrial production field, infrared thermography (IRT) is one of the most crucial techniques used for evaluating composite materials due to the properties of low cost, fast inspection of large surfaces, and safety. The application of deep neural [...] Read more.
In quality evaluation (QE) of the industrial production field, infrared thermography (IRT) is one of the most crucial techniques used for evaluating composite materials due to the properties of low cost, fast inspection of large surfaces, and safety. The application of deep neural networks tends to be a prominent direction in IRT Non-Destructive Testing (NDT). During the training of the neural network, the Achilles heel is the necessity of a large database. The collection of huge amounts of training data is the high expense task. In NDT with deep learning, synthetic data contributing to training in infrared thermography remains relatively unexplored. In this paper, synthetic data from the standard Finite Element Models are combined with experimental data to build repositories with Mask Region based Convolutional Neural Networks (Mask-RCNN) to strengthen the neural network, learning the essential features of objects of interest and achieving defect segmentation automatically. These results indicate the possibility of adapting inexpensive synthetic data merging with a certain amount of the experimental database for training the neural networks in order to achieve the compelling performance from a limited collection of the annotated experimental data of a real-world practical thermography experiment. Full article
(This article belongs to the Special Issue Machine Learning and Data Analysis for Image Processing)
Show Figures

Figure 1

25 pages, 7786 KiB  
Article
Artificial Intelligence-Based Bolt Loosening Diagnosis Using Deep Learning Algorithms for Laser Ultrasonic Wave Propagation Data
by Dai Quoc Tran, Ju-Won Kim, Kassahun Demissie Tola, Wonkyu Kim and Seunghee Park
Sensors 2020, 20(18), 5329; https://doi.org/10.3390/s20185329 - 17 Sep 2020
Cited by 37 | Viewed by 5695
Abstract
The application of deep learning (DL) algorithms to non-destructive evaluation (NDE) is now becoming one of the most attractive topics in this field. As a contribution to such research, this study aims to investigate the application of DL algorithms for detecting and estimating [...] Read more.
The application of deep learning (DL) algorithms to non-destructive evaluation (NDE) is now becoming one of the most attractive topics in this field. As a contribution to such research, this study aims to investigate the application of DL algorithms for detecting and estimating the looseness in bolted joints using a laser ultrasonic technique. This research was conducted based on a hypothesis regarding the relationship between the true contact area of the bolt head-plate and the guided wave energy lost while the ultrasonic waves pass through it. First, a Q-switched Nd:YAG pulsed laser and an acoustic emission sensor were used as exciting and sensing ultrasonic signals, respectively. Then, a 3D full-field ultrasonic data set was created using an ultrasonic wave propagation imaging (UWPI) process, after which several signal processing techniques were applied to generate the processed data. By using a deep convolutional neural network (DCNN) with a VGG-like architecture based regression model, the estimated error was calculated to compare the performance of a DCNN on different processed data set. The proposed approach was also compared with a K-nearest neighbor, support vector regression, and deep artificial neural network for regression to demonstrate its robustness. Consequently, it was found that the proposed approach shows potential for the incorporation of laser-generated ultrasound and DL algorithms. In addition, the signal processing technique has been shown to have an important impact on the DL performance for automatic looseness estimation. Full article
Show Figures

Figure 1

Back to TopTop