Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = decoy selection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1015 KB  
Review
Docosahexaenoic Acid Inhibits Osteoclastogenesis via FFAR4-Mediated Regulation of Inflammatory Cytokines
by Jinghan Ma, Hideki Kitaura, Fumitoshi Ohori, Aseel Marahleh, Ziqiu Fan, Angyi Lin, Kohei Narita, Kou Murakami and Hiroyasu Kanetaka
Molecules 2025, 30(15), 3180; https://doi.org/10.3390/molecules30153180 - 29 Jul 2025
Viewed by 716
Abstract
Osteoclastogenesis—the activation and differentiation of osteoclasts—is one of the pivotal processes of bone remodeling and is regulated by RANKL/RANK signaling, the decoy function of osteoprotegerin (OPG), and a cascade of pro- and anti-inflammatory cytokines. The disruption of this balance leads to pathological bone [...] Read more.
Osteoclastogenesis—the activation and differentiation of osteoclasts—is one of the pivotal processes of bone remodeling and is regulated by RANKL/RANK signaling, the decoy function of osteoprotegerin (OPG), and a cascade of pro- and anti-inflammatory cytokines. The disruption of this balance leads to pathological bone loss in diseases such as osteoporosis and rheumatoid arthritis. FFAR4 (Free Fatty Acid Receptor 4), a G protein-coupled receptor for long-chain omega-3 fatty acids, has been confirmed as a key mediator of metabolic and anti-inflammatory effects. This review focuses on how FFAR4 acts as the selective receptor for the omega-3 fatty acid docosahexaenoic acid (DHA). It activates two divergent signaling pathways. The Gαq-dependent cascade facilitates intracellular calcium mobilization and ERK1/2 activation. Meanwhile, β-arrestin-2 recruitment inhibits NF-κB. These collective actions reshape the cytokine environment. In macrophages, DHA–FFAR4 signaling lowers the levels of TNF-α, interleukin-6 (IL-6), and IL-1β while increasing IL-10 secretion. Consequently, the activation of NFATc1 and NF-κB p65 is profoundly suppressed under TNF-α or RANKL stimulation. Additionally, DHA modulates the RANKL/OPG axis in osteoblastic cells by suppressing RANKL expression, thereby reducing osteoclast differentiation in an inflammatory mouse model. Full article
Show Figures

Figure 1

23 pages, 9084 KB  
Article
Dynamics Simulation and Optimization of Gliding Tail Decoy
by Huayu Jia, Huilong Zheng, Shunbo Huo and Hong Zhou
Aerospace 2025, 12(3), 212; https://doi.org/10.3390/aerospace12030212 - 6 Mar 2025
Viewed by 821
Abstract
In this paper, a gliding tail decoy for a UAV is proposed, which can be discarded as a decoy when the UAV encounters danger. Based on an aerodynamic model of the tail decoy, a nonlinear dynamics model of the tail decoy gliding in [...] Read more.
In this paper, a gliding tail decoy for a UAV is proposed, which can be discarded as a decoy when the UAV encounters danger. Based on an aerodynamic model of the tail decoy, a nonlinear dynamics model of the tail decoy gliding in the air is generated, and a three-layer pyramid general design architecture of the tail decoy is established. In order to subsequently analyze the dynamic characteristics and gliding trajectory of the gliding tail decoy, a gliding trajectory simulation software is developed based on the dynamics model of the gliding tail. Selecting the pre-optimized tail shape as the research object, and analyzing the influence of deployment speed and deployment posture angle on the tail trajectory, it was found that a deployment speed of 60 m/s and a deployment posture angle of 8° are more conducive to the tail obtaining a larger gliding distance. In addition, the effectiveness of the optimization method for the gliding tail in this article was verified. It was found that after optimizing the shape of the gliding tail, the lift coefficient increased in the range of 0°~14°, and the gliding distance increased by 4.2%. Full article
Show Figures

Figure 1

21 pages, 3320 KB  
Article
Wavelength Selection for Satellite Quantum Key Distribution
by Shane Hearne, Jerry Horgan, Noureddine Boujnah and Deirdre Kilbane
Appl. Sci. 2025, 15(3), 1308; https://doi.org/10.3390/app15031308 - 27 Jan 2025
Cited by 3 | Viewed by 2205
Abstract
Current distance limitations of quantum key distribution (QKD) over fibre optic networks suggest that satellite (free-space optical) QKD networks will be required to enable global quantum communications. However, the operational availability of these systems is limited by background noise and strong attenuation caused [...] Read more.
Current distance limitations of quantum key distribution (QKD) over fibre optic networks suggest that satellite (free-space optical) QKD networks will be required to enable global quantum communications. However, the operational availability of these systems is limited by background noise and strong attenuation caused by turbulence and adverse weather conditions. Using the decoy-state BB84 QKD protocol, we evaluate the secret key rate for a range of wavelengths, receiver sizes and initial beam waists through a variety of atmospheric conditions. We combine filtering techniques, adaptive optics, and wavelength selection to optimize the performance of satellite QKD. This study is simulation-based. Full article
(This article belongs to the Special Issue Quantum Communication and Applications)
Show Figures

Figure 1

21 pages, 4641 KB  
Review
VDAC1-Based Peptides as Potential Modulators of VDAC1 Interactions with Its Partners and as a Therapeutic for Cancer, NASH, and Diabetes
by Anna Shteinfer-Kuzmine, Manikandan Santhanam and Varda Shoshan-Barmatz
Biomolecules 2024, 14(9), 1139; https://doi.org/10.3390/biom14091139 - 9 Sep 2024
Cited by 7 | Viewed by 3837
Abstract
This review presents current knowledge related to the voltage-dependent anion channel-1 (VDAC1) as a multi-functional mitochondrial protein that acts in regulating both cell life and death. The location of VDAC1 at the outer mitochondrial membrane (OMM) allows control of metabolic cross-talk between the [...] Read more.
This review presents current knowledge related to the voltage-dependent anion channel-1 (VDAC1) as a multi-functional mitochondrial protein that acts in regulating both cell life and death. The location of VDAC1 at the outer mitochondrial membrane (OMM) allows control of metabolic cross-talk between the mitochondria and the rest of the cell, and also enables its interaction with proteins that are involved in metabolic, cell death, and survival pathways. VDAC1′s interactions with over 150 proteins can mediate and regulate the integration of mitochondrial functions with cellular activities. To target these protein–protein interactions, VDAC1-derived peptides have been developed. This review focuses specifically on cell-penetrating VDAC1-based peptides that were developed and used as a “decoy” to compete with VDAC1 for its VDAC1-interacting proteins. These peptides interfere with VDAC1 interactions, for example, with metabolism-associated proteins such as hexokinase (HK), or with anti-apoptotic proteins such as Bcl-2 and Bcl-xL. These and other VDAC1-interacting proteins are highly expressed in many cancers. The VDAC1-based peptides in cells in culture selectively affect cancerous, but not non-cancerous cells, inducing cell death in a variety of cancers, regardless of the cancer origin or genetics. They inhibit cell energy production, eliminate cancer stem cells, and act very rapidly and at low micro-molar concentrations. The activity of these peptides has been validated in several mouse cancer models of glioblastoma, lung, and breast cancers. Their anti-cancer activity involves a multi-pronged attack targeting the hallmarks of cancer. They were also found to be effective in treating non-alcoholic fatty liver disease and diabetes mellitus. Thus, VDAC1-based peptides, by targeting VDAC1-interacting proteins, offer an affordable and innovative new conceptual therapeutic paradigm that can potentially overcome heterogeneity, chemoresistance, and invasive metastatic formation. Full article
Show Figures

Figure 1

20 pages, 4294 KB  
Article
In Silico Exploration of Novel EGFR Kinase Mutant-Selective Inhibitors Using a Hybrid Computational Approach
by Md Ali Asif Noor, Md Mazedul Haq, Md Arifur Rahman Chowdhury, Hilal Tayara, HyunJoo Shim and Kil To Chong
Pharmaceuticals 2024, 17(9), 1107; https://doi.org/10.3390/ph17091107 - 23 Aug 2024
Cited by 2 | Viewed by 3476
Abstract
Targeting epidermal growth factor receptor (EGFR) mutants is a promising strategy for treating non-small cell lung cancer (NSCLC). This study focused on the computational identification and characterization of potential EGFR mutant-selective inhibitors using pharmacophore design and validation by deep learning, virtual screening, ADMET [...] Read more.
Targeting epidermal growth factor receptor (EGFR) mutants is a promising strategy for treating non-small cell lung cancer (NSCLC). This study focused on the computational identification and characterization of potential EGFR mutant-selective inhibitors using pharmacophore design and validation by deep learning, virtual screening, ADMET (Absorption, distribution, metabolism, excretion and toxicity), and molecular docking-dynamics simulations. A pharmacophore model was generated using Pharmit based on the potent inhibitor JBJ-125, which targets the mutant EGFR (PDB 5D41) and is used for the virtual screening of the Zinc database. In total, 16 hits were retrieved from 13,127,550 molecules and 122,276,899 conformers. The pharmacophore model was validated via DeepCoy, generating 100 inactive decoy structures for each active molecule and ADMET tests were conducted using SWISS ADME and PROTOX 3.0. Filtered compounds underwent molecular docking studies using Glide, revealing promising interactions with the EGFR allosteric site along with better docking scores. Molecular dynamics (MD) simulations confirmed the stability of the docked conformations. These results bring out five novel compounds that can be evaluated as single agents or in combination with existing therapies, holding promise for treating the EGFR-mutant NSCLC. Full article
(This article belongs to the Special Issue Heterocyclic Compounds in Medicinal Chemistry)
Show Figures

Figure 1

20 pages, 2678 KB  
Systematic Review
Systemic Literature Review of Recognition-Based Authentication Method Resistivity to Shoulder-Surfing Attacks
by Lateef Adekunle Adebimpe, Ian Ouii Ng, Mohd Yamani Idna Idris, Mohammed Okmi, Chin Soon Ku, Tan Fong Ang and Lip Yee Por
Appl. Sci. 2023, 13(18), 10040; https://doi.org/10.3390/app131810040 - 6 Sep 2023
Cited by 9 | Viewed by 3074
Abstract
The rapid advancement of information technology (IT) has given rise to a new era of efficient and fast communication and transactions. However, the increasing adoption of and reliance on IT has led to the exposure of personal and sensitive information online. Safeguarding this [...] Read more.
The rapid advancement of information technology (IT) has given rise to a new era of efficient and fast communication and transactions. However, the increasing adoption of and reliance on IT has led to the exposure of personal and sensitive information online. Safeguarding this information against unauthorized access remains a persistent challenge, necessitating the implementation of improved computer security measures. The core objective of computer security is to ensure the confidentiality, availability, and integrity of data and services. Among the mechanisms developed to counter security threats, authentication stands out as a pivotal defense strategy. Graphical passwords have emerged as a popular authentication approach, yet they face vulnerability to shoulder-surfing attacks, wherein an attacker can clandestinely observe a victim’s actions. Shoulder-surfing attacks present a significant security challenge within the realm of graphical password authentication. These attacks occur when an unauthorized individual covertly observes the authentication process of a legitimate user by shoulder surfing the user or capturing the interaction through a video recording. In response to this challenge, various methods have been proposed to thwart shoulder-surfing attacks, each with distinct advantages and limitations. This study thus centers on reviewing the resilience of existing recognition-based graphical password techniques against shoulder-surfing attacks by conducting a comprehensive examination and evaluation of their benefits, strengths, and weaknesses. The evaluation process entailed accessing pertinent academic resources through renowned search engines, including Web of Science, Science Direct, IEEE Xplore, ProQuest, Scopus, Springer, Wiley Online Library, and EBSCO. The selection criteria were carefully designed to prioritize studies that focused on recognition-based graphical password methods. Through this rigorous approach, 28 studies were identified and subjected to a thorough review. The results show that fourteen of them adopted registered objects as pass-objects, bolstering security through object recognition. Additionally, two methods employed decoy objects as pass-objects, enhancing obfuscation. Notably, one technique harnessed both registered and decoy objects, amplifying the security paradigm. The results also showed that recognition-based graphical password techniques varied in their resistance to different types of shoulder-surfing attacks. Some methods were effective in preventing direct observation attacks, while others were vulnerable to video-recorded and multiple-observation attacks. This vulnerability emerged due to attackers potentially extracting key information by analyzing user interaction patterns in each challenge set. Notably, one method stood out as an exception, demonstrating resilience against all three types of shoulder-surfing attacks. In conclusion, this study contributes to a comprehensive understanding of the efficacy of recognition-based graphical password methods in countering shoulder-surfing attacks by analyzing the diverse strategies employed by these methods and revealing their strengths and weaknesses. Full article
(This article belongs to the Special Issue Novel Approaches for Software Security)
Show Figures

Figure 1

20 pages, 17178 KB  
Article
A PIM-1 Kinase Inhibitor Docking Optimization Study Based on Logistic Regression Models and Interaction Analysis
by George Nicolae Daniel Ion, George Mihai Nitulescu and Dragos Paul Mihai
Life 2023, 13(8), 1635; https://doi.org/10.3390/life13081635 - 27 Jul 2023
Cited by 1 | Viewed by 2202
Abstract
PIM-1 kinase is a serine-threonine phosphorylating enzyme with implications in multiple types of malignancies, including prostate, breast, and blood cancers. Developing better search methodologies for PIM-1 kinase inhibitors may be a good strategy to speed up the discovery of an oncological drug approved [...] Read more.
PIM-1 kinase is a serine-threonine phosphorylating enzyme with implications in multiple types of malignancies, including prostate, breast, and blood cancers. Developing better search methodologies for PIM-1 kinase inhibitors may be a good strategy to speed up the discovery of an oncological drug approved for targeting this specific kinase. Computer-aided screening methods are promising approaches for the discovery of novel therapeutics, although certain limitations should be addressed. A frequent omission that is encountered in molecular docking is the lack of proper implementation of scoring functions and algorithms on the post-docking results, which usually alters the outcome of the virtual screening. The current study suggests a method for post-processing docking results, expressed either as binding affinity or score, that considers different binding modes of known inhibitors to the studied targets while making use of in vitro data, where available. The docking protocol successfully discriminated between known PIM-1 kinase inhibitors and decoy molecules, although binding energies alone were not sufficient to ensure a successful prediction. Logistic regression models were trained to predict the probability of PIM-1 kinase inhibitory activity based on binding energies and the presence of interactions with identified key amino acid residues. The selected model showed 80.9% true positive and 81.4% true negative rates. The discussed approach can be further applied in large-scale molecular docking campaigns to increase hit discovery success rates. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

16 pages, 3156 KB  
Article
Gas6/Axl Axis Activation Dampens the Inflammatory Response in Osteoarthritic Fibroblast-like Synoviocytes and Synovial Explants
by Juliana P. Vago, Natália Valdrighi, Esmeralda N. Blaney-Davidson, Daniel L. A. H. Hornikx, Margot Neefjes, María E. Barba-Sarasua, Nathalie G. M. Thielen, Martijn H. J. van den Bosch, Peter M. van der Kraan, Marije I. Koenders, Flávio A. Amaral and Fons A. J. van de Loo
Pharmaceuticals 2023, 16(5), 703; https://doi.org/10.3390/ph16050703 - 6 May 2023
Cited by 6 | Viewed by 4246
Abstract
Osteoarthritis (OA) is the most prevalent joint disease, and it is characterized by cartilage degeneration, synovitis, and bone sclerosis, resulting in swelling, stiffness, and joint pain. TAM receptors (Tyro3, Axl, and Mer) play an important role in regulating immune responses, clearing apoptotic cells, [...] Read more.
Osteoarthritis (OA) is the most prevalent joint disease, and it is characterized by cartilage degeneration, synovitis, and bone sclerosis, resulting in swelling, stiffness, and joint pain. TAM receptors (Tyro3, Axl, and Mer) play an important role in regulating immune responses, clearing apoptotic cells, and promoting tissue repair. Here, we investigated the anti-inflammatory effects of a TAM receptor ligand, i.e., growth arrest-specific gene 6 (Gas6), in synovial fibroblasts from OA patients. TAM receptor expression was determined in synovial tissue. Soluble Axl (sAxl), a decoy receptor for the ligand Gas6, showed concentrations 4.6 times higher than Gas6 in synovial fluid of OA patients. In OA fibroblast-like synoviocytes (OAFLS) exposed to inflammatory stimuli, the levels of sAxl in the supernatants were increased, while the expression of Gas6 was downregulated. In OAFLS under TLR4 stimulation by LPS (Escherichia coli lipopolysaccharide), the addition of exogenous Gas6 by Gas6-conditioned medium (Gas6-CM) reduced pro-inflammatory markers including IL-6, TNF-α, IL-1β, CCL2, and CXCL8. Moreover, Gas6-CM downregulated IL-6, CCL2, and IL-1β in LPS-stimulated OA synovial explants. Pharmacological inhibition of TAM receptors by a pan inhibitor (RU301) or by a selective Axl inhibitor (RU428) similarly abrogated Gas6-CM anti-inflammatory effects. Mechanistically, Gas6 effects were dependent on Axl activation, determined by Axl, STAT1, and STAT3 phosphorylation, and by the downstream induction of the suppressors of the cytokine signaling family (SOCS1 and SOCS3). Taken together, our results showed that Gas6 treatment dampens inflammatory markers of OAFLS and synovial explants derived from OA patients associated with SOCS1/3 production. Full article
(This article belongs to the Special Issue Pharmacological Treatments for Osteoarthritis)
Show Figures

Figure 1

19 pages, 4878 KB  
Article
In Silico-Motivated Discovery of Novel Potent Glycogen Synthase-3 Inhibitors: 1-(Alkyl/arylamino)-3H-naphtho[1,2,3-de]quinoline-2,7-dione Identified as a Scaffold for Kinase Inhibitor Development
by Thomas D. Emmerich and Joseph M. Hayes
Pharmaceuticals 2023, 16(5), 661; https://doi.org/10.3390/ph16050661 - 28 Apr 2023
Cited by 3 | Viewed by 2523
Abstract
Glycogen synthase kinase-3 (GSK-3) isoforms α and β have diverse roles within cell biology, and have been linked with multiple diseases that include prominent CNS conditions such as Alzheimer’s disease and several psychiatric disorders. In this study, motivated by computation, we aimed to [...] Read more.
Glycogen synthase kinase-3 (GSK-3) isoforms α and β have diverse roles within cell biology, and have been linked with multiple diseases that include prominent CNS conditions such as Alzheimer’s disease and several psychiatric disorders. In this study, motivated by computation, we aimed to identify novel ATP-binding site inhibitors of GSK-3 with CNS-active potential. A ligand screening (docking) protocol against GSK-3β was first optimized, employing an active/decoy benchmarking set, with the final protocol selected based on statistical performance analysis. The optimized protocol involved pre-filtering of ligands using a three-point 3D-pharmacophore, followed by Glide-SP docking applying hinge region hydrogen bonding constraints. Using this approach, the Biogenic subset of the ZINC15 compound database was screened, focused on compounds with potential for CNS-activity. Twelve compounds (generation I) were selected for experimental validation using in vitro GSK-3β binding assays. Two hit compounds, 1 and 2, with 6-amino-7H-benzo[e]perimidin-7-one and 1-(phenylamino)-3H-naphtho[1,2,3-de]quinoline-2,7-dione type scaffolds were identified with IC50 values of 1.63 µM and 20.55 µM, respectively. Ten analogues of 2 (generation II) were selected for structure activity relationship (SAR) analysis and revealed four low micromolar inhibitors (<10 µM), with 19 (IC50 = 4.1 µM)~five times more potent than initial hit compound 2. Selectivity screening of low micromolar inhibitors 14 and 19 (comparing aryl- and alkyl-substituents) against 10 homologous kinases revealed unique selectivity profiles, with both compounds more potent against the GSK-3α isoform (IC50s~2 µM) and, additionally, inhibitors of PKBβ (IC50s < 25 µM). Compound 14 also inhibited ERK2 and 19, PKCγ, but generally good selectivity for GSK-3 isoforms over the other kinases was observed. The compounds had excellent predicted oral bioavailability and CNS-activity profiles, presenting promising candidates for future testing in cellular models of disease. Full article
(This article belongs to the Special Issue Virtual Screening of Natural Product Databases for Drug Discovery)
Show Figures

Figure 1

26 pages, 11662 KB  
Article
In Silico Targeting of Fascin Protein for Cancer Therapy: Benchmarking, Virtual Screening and Molecular Dynamics Approaches
by Heba H. A. Hassan, Muhammad I. Ismail, Mohammed A. S. Abourehab, Frank M. Boeckler, Tamer M. Ibrahim and Reem K. Arafa
Molecules 2023, 28(3), 1296; https://doi.org/10.3390/molecules28031296 - 29 Jan 2023
Cited by 5 | Viewed by 3123
Abstract
Fascin is an actin-bundling protein overexpressed in various invasive metastatic carcinomas through promoting cell migration and invasion. Therefore, blocking Fascin binding sites is considered a vital target for antimetastatic drugs. This inspired us to find new Fascin binding site blockers. First, we built [...] Read more.
Fascin is an actin-bundling protein overexpressed in various invasive metastatic carcinomas through promoting cell migration and invasion. Therefore, blocking Fascin binding sites is considered a vital target for antimetastatic drugs. This inspired us to find new Fascin binding site blockers. First, we built an active compound set by collecting reported small molecules binding to Fascin’s binding site 2. Consequently, a high-quality decoys set was generated employing DEKOIS 2.0 protocol to be applied in conducting the benchmarking analysis against the selected Fascin structures. Four docking programs, MOE, AutoDock Vina, VinaXB, and PLANTS were evaluated in the benchmarking study. All tools indicated better-than-random performance reflected by their pROC-AUC values against the Fascin crystal structure (PDB: ID 6I18). Interestingly, PLANTS exhibited the best screening performance and recognized potent actives at early enrichment. Accordingly, PLANTS was utilized in the prospective virtual screening effort for repurposing FDA-approved drugs (DrugBank database) and natural products (NANPDB). Further assessment via molecular dynamics simulations for 100 ns endorsed Remdesivir (DrugBank) and NANPDB3 (NANPDB) as potential binders to Fascin binding site 2. In conclusion, this study delivers a model for implementing a customized DEKOIS 2.0 benchmark set to enhance the VS success rate against new potential targets for cancer therapies. Full article
(This article belongs to the Special Issue Computational Methods in Drug Design and Discovery)
Show Figures

Graphical abstract

21 pages, 2357 KB  
Review
Hijacking Chemical Reactions of P450 Enzymes for Altered Chemical Reactions and Asymmetric Synthesis
by Eerappa Rajakumara, Dubey Saniya, Priyanka Bajaj, Rajanna Rajeshwari, Jyotsnendu Giri and Mehdi D. Davari
Int. J. Mol. Sci. 2023, 24(1), 214; https://doi.org/10.3390/ijms24010214 - 22 Dec 2022
Cited by 7 | Viewed by 4141
Abstract
Cytochrome P450s are heme-containing enzymes capable of the oxidative transformation of a wide range of organic substrates. A protein scaffold that coordinates the heme iron, and the catalytic pocket residues, together, determine the reaction selectivity and regio- and stereo-selectivity of the P450 enzymes. [...] Read more.
Cytochrome P450s are heme-containing enzymes capable of the oxidative transformation of a wide range of organic substrates. A protein scaffold that coordinates the heme iron, and the catalytic pocket residues, together, determine the reaction selectivity and regio- and stereo-selectivity of the P450 enzymes. Different substrates also affect the properties of P450s by binding to its catalytic pocket. Modulating the redox potential of the heme by substituting iron-coordinating residues changes the chemical reaction, the type of cofactor requirement, and the stereoselectivity of P450s. Around hundreds of P450s are experimentally characterized, therefore, a mechanistic understanding of the factors affecting their catalysis is increasingly vital in the age of synthetic biology and biotechnology. Engineering P450s can enable them to catalyze a variety of chemical reactions viz. oxygenation, peroxygenation, cyclopropanation, epoxidation, nitration, etc., to synthesize high-value chiral organic molecules with exceptionally high stereo- and regioselectivity and catalytic efficiency. This review will focus on recent studies of the mechanistic understandings of the modulation of heme redox potential in the engineered P450 variants, and the effect of small decoy molecules, dual function small molecules, and substrate mimetics on the type of chemical reaction and the catalytic cycle of the P450 enzymes. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

13 pages, 692 KB  
Article
Influence of Environmental Factors on Prey Discrimination of Bait-Attracted White Sharks from Gansbaai, South Africa
by Francesca Romana Reinero, Emilio Sperone, Gianni Giglio, Antonio Pacifico, Makenna Mahrer and Primo Micarelli
Animals 2022, 12(23), 3276; https://doi.org/10.3390/ani12233276 - 24 Nov 2022
Cited by 5 | Viewed by 5214
Abstract
The influence of environmental factors on prey discrimination of bait-attracted white sharks was studied over a six-year period (2008–2013) at Dyer Island Nature Reserve (Gansbaai, South Africa). Across 240 bait-attracted feeding events observed in this period, both immature and mature white sharks were [...] Read more.
The influence of environmental factors on prey discrimination of bait-attracted white sharks was studied over a six-year period (2008–2013) at Dyer Island Nature Reserve (Gansbaai, South Africa). Across 240 bait-attracted feeding events observed in this period, both immature and mature white sharks were attracted by the seal-shaped decoy rather than the tuna bait, except for the years 2008 and 2011. Tide ranges, underwater visibility, water temperature, and sea conditions were, in decreasing order, the factors which drove white sharks to select the seal-shaped decoy. High tide lowered the minimum depth from which sharks could approach seals close to the shore, while extended visibility helped the sharks in making predatory choices towards the more energy-rich prey source, the odorless seal-shaped decoy. On the contrary, warmer water is associated with an increase in phytoplankton that reduces underwater visibility and increases the diversity of teleosts including tuna—a known prey of white sharks—driving the sharks to favor the tuna bait. Overall, sea conditions were almost always slightly rough, ensuring a good average underwater visibility. Recommendations for future research work at this site are presented. Full article
(This article belongs to the Special Issue Sharks and Skates: Ecology, Distribution and Conservation)
Show Figures

Figure 1

10 pages, 4454 KB  
Article
Finite-Key Analysis of 1-Decoy Method Quantum Key Distribution with Intensity Fluctuation
by Chun Zhou, Yu Zhou, Yangbin Xu, Yang Wang, Yifei Lu, Musheng Jiang, Xiaoxu Zhang and Wansu Bao
Appl. Sci. 2022, 12(9), 4709; https://doi.org/10.3390/app12094709 - 7 May 2022
Viewed by 2195
Abstract
The decoy state quantum key distribution (QKD) protocol is proven to be an effective strategy against the photon number splitting attack. It was shown that the 1-decoy state protocol, easier to implement in the practical QKD system, outperforms the 2-decoy state protocol for [...] Read more.
The decoy state quantum key distribution (QKD) protocol is proven to be an effective strategy against the photon number splitting attack. It was shown that the 1-decoy state protocol, easier to implement in the practical QKD system, outperforms the 2-decoy state protocol for block sizes of up to 108 bits. How intensity fluctuations influence the performance of the 1-decoy state protocol with finite resources remains a pending issue. In this paper, we present a finite-key analysis of the 1-decoy state protocol with intensity fluctuations and obtain the secret key rate formula about intensity fluctuations. Our numerical simulation results show that the stronger the intensity fluctuations, the lower the secret key rate for a small data block size of a few bits. Our research can provide theoretical implications for the selection of data size in the QKD system with intensity fluctuations. Full article
(This article belongs to the Topic Quantum Information and Quantum Computing)
Show Figures

Figure 1

14 pages, 1665 KB  
Article
The lncRNAs/miR-30e/CHI3L1 Axis Is Dysregulated in Systemic Sclerosis
by Valentin Dichev, Nikolay Mehterov, Maria Kazakova, Rositsa Karalilova, Anastas Batalov and Victoria Sarafian
Biomedicines 2022, 10(2), 496; https://doi.org/10.3390/biomedicines10020496 - 19 Feb 2022
Cited by 14 | Viewed by 3119
Abstract
Systemic sclerosis (SSc) is an autoimmune disease with completely undefined etiology and treatment difficulties. The expression of both protein coding and non-coding RNAs is dysregulated during disease development. We aimed to examine a possible regulatory axis implemented in the control of chitinase-3 like [...] Read more.
Systemic sclerosis (SSc) is an autoimmune disease with completely undefined etiology and treatment difficulties. The expression of both protein coding and non-coding RNAs is dysregulated during disease development. We aimed to examine a possible regulatory axis implemented in the control of chitinase-3 like protein 1 (CHI3L1) or YKL-40, an inflammation-associated glycoprotein, shown to be elevated in SSc. A panel of seven miRNAs and three lncRNAs potentially involved in the control of CHI3L1 were selected on the basis of in silico analysis. TagMan assay was used to evaluate the expression levels of miRNAs and RT-qPCR for lncRNAs in white blood cells (WBCs) and plasma from SSc patients and healthy controls. Among the eight screened miRNAs, miR-30e-5p (p = 0.04) and miR-30a-5p (p = 0.01) were significantly downregulated in WBCs and plasma of SSc patients, respectively. On the contrary, the expression of the metastasis associated lung adenocarcinoma transcript 1 (MALAT1) (p = 0.044) and the Nuclear enriched abundant transcript 1 (NEAT1) (p = 0.008) in WBCs was upregulated compared to the controls. Increased levels of MALAT1 and NEAT1 could be associated with the downregulation of miR-30e-5p and miR-30a-5p expression in WBCs and plasma. We present novel data on the involvement of a possible regulatory axis lncRNAs/miR-30e/CHI3L1 in SSc and hypothesize that MALAT1 and NEAT1 could act as miR-30e-5p and miR-30a-5p decoys. This may be a reason for the increased serum levels of CHI3L1 in SSc patients. Full article
Show Figures

Graphical abstract

15 pages, 5684 KB  
Article
Evaluation of Docking Machine Learning and Molecular Dynamics Methodologies for DNA-Ligand Systems
by Tiago Alves de Oliveira, Lucas Rolim Medaglia, Eduardo Habib Bechelane Maia, Letícia Cristina Assis, Paulo Batista de Carvalho, Alisson Marques da Silva and Alex Gutterres Taranto
Pharmaceuticals 2022, 15(2), 132; https://doi.org/10.3390/ph15020132 - 22 Jan 2022
Cited by 18 | Viewed by 6320
Abstract
DNA is a molecular target for the treatment of several diseases, including cancer, but there are few docking methodologies exploring the interactions between nucleic acids with DNA intercalating agents. Different docking methodologies, such as AutoDock Vina, DOCK 6, and Consensus, implemented into Molecular [...] Read more.
DNA is a molecular target for the treatment of several diseases, including cancer, but there are few docking methodologies exploring the interactions between nucleic acids with DNA intercalating agents. Different docking methodologies, such as AutoDock Vina, DOCK 6, and Consensus, implemented into Molecular Architect (MolAr), were evaluated for their ability to analyze those interactions, considering visual inspection, redocking, and ROC curve. Ligands were refined by Parametric Method 7 (PM7), and ligands and decoys were docked into the minor DNA groove (PDB code: 1VZK). As a result, the area under the ROC curve (AUC-ROC) was 0.98, 0.88, and 0.99 for AutoDock Vina, DOCK 6, and Consensus methodologies, respectively. In addition, we proposed a machine learning model to determine the experimental ∆Tm value, which found a 0.84 R2 score. Finally, the selected ligands mono imidazole lexitropsin (42), netropsin (45), and N,N′-(1H-pyrrole-2,5-diyldi-4,1-phenylene)dibenzenecarboximidamide (51) were submitted to Molecular Dynamic Simulations (MD) through NAMD software to evaluate their equilibrium binding pose into the groove. In conclusion, the use of MolAr improves the docking results obtained with other methodologies, is a suitable methodology to use in the DNA system and was proven to be a valuable tool to estimate the ∆Tm experimental values of DNA intercalating agents. Full article
(This article belongs to the Special Issue In Silico Approaches in Drug Design)
Show Figures

Figure 1

Back to TopTop