Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,711)

Search Parameters:
Keywords = deep space network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4147 KiB  
Article
OLTEM: Lumped Thermal and Deep Neural Model for PMSM Temperature
by Yuzhong Sheng, Xin Liu, Qi Chen, Zhenghao Zhu, Chuangxin Huang and Qiuliang Wang
AI 2025, 6(8), 173; https://doi.org/10.3390/ai6080173 - 31 Jul 2025
Abstract
Background and Objective: Temperature management is key for reliable operation of permanent magnet synchronous motors (PMSMs). The lumped-parameter thermal network (LPTN) is fast and interpretable but struggles with nonlinear behavior under high power density. We propose OLTEM, a physics-informed deep model that combines [...] Read more.
Background and Objective: Temperature management is key for reliable operation of permanent magnet synchronous motors (PMSMs). The lumped-parameter thermal network (LPTN) is fast and interpretable but struggles with nonlinear behavior under high power density. We propose OLTEM, a physics-informed deep model that combines LPTN with a thermal neural network (TNN) to improve prediction accuracy while keeping physical meaning. Methods: OLTEM embeds LPTN into a recurrent state-space formulation and learns three parameter sets: thermal conductance, inverse thermal capacitance, and power loss. Two additions are introduced: (i) a state-conditioned squeeze-and-excitation (SC-SE) attention that adapts feature weights using the current temperature state, and (ii) an enhanced power-loss sub-network that uses a deep MLP with SC-SE and non-negativity constraints. The model is trained and evaluated on the public Electric Motor Temperature dataset (Paderborn University/Kaggle). Performance is measured by mean squared error (MSE) and maximum absolute error across permanent-magnet, stator-yoke, stator-tooth, and stator-winding temperatures. Results: OLTEM tracks fast thermal transients and yields lower MSE than both the baseline TNN and a CNN–RNN model for all four components. On a held-out generalization set, MSE remains below 4.0 °C2 and the maximum absolute error is about 4.3–8.2 °C. Ablation shows that removing either SC-SE or the enhanced power-loss module degrades accuracy, confirming their complementary roles. Conclusions: By combining physics with learned attention and loss modeling, OLTEM improves PMSM temperature prediction while preserving interpretability. This approach can support motor thermal design and control; future work will study transfer to other machines and further reduce short-term errors during abrupt operating changes. Full article
Show Figures

Figure 1

18 pages, 651 KiB  
Article
Enhancing IoT Connectivity in Suburban and Rural Terrains Through Optimized Propagation Models Using Convolutional Neural Networks
by George Papastergiou, Apostolos Xenakis, Costas Chaikalis, Dimitrios Kosmanos and Menelaos Panagiotis Papastergiou
IoT 2025, 6(3), 41; https://doi.org/10.3390/iot6030041 (registering DOI) - 31 Jul 2025
Abstract
The widespread adoption of the Internet of Things (IoT) has driven major advancements in wireless communication, especially in rural and suburban areas where low population density and limited infrastructure pose significant challenges. Accurate Path Loss (PL) prediction is critical for the effective deployment [...] Read more.
The widespread adoption of the Internet of Things (IoT) has driven major advancements in wireless communication, especially in rural and suburban areas where low population density and limited infrastructure pose significant challenges. Accurate Path Loss (PL) prediction is critical for the effective deployment and operation of Wireless Sensor Networks (WSNs) in such environments. This study explores the use of Convolutional Neural Networks (CNNs) for PL modeling, utilizing a comprehensive dataset collected in a smart campus setting that captures the influence of terrain and environmental variations. Several CNN architectures were evaluated based on different combinations of input features—such as distance, elevation, clutter height, and altitude—to assess their predictive accuracy. The findings reveal that CNN-based models outperform traditional propagation models (Free Space Path Loss (FSPL), Okumura–Hata, COST 231, Log-Distance), achieving lower error rates and more precise PL estimations. The best performing CNN configuration, using only distance and elevation, highlights the value of terrain-aware modeling. These results underscore the potential of deep learning techniques to enhance IoT connectivity in sparsely connected regions and support the development of more resilient communication infrastructures. Full article
Show Figures

Figure 1

30 pages, 7223 KiB  
Article
Smart Wildlife Monitoring: Real-Time Hybrid Tracking Using Kalman Filter and Local Binary Similarity Matching on Edge Network
by Md. Auhidur Rahman, Stefano Giordano and Michele Pagano
Computers 2025, 14(8), 307; https://doi.org/10.3390/computers14080307 - 30 Jul 2025
Abstract
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part [...] Read more.
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part of a single event, resulting in increased power consumption and inefficient bandwidth usage. Furthermore, maintaining consistent animal identities in the wild is difficult due to occlusions, variable lighting, and complex environments. In this study, we propose a lightweight hybrid tracking framework built on the YOLOv8m deep neural network, combining motion-based Kalman filtering with Local Binary Pattern (LBP) similarity for appearance-based re-identification using texture and color features. To handle ambiguous cases, we further incorporate Hue-Saturation-Value (HSV) color space similarity. This approach enhances identity consistency across frames while reducing redundant transmissions. The framework is optimized for real-time deployment on edge platforms such as NVIDIA Jetson Orin Nano and Raspberry Pi 5. We evaluate our method against state-of-the-art trackers using event-based metrics such as MOTA, HOTA, and IDF1, with a focus on detected animals occlusion handling, trajectory analysis, and counting during both day and night. Our approach significantly enhances tracking robustness, reduces ID switches, and provides more accurate detection and counting compared to existing methods. When transmitting time-series data and detected frames, it achieves up to 99.87% bandwidth savings and 99.67% power reduction, making it highly suitable for edge-based wildlife monitoring in resource-constrained environments. Full article
(This article belongs to the Special Issue Intelligent Edge: When AI Meets Edge Computing)
Show Figures

Figure 1

17 pages, 4324 KiB  
Article
Anomaly Detection on Laminated Composite Plate Using Self-Attention Autoencoder and Gaussian Mixture Model
by Olivier Munyaneza and Jung Woo Sohn
Mathematics 2025, 13(15), 2445; https://doi.org/10.3390/math13152445 - 29 Jul 2025
Viewed by 104
Abstract
Composite laminates are widely used in aerospace, automotive, construction, and luxury industries, owing to their superior mechanical properties and design flexibility. However, detecting manufacturing defects and in-service damage remains a vital challenge for structural safety. While traditional unsupervised machine learning methods have been [...] Read more.
Composite laminates are widely used in aerospace, automotive, construction, and luxury industries, owing to their superior mechanical properties and design flexibility. However, detecting manufacturing defects and in-service damage remains a vital challenge for structural safety. While traditional unsupervised machine learning methods have been used in structural health monitoring (SHM), their high false positive rates limit their reliability in real-world applications. This issue is mostly inherited from their limited ability to capture small temporal variations in Lamb wave signals and their dependence on shallow architectures that suffer with complex signal distributions, causing the misclassification of damaged signals as healthy data. To address this, we suggested an unsupervised anomaly detection framework that integrates a self-attention autoencoder with a Gaussian mixture model (SAE-GMM). The model is solely trained on healthy Lamb wave signals, including high-quality synthetic data generated via a generative adversarial network (GAN). Damages are detected through reconstruction errors and probabilistic clustering in the latent space. The self-attention mechanism enhances feature representation by capturing subtle temporal dependencies, while the GMM enables a solid separation among signals. Experimental results demonstrated that the proposed model (SAE-GMM) achieves high detection accuracy, a low false positive rate, and strong generalization under varying noise conditions, outperforming traditional and deep learning baselines. Full article
Show Figures

Figure 1

27 pages, 6263 KiB  
Article
Revealing the Ecological Security Pattern in China’s Ecological Civilization Demonstration Area
by Xuelong Yang, Haisheng Cai, Xiaomin Zhao and Han Zhang
Land 2025, 14(8), 1560; https://doi.org/10.3390/land14081560 - 29 Jul 2025
Viewed by 126
Abstract
The construction and maintenance of an ecological security pattern (ESP) are important for promoting the regional development of ecological civilizations, realizing sustainable and healthy development, and creating a harmonious and beautiful space for human beings and nature to thrive. Traditional construction methods have [...] Read more.
The construction and maintenance of an ecological security pattern (ESP) are important for promoting the regional development of ecological civilizations, realizing sustainable and healthy development, and creating a harmonious and beautiful space for human beings and nature to thrive. Traditional construction methods have the limitations of a single dimension, a single method, and excessive human subjective intervention for source and corridor identification, without considering the multidimensional quality of the sources and the structural connectivity and resilience optimization of the corridors. Therefore, an ecological civilization demonstration area (Jiangxi Province) was used as the study area, a new research method for ESP was proposed, and an empirical study was conducted. To evaluate ecosystem service (ES) importance–disturbance–risk and extract sustainability sources through the deep embedded clustering–self-organizing map (DEC–SOM) deep unsupervised learning clustering algorithm, ecological networks (ENs) were constructed by applying the minimum cumulative resistance (MCR) gravity model and circuit theory. The ENs were then optimized to improve performance by combining the comparative advantages of the two approaches in terms of structural connectivity and resilience. A comparative analysis of EN performance was constructed among different functional control zones, and the ESP was constructed to include 42 ecological sources, 134 corridors, 210 restoration nodes, and 280 protection nodes. An ESP of ‘1 nucleus, 3 belts, 6 zones, and multiple corridors’ was constructed, and the key restoration components and protection functions were clarified. This study offers a valuable reference for ecological management, protection, and restoration and provides insights into the promotion of harmonious symbiosis between human beings and nature and sustainable regional development. Full article
(This article belongs to the Special Issue Urban Ecological Indicators: Land Use and Coverage)
Show Figures

Figure 1

19 pages, 3818 KiB  
Article
Robotic Arm Trajectory Planning in Dynamic Environments Based on Self-Optimizing Replay Mechanism
by Pengyao Xu, Chong Di, Jiandong Lv, Peng Zhao, Chao Chen and Ruotong Wang
Sensors 2025, 25(15), 4681; https://doi.org/10.3390/s25154681 - 29 Jul 2025
Viewed by 182
Abstract
In complex dynamic environments, robotic arms face multiple challenges such as real-time environmental changes, high-dimensional state spaces, and strong uncertainties. Trajectory planning tasks based on deep reinforcement learning (DRL) suffer from difficulties in acquiring human expert strategies, low experience utilization (leading to slow [...] Read more.
In complex dynamic environments, robotic arms face multiple challenges such as real-time environmental changes, high-dimensional state spaces, and strong uncertainties. Trajectory planning tasks based on deep reinforcement learning (DRL) suffer from difficulties in acquiring human expert strategies, low experience utilization (leading to slow convergence), and unreasonable reward function design. To address these issues, this paper designs a neural network-based expert-guided triple experience replay mechanism (NETM) and proposes an improved reward function adapted to dynamic environments. This replay mechanism integrates imitation learning’s fast data fitting with DRL’s self-optimization to expand limited expert demonstrations and algorithm-generated successes into optimized expert experiences. Experimental results show the expanded expert experience accelerates convergence: in dynamic scenarios, NETM boosts accuracy by over 30% and safe rate by 2.28% compared to baseline algorithms. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

21 pages, 4738 KiB  
Article
Research on Computation Offloading and Resource Allocation Strategy Based on MADDPG for Integrated Space–Air–Marine Network
by Haixiang Gao
Entropy 2025, 27(8), 803; https://doi.org/10.3390/e27080803 - 28 Jul 2025
Viewed by 193
Abstract
This paper investigates the problem of computation offloading and resource allocation in an integrated space–air–sea network based on unmanned aerial vehicle (UAV) and low Earth orbit (LEO) satellites supporting Maritime Internet of Things (M-IoT) devices. Considering the complex, dynamic environment comprising M-IoT devices, [...] Read more.
This paper investigates the problem of computation offloading and resource allocation in an integrated space–air–sea network based on unmanned aerial vehicle (UAV) and low Earth orbit (LEO) satellites supporting Maritime Internet of Things (M-IoT) devices. Considering the complex, dynamic environment comprising M-IoT devices, UAVs and LEO satellites, traditional optimization methods encounter significant limitations due to non-convexity and the combinatorial explosion in possible solutions. A multi-agent deep deterministic policy gradient (MADDPG)-based optimization algorithm is proposed to address these challenges. This algorithm is designed to minimize the total system costs, balancing energy consumption and latency through partial task offloading within a cloud–edge-device collaborative mobile edge computing (MEC) system. A comprehensive system model is proposed, with the problem formulated as a partially observable Markov decision process (POMDP) that integrates association control, power control, computing resource allocation, and task distribution. Each M-IoT device and UAV acts as an intelligent agent, collaboratively learning the optimal offloading strategies through a centralized training and decentralized execution framework inherent in the MADDPG. The numerical simulations validate the effectiveness of the proposed MADDPG-based approach, which demonstrates rapid convergence and significantly outperforms baseline methods, and indicate that the proposed MADDPG-based algorithm reduces the total system cost by 15–60% specifically. Full article
(This article belongs to the Special Issue Space-Air-Ground-Sea Integrated Communication Networks)
Show Figures

Figure 1

24 pages, 4858 KiB  
Article
Exploring the Spatial Coupling Characteristics and Influence Mechanisms of Built Environment and Green Space Pattern: The Case of Shanghai
by Rongxiang Chen, Zhiyuan Chen, Mingjing Xie, Rongrong Shi, Kaida Chen and Shunhe Chen
Sustainability 2025, 17(15), 6828; https://doi.org/10.3390/su17156828 (registering DOI) - 27 Jul 2025
Viewed by 471
Abstract
Urban expansion will squeeze the green space system and cause ecological fragmentation. The question of how to expand cities more scientifically and build eco-cities has become an important topic of sustainable urban construction. This paper takes Shanghai as a research case. A deep [...] Read more.
Urban expansion will squeeze the green space system and cause ecological fragmentation. The question of how to expand cities more scientifically and build eco-cities has become an important topic of sustainable urban construction. This paper takes Shanghai as a research case. A deep neural network combined with an attention mechanism model measures the comprehensive level of the built environment and green space pattern of urbanization and quantitatively analyzes the coordinated relationship between the two using the coupled degree of coordination model. Subsequently, the K-Means clustering model was used for spatial clustering to determine the governance and construction directions for different spatial areas and was, finally, combined with the LightGBM model plus SHAP to analyze the importance and threshold effect of the indicators on the degree of coupled coordination. The results of the study show that (1) the core area of the city shows a high state of coordination, indicating that Shanghai has a better green space construction in the central city, but the periphery shows different imbalances; (2) three different kinds of areas are identified, and different governance measures as well as the direction of urbanization are proposed according to the characteristics of the different areas; and (3) this study finds that the structural indicators of the built environment, such as Average Compactness, Weighted Average Height, and Land Use Diversity, have a significant influence on the coupling coordination degree and have different response thresholds. The results of the study provide theoretical support for regional governance and suggestions for the direction of urban expansion for sustainable urbanization. Full article
(This article belongs to the Special Issue Urban Planning and Sustainable Land Use—2nd Edition)
Show Figures

Figure 1

26 pages, 21628 KiB  
Article
Key Controlling Factors of Deep Coalbed Methane Reservoir Characteristics in Yan’an Block, Ordos Basin: Based on Multi-Scale Pore Structure Characterization and Fluid Mobility Research
by Jianbo Sun, Sijie Han, Shiqi Liu, Jin Lin, Fukang Li, Gang Liu, Peng Shi and Hongbo Teng
Processes 2025, 13(8), 2382; https://doi.org/10.3390/pr13082382 - 27 Jul 2025
Viewed by 219
Abstract
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control [...] Read more.
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control mechanism of pore structure on gas migration. In this study, based on high-pressure mercury intrusion (pore size > 50 nm), low-temperature N2/CO2 adsorption (0.38–50 nm), low-field nuclear magnetic resonance technology, fractal theory and Pearson correlation coefficient analysis, quantitative characterization of multi-scale pore–fluid system was carried out. The results show that the multi-scale pore network in the study area jointly regulates the occurrence and migration process of deep coalbed methane in Yan’an through the ternary hierarchical gas control mechanism of ‘micropore adsorption dominant, mesopore diffusion connection and macroporous seepage bottleneck’. The fractal dimensions of micropores and seepage are between 2.17–2.29 and 2.46–2.58, respectively. The shape of micropores is relatively regular, the complexity of micropore structure is low, and the confined space is mainly slit-like or ink bottle-like. The pore-throat network structure is relatively homogeneous, the difference in pore throat size is reduced, and the seepage pore shape is simple. The bimodal structure of low-field nuclear magnetic resonance shows that the bound fluid is related to the development of micropores, and the fluid mobility mainly depends on the seepage pores. Pearson’s correlation coefficient showed that the specific surface area of micropores was strongly positively correlated with methane adsorption capacity, and the nanoscale pore-size dominated gas occurrence through van der Waals force physical adsorption. The specific surface area of mesopores is significantly positively correlated with the tortuosity. The roughness and branch structure of the inner surface of the channel lead to the extension of the migration path and the inhibition of methane diffusion efficiency. Seepage porosity is linearly correlated with gas permeability, and the scale of connected seepage pores dominates the seepage capacity of reservoirs. This study reveals the pore structure and ternary grading synergistic gas control mechanism of deep coal reservoirs in the Yan’an Block, which provides a theoretical basis for the development of deep coalbed methane. Full article
Show Figures

Figure 1

17 pages, 4618 KiB  
Article
ANN-Enhanced Modulated Model Predictive Control for AC-DC Converters in Grid-Connected Battery Systems
by Andrea Volpini, Samuela Rokocakau, Giulia Tresca, Filippo Gemma and Pericle Zanchetta
Energies 2025, 18(15), 3996; https://doi.org/10.3390/en18153996 - 27 Jul 2025
Viewed by 188
Abstract
With the increasing integration of renewable energy sources (RESs) into power systems, batteries are playing a critical role in ensuring grid reliability and flexibility. Among them, vanadium redox flow batteries (VRFBs) have emerged as a promising solution for large-scale storage due to their [...] Read more.
With the increasing integration of renewable energy sources (RESs) into power systems, batteries are playing a critical role in ensuring grid reliability and flexibility. Among them, vanadium redox flow batteries (VRFBs) have emerged as a promising solution for large-scale storage due to their long cycle life, scalability, and deep discharge capability. However, achieving optimal control and system-level integration of VRFBs requires accurate, real-time modeling and parameter estimation, challenging tasks given the multi-physics nature and time-varying dynamics of such systems. This paper presents a lightweight physics-informed neural network (PINN) framework tailored for VRFBs, which directly embeds the discrete-time state-space dynamics into the network architecture. The model simultaneously predicts terminal voltage and estimates five discrete-time physical parameters associated with RC dynamics and internal resistance, while avoiding hidden layers to enhance interpretability and computational efficiency. The resulting PINN model is integrated into a modulated model predictive control (MMPC) scheme for a dual-stage DC-AC converter interfacing the VRFB with low-voltage AC grids. Simulation and hardware-in-the-loop results demonstrate that adaptive tuning of the PINN-estimated parameters enables precise tracking of battery parameter variations, thereby improving the robustness and performance of the MMPC controller under varying operating conditions. Full article
Show Figures

Figure 1

28 pages, 3794 KiB  
Article
A Robust System for Super-Resolution Imaging in Remote Sensing via Attention-Based Residual Learning
by Rogelio Reyes-Reyes, Yeredith G. Mora-Martinez, Beatriz P. Garcia-Salgado, Volodymyr Ponomaryov, Jose A. Almaraz-Damian, Clara Cruz-Ramos and Sergiy Sadovnychiy
Mathematics 2025, 13(15), 2400; https://doi.org/10.3390/math13152400 - 25 Jul 2025
Viewed by 166
Abstract
Deep learning-based super-resolution (SR) frameworks are widely used in remote sensing applications. However, existing SR models still face limitations, particularly in recovering contours, fine features, and textures, as well as in effectively integrating channel information. To address these challenges, this study introduces a [...] Read more.
Deep learning-based super-resolution (SR) frameworks are widely used in remote sensing applications. However, existing SR models still face limitations, particularly in recovering contours, fine features, and textures, as well as in effectively integrating channel information. To address these challenges, this study introduces a novel residual model named OARN (Optimized Attention Residual Network) specifically designed to enhance the visual quality of low-resolution images. The network operates on the Y channel of the YCbCr color space and integrates LKA (Large Kernel Attention) and OCM (Optimized Convolutional Module) blocks. These components can restore large-scale spatial relationships and refine textures and contours, improving feature reconstruction without significantly increasing computational complexity. The performance of OARN was evaluated using satellite images from WorldView-2, GaoFen-2, and Microsoft Virtual Earth. Evaluation was conducted using objective quality metrics, such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), Edge Preservation Index (EPI), and Perceptual Image Patch Similarity (LPIPS), demonstrating superior results compared to state-of-the-art methods in both objective measurements and subjective visual perception. Moreover, OARN achieves this performance while maintaining computational efficiency, offering a balanced trade-off between processing time and reconstruction quality. Full article
Show Figures

Figure 1

46 pages, 2814 KiB  
Review
From Application-Driven Growth to Paradigm Shift: Scientific Evolution and Core Bottleneck Analysis in the Field of UAV Remote Sensing
by Denghong Huang, Zhongfa Zhou, Zhenzhen Zhang, Xiandan Du, Ruiqi Fan, Qianxia Li and Youyan Huang
Appl. Sci. 2025, 15(15), 8304; https://doi.org/10.3390/app15158304 - 25 Jul 2025
Viewed by 169
Abstract
Unmanned Aerial Vehicle Remote Sensing (UAV-RS) has emerged as a transformative technology in high-resolution Earth observation, with widespread applications in precision agriculture, ecological monitoring, and disaster response. However, a systematic understanding of its scientific evolution and structural bottlenecks remains lacking. This study collected [...] Read more.
Unmanned Aerial Vehicle Remote Sensing (UAV-RS) has emerged as a transformative technology in high-resolution Earth observation, with widespread applications in precision agriculture, ecological monitoring, and disaster response. However, a systematic understanding of its scientific evolution and structural bottlenecks remains lacking. This study collected 4985 peer-reviewed articles from the Web of Science Core Collection and conducted a comprehensive scientometric analysis using CiteSpace v.6.2.R4, Origin 2022, and Excel. We examined publication trends, country/institutional collaboration networks, keyword co-occurrence clusters, and emerging research fronts. Results reveal an exponential growth in UAV-RS research since 2015, dominated by application-driven studies. Hotspots include vegetation indices, structure from motion modeling, and deep learning integration. However, foundational challenges—such as platform endurance, sensor coordination, and data standardization—remain underexplored. The global collaboration network exhibits a “strong hubs, weak bridges” pattern, limiting transnational knowledge integration. This review highlights the imbalance between surface-level innovation and deep technological maturity and calls for a paradigm shift from fragmented application responses to integrated systems development. Our findings provide strategic insights for researchers, policymakers, and funding agencies to guide the next stage of UAV-RS evolution. Full article
Show Figures

Figure 1

18 pages, 2878 KiB  
Article
Flow Field Reconstruction and Prediction of Powder Fuel Transport Based on Scattering Images and Deep Learning
by Hongyuan Du, Zhen Cao, Yingjie Song, Jiangbo Peng, Chaobo Yang and Xin Yu
Sensors 2025, 25(15), 4613; https://doi.org/10.3390/s25154613 - 25 Jul 2025
Viewed by 130
Abstract
This paper presents the flow field reconstruction and prediction of powder fuel transport systems based on representative feature extraction from scattering images using deep learning techniques. A laboratory-built powder fuel supply system was used to conduct scattering spectroscopy experiments on boron-based fuel under [...] Read more.
This paper presents the flow field reconstruction and prediction of powder fuel transport systems based on representative feature extraction from scattering images using deep learning techniques. A laboratory-built powder fuel supply system was used to conduct scattering spectroscopy experiments on boron-based fuel under various flow rate conditions. Based on the acquired scattering images, a prediction and reconstruction method was developed using a deep network framework composed of a Stacked Autoencoder (SAE), a Backpropagation Neural Network (BP), and a Long Short-Term Memory (LSTM) model. The proposed framework enables accurate classification and prediction of the dynamic evolution of flow structures based on learned representations from scattering images. Experimental results show that the feature vectors extracted by the SAE form clearly separable clusters in the latent space, leading to high classification accuracy under varying flow conditions. In the prediction task, the feature vectors predicted by the LSTM exhibit strong agreement with ground truth, with average mean square error, mean absolute error, and r-square values of 0.0027, 0.0398, and 0.9897, respectively. Furthermore, the reconstructed images offer a visual representation of the changing flow field, validating the model’s effectiveness in structure-level recovery. These results suggest that the proposed method provides reliable support for future real-time prediction of powder fuel mass flow rates based on optical sensing and imaging techniques. Full article
(This article belongs to the Special Issue Important Achievements in Optical Measurements in China 2024–2025)
Show Figures

Figure 1

5 pages, 569 KiB  
Proceeding Paper
Hybrid Modelling Framework for Reactor Model Discovery Using Artificial Neural Networks Classifiers
by Emmanuel Agunloye, Asterios Gavriilidis and Federico Galvanin
Proceedings 2025, 121(1), 11; https://doi.org/10.3390/proceedings2025121011 - 25 Jul 2025
Viewed by 224
Abstract
Developing and identifying the correct reactor model for a reaction system characterized by a high number of reaction pathways and flow regimes can be challenging. In this work, artificial neural networks (ANNs), used in deep learning, are used to develop a hybrid modelling [...] Read more.
Developing and identifying the correct reactor model for a reaction system characterized by a high number of reaction pathways and flow regimes can be challenging. In this work, artificial neural networks (ANNs), used in deep learning, are used to develop a hybrid modelling framework for physics-based model discovery in reactions systems. The model discovery accuracy of the framework is investigated considering kinetic model parametric uncertainty, noise level, features in the data structure and experimental design optimization via a differential evolution algorithm (DEA). The hydrodynamic behaviours of both a continuously stirred tank reactor and a plug flow reactor and rival chemical kinetics models are combined to generate candidate physics-based models to describe a benzoic acid esterification synthesis in a rotating cylindrical reactor. ANNs are trained and validated from in silico data simulated by sampling the parameter space of the physics-based models. Results show that, when monitored using test data classification accuracy, ANN performance improved when the kinetic parameters uncertainty decreased. The performance improved further by increasing the number of features in the data set, optimizing the experimental design and decreasing the measurements error (low noise level). Full article
Show Figures

Figure 1

30 pages, 4578 KiB  
Article
Unpacking Performance Variability in Deep Reinforcement Learning: The Role of Observation Space Divergence
by Sooyoung Jang and Ahyun Lee
Appl. Sci. 2025, 15(15), 8247; https://doi.org/10.3390/app15158247 - 24 Jul 2025
Viewed by 159
Abstract
Deep Reinforcement Learning (DRL) algorithms often exhibit significant performance variability across different training runs, even with identical settings. This paper investigates the hypothesis that a key contributor to this variability is the divergence in the observation spaces explored by individual learning agents. We [...] Read more.
Deep Reinforcement Learning (DRL) algorithms often exhibit significant performance variability across different training runs, even with identical settings. This paper investigates the hypothesis that a key contributor to this variability is the divergence in the observation spaces explored by individual learning agents. We conducted an empirical study using Proximal Policy Optimization (PPO) agents trained on eight Atari environments. We analyzed the collected agent trajectories by qualitatively visualizing and quantitatively measuring the divergence in their explored observation spaces. Furthermore, we cross-evaluated the learned actor and value networks, measuring the average absolute TD-error, the RMSE of value estimates, and the KL divergence between policies to assess their functional similarity. We also conducted experiments where agents were trained from identical network initializations to isolate the source of this divergence. Our findings reveal a strong correlation: environments with low-performance variance (e.g., Freeway) showed high similarity in explored observation spaces and learned networks across agents. Conversely, environments with high-performance variability (e.g., Boxing, Qbert) demonstrated significant divergence in both explored states and network functionalities. This pattern persisted even when agents started with identical network weights. These results suggest that differences in experiential trajectories, driven by the stochasticity of agent–environment interactions, lead to specialized agent policies and value functions, thereby contributing substantially to the observed inconsistencies in DRL performance. Full article
(This article belongs to the Special Issue Advancements and Applications in Reinforcement Learning)
Show Figures

Figure 1

Back to TopTop