Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,479)

Search Parameters:
Keywords = decision under conflict

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 865 KiB  
Review
Barriers and Facilitators to Artificial Intelligence Implementation in Diabetes Management from Healthcare Workers’ Perspective: A Scoping Review
by Giovanni Cangelosi, Andrea Conti, Gabriele Caggianelli, Massimiliano Panella, Fabio Petrelli, Stefano Mancin, Matteo Ratti and Alice Masini
Medicina 2025, 61(8), 1403; https://doi.org/10.3390/medicina61081403 (registering DOI) - 1 Aug 2025
Abstract
Background and Objectives: Diabetes is a global public health challenge, with increasing prevalence worldwide. The implementation of artificial intelligence (AI) in the management of this condition offers potential benefits in improving healthcare outcomes. This study primarily investigates the barriers and facilitators perceived by [...] Read more.
Background and Objectives: Diabetes is a global public health challenge, with increasing prevalence worldwide. The implementation of artificial intelligence (AI) in the management of this condition offers potential benefits in improving healthcare outcomes. This study primarily investigates the barriers and facilitators perceived by healthcare professionals in the adoption of AI. Secondarily, by analyzing both quantitative and qualitative data collected, it aims to support the potential development of AI-based programs for diabetes management, with particular focus on a possible bottom-up approach. Materials and Methods: A scoping review was conducted following PRISMA-ScR guidelines for reporting and registered in the Open Science Framework (OSF) database. The study selection process was conducted in two phases—title/abstract screening and full-text review—independently by three researchers, with a fourth resolving conflicts. Data were extracted and assessed using Joanna Briggs Institute (JBI) tools. The included studies were synthesized narratively, combining both quantitative and qualitative analyses to ensure methodological rigor and contextual depth. Results: The adoption of AI tools in diabetes management is influenced by several barriers, including perceived unsatisfactory clinical performance, high costs, issues related to data security and decision-making transparency, as well as limited training among healthcare workers. Key facilitators include improved clinical efficiency, ease of use, time-saving, and organizational support, which contribute to broader acceptance of the technology. Conclusions: The active and continuous involvement of healthcare workers represents a valuable opportunity to develop more effective, reliable, and well-integrated AI solutions in clinical practice. Our findings emphasize the importance of a bottom-up approach and highlight how adequate training and organizational support can help overcome existing barriers, promoting sustainable and equitable innovation aligned with public health priorities. Full article
(This article belongs to the Special Issue Advances in Public Health and Healthcare Management for Chronic Care)
22 pages, 405 KiB  
Article
The Impact of ESG Performance on Corporate Investment Efficiency: Evidence from Chinese Listed Companies
by Zhuo Li, Yeteng Ma, Li He and Zhili Tan
J. Risk Financial Manag. 2025, 18(8), 427; https://doi.org/10.3390/jrfm18080427 (registering DOI) - 1 Aug 2025
Abstract
Recent theoretical and empirical studies highlight that information asymmetry and owner–manager conflict of interest can distort corporate investment decisions. Building on this premise, we hypothesize that superior environmental, social, and governance (ESG) performance mitigates these frictions by (H1) alleviating financing constraints and (H2) [...] Read more.
Recent theoretical and empirical studies highlight that information asymmetry and owner–manager conflict of interest can distort corporate investment decisions. Building on this premise, we hypothesize that superior environmental, social, and governance (ESG) performance mitigates these frictions by (H1) alleviating financing constraints and (H2) intensifying external analyst scrutiny. To test these hypotheses, we examine all Shanghai and Shenzhen A-share non-financial firms from 2009 to 2023. Using panel fixed-effects and two-stage least squares with an industry–province–year instrument, we find that higher ESG performance significantly reduces investment inefficiency; the effect operates through both lower financing constraints and greater analyst coverage. Heterogeneity analyses reveal that the improvement is pronounced in small non-state-owned, non-high-carbon firms but absent in large state-owned high-carbon emitters. These findings enrich the literature on ESG and corporate performance and offer actionable insights for regulators and investors seeking high-quality development. Full article
(This article belongs to the Section Business and Entrepreneurship)
Show Figures

Figure 1

19 pages, 287 KiB  
Article
Faith and Finance: Understanding Muslim Consumers’ Identity in Pakistan’s Traditional Banking Sector
by Samreen Ashraf, Juliet Memery and Martyn Polkinghorne
Businesses 2025, 5(3), 30; https://doi.org/10.3390/businesses5030030 - 29 Jul 2025
Viewed by 150
Abstract
Although research on religion has gained increasing attention, few studies have examined its connection to consumer identity and how it influences purchasing decisions. This gap is especially noticeable when it comes to decision-making around religious services. Previous studies on what influences consumers’ choice [...] Read more.
Although research on religion has gained increasing attention, few studies have examined its connection to consumer identity and how it influences purchasing decisions. This gap is especially noticeable when it comes to decision-making around religious services. Previous studies on what influences consumers’ choice of banks have produced mixed findings on the role of religion. This study explores how multiple identities shape the decision to use non-Islamic banking services in Pakistan, where Muslim consumers can choose between Islamic (religious) and non-Islamic (non-religious) banking options. Using a qualitative approach, the research focuses on Muslims who opt for non-Islamic banking to understand the factors behind their choice. Findings reveal that role identity—especially as a son or daughter—plays a key role in bank selection, even when religion is important to the individual. However, identity conflicts arise as people navigate different aspects of their identity. Surprisingly, group identity had little influence on these banking decisions. Full article
15 pages, 319 KiB  
Article
It Depends on What the Meaning of the Word ‘Person’ Is: Using a Human Rights-Based Approach to Training Aged-Care Workers in Person-Centred Care
by Kieran J. Flanagan, Heidi M. Olsen, Erin Conway, Patrick Keyzer and Laurie Buys
J. Ageing Longev. 2025, 5(3), 24; https://doi.org/10.3390/jal5030024 - 28 Jul 2025
Viewed by 171
Abstract
Aged-care services are in crisis through a combination of rising demand and increasing costs. Quality of care is often reported to be insufficient. Medical science has increased lifespans but the overmedicalisation of aged care may affect the financial sustainability and quality of care. [...] Read more.
Aged-care services are in crisis through a combination of rising demand and increasing costs. Quality of care is often reported to be insufficient. Medical science has increased lifespans but the overmedicalisation of aged care may affect the financial sustainability and quality of care. Person-centred care was developed as a solution and is generally interpreted as being concerned with consumer choice. This study presents a human rights-based approach to a code of conduct for aged-care consumers and workers to ensure autonomy and participation in aged-care communities, which are fundamental to person-centred care. A test–retest cohort study was used to investigate the impact of a training module about a human rights-based code of conduct on the perspectives of new aged-care workers (n = 11) on a case scenario involving conflicting care priorities. Qualitative content analysis was used to categorise and count the participants’ responses. The analysis found that prior to training the majority of participants were focused on a medical and risk reduction model of care. After the training participants had a more expansive understanding of care needs and recognised the importance of client empowerment to enable clients to participate in decisions affecting their care. The results support the implementation of a human rights-based approach to worker training and client care; such an approach is consistent with person-centred care. Full article
Show Figures

Figure 1

23 pages, 6813 KiB  
Article
Mapping Multi-Crop Cropland Abandonment in Conflict-Affected Ukraine Based on MODIS Time Series Analysis
by Nuo Xu, Hanchen Zhuang, Yijun Chen, Sensen Wu and Renyi Liu
Land 2025, 14(8), 1548; https://doi.org/10.3390/land14081548 - 28 Jul 2025
Viewed by 203
Abstract
Since the outbreak of the Russia–Ukraine conflict in 2022, Ukraine’s agricultural production has faced significant disruption, leading to widespread cropland abandonment. These croplands were abandoned at different stages, primarily due to war-related destruction and displacement of people. Existing methods for detecting abandoned cropland [...] Read more.
Since the outbreak of the Russia–Ukraine conflict in 2022, Ukraine’s agricultural production has faced significant disruption, leading to widespread cropland abandonment. These croplands were abandoned at different stages, primarily due to war-related destruction and displacement of people. Existing methods for detecting abandoned cropland fail to account for crop type differences and distinguish abandonment stages, leading to inaccuracies. Therefore, this study proposes a novel framework combining crop-type classification with the Bias-weighted Time-Weighted Dynamic Time Warping (BTWDTW) method, distinguishing between sowing and harvest abandonment. Additionally, the proposed framework improves accuracy by integrating a more nuanced analysis of crop-specific patterns, thus offering more precise insights into abandonment dynamics. The overall accuracy of the proposed method reached 88.9%. The results reveal a V-shaped trajectory of cropland abandonment, with abandoned areas increasing from 28,184 km2 in 2022 to 33,278 km2 in 2024, with 2023 showing an abandoned area of 24,007.65 km2. Spatially, about 70% of sowing abandonment occurred in high-conflict areas, with hotspots of unplanted abandonment shifting from southern Ukraine to the northeast, while unharvested abandonment was observed across the entire country. Significant variations were found across crop types, with maize experiencing the highest rate of unharvested abandonment, while wheat exhibited a more balanced pattern of sowing and harvest losses. The proposed method and results provide valuable insights for post-conflict agricultural recovery and decision-making in recovery planning. Full article
(This article belongs to the Special Issue Vegetation Cover Changes Monitoring Using Remote Sensing Data)
Show Figures

Figure 1

25 pages, 3182 KiB  
Article
From Efficiency to Safety: A Simulation-Based Framework for Evaluating Empty-Container Terminal Layouts
by Cristóbal Vera-Carrasco, Cristian D. Palma and Sebastián Muñoz-Herrera
J. Mar. Sci. Eng. 2025, 13(8), 1424; https://doi.org/10.3390/jmse13081424 - 26 Jul 2025
Viewed by 233
Abstract
Empty container depot (ECD) design significantly impacts maritime terminal efficiency, yet traditional evaluation approaches assess limited operational factors, constraining comprehensive performance optimization. This study develops an integrated discrete event simulation (DES) framework that simultaneously evaluates lifting equipment utilization, truck turnaround times, and potential [...] Read more.
Empty container depot (ECD) design significantly impacts maritime terminal efficiency, yet traditional evaluation approaches assess limited operational factors, constraining comprehensive performance optimization. This study develops an integrated discrete event simulation (DES) framework that simultaneously evaluates lifting equipment utilization, truck turnaround times, and potential collisions to support terminal decision-making. This study combines operational efficiency metrics with safety analytics for non-automated ECDs using Top Lifters and Reach Stackers. Additionally, a regression analysis examines efficiency metrics’ effect on safety risk. A case study at a Chilean multipurpose terminal reveals performance trade-offs between indicators under different operational scenarios, identifying substantial efficiency disparities between dry and refrigerated container operations. An analysis of four distinct collision zones with varying historical risk profiles showed the gate area had the highest potential collisions and a strong regression correlation with efficiency metrics. Similar models showed a poor fit in other conflict zones, evidencing the necessity for dedicated safety indicators complementing traditional measures. This integrated approach quantifies interdependencies between safety and efficiency metrics, helping terminal managers optimize layouts, expose traditional metric limitations, and reduce safety risks in space-constrained maritime terminals. Full article
Show Figures

Figure 1

29 pages, 429 KiB  
Article
Matching Game Preferences Through Dialogical Large Language Models: A Perspective
by Renaud Fabre, Daniel Egret and Patrice Bellot
Appl. Sci. 2025, 15(15), 8307; https://doi.org/10.3390/app15158307 - 25 Jul 2025
Viewed by 195
Abstract
This perspective paper explores the future potential of “conversational intelligence” by examining how Large Language Models (LLMs) could be combined with GRAPHYP’s network system to better understand human conversations and preferences. Using recent research and case studies, we propose a conceptual framework that [...] Read more.
This perspective paper explores the future potential of “conversational intelligence” by examining how Large Language Models (LLMs) could be combined with GRAPHYP’s network system to better understand human conversations and preferences. Using recent research and case studies, we propose a conceptual framework that could make AI reasoning transparent and traceable, allowing humans to see and understand how AI reaches its conclusions. We present the conceptual perspective of “Matching Game Preferences through Dialogical Large Language Models (D-LLMs),” a proposed system that would allow multiple users to share their different preferences through structured conversations. This approach envisions personalizing LLMs by embedding individual user preferences directly into how the model makes decisions. The proposed D-LLM framework would require three main components: (1) reasoning processes that could analyze different search experiences and guide performance, (2) classification systems that would identify user preference patterns, and (3) dialogue approaches that could help humans resolve conflicting information. This perspective framework aims to create an interpretable AI system where users could examine, understand, and combine the different human preferences that influence AI responses, detected through GRAPHYP’s search experience networks. The goal of this perspective is to envision AI systems that would not only provide answers but also show users how those answers were reached, making artificial intelligence more transparent and trustworthy for human decision-making. Full article
Show Figures

Figure 1

39 pages, 3221 KiB  
Article
Balancing Multi-Source Heterogeneous User Requirement Information in Complex Product Design
by Cengjuan Wu, Tianlu Zhu, Yajun Li, Zhizheng Zhang and Tianyu Wu
Symmetry 2025, 17(8), 1192; https://doi.org/10.3390/sym17081192 - 25 Jul 2025
Viewed by 153
Abstract
User requirements are the core driving force behind the iterative development of complex products. Their comprehensive collection, accurate interpretation, and effective integration directly affect design outcomes. However, current practices often depend heavily on single-source data and designer intuition, resulting in incomplete, biased, and [...] Read more.
User requirements are the core driving force behind the iterative development of complex products. Their comprehensive collection, accurate interpretation, and effective integration directly affect design outcomes. However, current practices often depend heavily on single-source data and designer intuition, resulting in incomplete, biased, and fragile design decisions. Moreover, multi-source heterogeneous user requirements often exhibit inherent asymmetry and imbalance in both structure and contribution. To address these issues, this study proposes a symmetric and balanced optimization method for multi-source heterogeneous user requirements in complex product design. Multiple acquisition and analysis approaches are integrated to mitigate the limitations of single-source data by fusing complementary information and enabling balanced decision-making. Firstly, unstructured text data from online reviews are used to extract initial user requirements, and a topic analysis method is applied for modeling and clustering. Secondly, user interviews are analyzed using a fuzzy satisfaction analysis, while eye-tracking experiments capture physiological behavior to support correlation analysis between internal preferences and external behavior. Finally, a cooperative game-based model is introduced to optimize conflicts among data sources, ensuring fairness in decision-making. The method was validated using a case study of oxygen concentrators. The findings demonstrate improvements in both decision robustness and requirement representation. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

17 pages, 379 KiB  
Article
The Dual Character of Animal-Centred Care: Relational Approaches in Veterinary and Animal Sanctuary Work
by Anna K. E. Schneider and Marc J. Bubeck
Vet. Sci. 2025, 12(8), 696; https://doi.org/10.3390/vetsci12080696 - 25 Jul 2025
Viewed by 216
Abstract
Caring for the lives and welfare of animals is central to veterinary and animal sanctuary work, yet the meaning remains a subject of complex debates. Different stakeholders negotiate what constitutes appropriate care, leading to conflicting demands and expectations from internal and external sources. [...] Read more.
Caring for the lives and welfare of animals is central to veterinary and animal sanctuary work, yet the meaning remains a subject of complex debates. Different stakeholders negotiate what constitutes appropriate care, leading to conflicting demands and expectations from internal and external sources. This article is based on two qualitative studies: Study I explores the multifaceted aspects of death work in farm animal medicine, emphasising the practical, emotional and ethical challenges involved. Study II examines human–animal interaction in sanctuaries, which reveal tensions between instrumental and relational care in animal-centred work. Relational care represents a subjectifying approach with individual attention to animals, while instrumental care is a more objectifying perspective based on species representation. These demands can often be contradictory, complicating day-to-day decision making under pressure. To analyse these complexities, this study employs Clarke’s situational analysis (social worlds/arenas mapping), providing a means of comparing care work across different fields. This approach highlights how actor constellations, institutional settings, and structural constraints influence the negotiation of care. Addressing these issues provides a more nuanced understanding of the professional challenges of animal-centred care and the necessary skills to navigate its inherent contradictions. Full article
(This article belongs to the Special Issue Advanced Therapy in Companion Animals—2nd Edition)
Show Figures

Figure 1

22 pages, 3950 KiB  
Article
A Deep Reinforcement Learning-Based Concurrency Control of Federated Digital Twin for Software-Defined Manufacturing Systems
by Rubab Anwar, Jin-Woo Kwon and Won-Tae Kim
Appl. Sci. 2025, 15(15), 8245; https://doi.org/10.3390/app15158245 - 24 Jul 2025
Viewed by 210
Abstract
Modern manufacturing demands real-time, scalable coordination that legacy manufacturing management systems cannot provide. Digital transformation encompasses the entire manufacturing infrastructure, which can be represented by digital twins for facilitating efficient monitoring, prediction, and optimization of factory operations. A Federated Digital Twin (FDT) emerges [...] Read more.
Modern manufacturing demands real-time, scalable coordination that legacy manufacturing management systems cannot provide. Digital transformation encompasses the entire manufacturing infrastructure, which can be represented by digital twins for facilitating efficient monitoring, prediction, and optimization of factory operations. A Federated Digital Twin (FDT) emerges by combining heterogeneous digital twins, enabling real-time collaboration, data sharing, and collective decision-making. However, deploying FDTs introduces new concurrency control challenges, such as priority inversion and synchronization failures, which can potentially cause process delays, missed deadlines, and reduced customer satisfaction. Traditional concurrency control approaches in the computing domain, due to their reliance on static priority assignments and centralized control, are inadequate for managing dynamic, real-time conflicts effectively in real production lines. To address these challenges, this study proposes a novel concurrency control framework combining Deep Reinforcement Learning with the Priority Ceiling Protocol. Using SimPy-based discrete-event simulations, which accurately model the asynchronous nature of FDT interactions, the proposed approach adaptively optimizes resource allocation and effectively mitigates priority inversion. The results demonstrate that against the rule-based PCP controller, our hybrid DRLCC enhances completion time maximum of 24.27% to a minimum of 1.51%, urgent-job delay maximum of 6.65% and a minimum of 2.18%, while preserving lower-priority inversions. Full article
Show Figures

Figure 1

20 pages, 1475 KiB  
Article
Design Optimization and Assessment Platform for Wind-Assisted Ship Propulsion
by Timoleon Plessas and Apostolos Papanikolaou
J. Mar. Sci. Eng. 2025, 13(8), 1389; https://doi.org/10.3390/jmse13081389 - 22 Jul 2025
Viewed by 177
Abstract
The maritime industry faces growing pressure to reduce greenhouse gas (GHG) emissions, reflected in the progressive adoption of stricter international energy regulations. Wind-Assisted Propulsion Systems (WAPS) offer a promising solution by significantly contributing to decarbonization. This paper presents a versatile simulation and optimization [...] Read more.
The maritime industry faces growing pressure to reduce greenhouse gas (GHG) emissions, reflected in the progressive adoption of stricter international energy regulations. Wind-Assisted Propulsion Systems (WAPS) offer a promising solution by significantly contributing to decarbonization. This paper presents a versatile simulation and optimization platform that supports the conceptual design of WAPS-equipped vessels and evaluates the viability of such investments. The platform uses a steady-state force equilibrium model to simulate vessel performance along predefined routes under realistic weather conditions, incorporating regulatory frameworks and economic assessments. A multi-objective optimization framework identifies optimal designs across user-defined criteria. To demonstrate its capabilities, the platform is applied to a bulk carrier operating between China and the USA, optimizing for capital expenditure, net present value (NPV), and CO2 emissions. Results show the platform can effectively balance conflicting objectives, achieving substantial emissions reductions without compromising economic performance. The final optimized design achieved a 12% reduction in CO2 emissions, a 7% decrease in capital expenditure, and a 6.6 million USD increase in net present value compared to the reference design with sails, demonstrating the platform’s capability to deliver balanced improvements across all objectives. The methodology is adaptable to various ship types, WAPS technologies, and operational profiles, offering a valuable decision-support tool for stakeholders navigating the transition to zero-carbon shipping. Full article
(This article belongs to the Special Issue Design Optimisation in Marine Engineering)
Show Figures

Figure 1

25 pages, 1344 KiB  
Article
Cloud-Based Data-Driven Framework for Optimizing Operational Efficiency and Sustainability in Tube Manufacturing
by Michael Maiko Matonya and István Budai
Appl. Syst. Innov. 2025, 8(4), 100; https://doi.org/10.3390/asi8040100 - 22 Jul 2025
Viewed by 289
Abstract
Modern manufacturing strives for peak efficiency while facing pressing demands for environmental sustainability. Balancing these often-conflicting objectives represents a fundamental trade-off in modern manufacturing, as traditional methods typically address them in isolation, leading to suboptimal outcomes. Process mining offers operational insights but often [...] Read more.
Modern manufacturing strives for peak efficiency while facing pressing demands for environmental sustainability. Balancing these often-conflicting objectives represents a fundamental trade-off in modern manufacturing, as traditional methods typically address them in isolation, leading to suboptimal outcomes. Process mining offers operational insights but often lacks dynamic environmental indicators, while standard Life Cycle Assessment (LCA) provides environmental evaluation but uses static data unsuitable for real-time optimization. Frameworks integrating real-time data for dynamic multi-objective optimization are scarce. This study proposes a comprehensive, data-driven, cloud-based framework that overcomes these limitations. It uniquely combines three key components: (1) real-time Process Mining for actual workflows and operational KPIs; (2) dynamic LCA using live sensor data for instance-level environmental impacts (energy, emissions, waste) and (3) Multi-Objective Optimization (NSGA-II) to identify Pareto-optimal solutions balancing efficiency and sustainability. TOPSIS assists decision-making by ranking these solutions. Validated using extensive real-world data from a tube manufacturing facility processing over 390,000 events, the framework demonstrated significant, quantifiable improvements. The optimization yielded a Pareto front of solutions that surpassed baseline performance (87% efficiency; 2007.5 kg CO2/day). The optimal balanced solution identified by TOPSIS simultaneously increased operational efficiency by 5.1% and reduced carbon emissions by 12.4%. Further analysis quantified the efficiency-sustainability trade-offs and confirmed the framework’s adaptability to varying strategic priorities through sensitivity analysis. This research offers a validated framework for industrial applications that enables manufacturers to improve both operational efficiency and environmental sustainability in a unified manner, moving beyond the limitations of disconnected tools. The validated integrated framework provides a powerful, data-driven tool, recommended as a valuable approach for industrial applications seeking continuous improvement in both economic and environmental performance dimensions. Full article
Show Figures

Figure 1

18 pages, 2549 KiB  
Article
A Multi-Fusion Early Warning Method for Vehicle–Pedestrian Collision Risk at Unsignalized Intersections
by Weijing Zhu, Junji Dai, Xiaoqin Zhou, Xu Gao, Rui Cheng, Bingheng Yang, Enchu Li, Qingmei Lü, Wenting Wang and Qiuyan Tan
World Electr. Veh. J. 2025, 16(7), 407; https://doi.org/10.3390/wevj16070407 - 21 Jul 2025
Viewed by 268
Abstract
Traditional collision risk warning methods primarily focus on vehicle-to-vehicle collisions, neglecting conflicts between vehicles and vulnerable road users (VRUs) such as pedestrians, while the difficulty in predicting pedestrian trajectories further limits the accuracy of collision warnings. To address this problem, this study proposes [...] Read more.
Traditional collision risk warning methods primarily focus on vehicle-to-vehicle collisions, neglecting conflicts between vehicles and vulnerable road users (VRUs) such as pedestrians, while the difficulty in predicting pedestrian trajectories further limits the accuracy of collision warnings. To address this problem, this study proposes a vehicle-to-everything-based (V2X) multi-fusion vehicle–pedestrian collision warning method, aiming to enhance the traffic safety protection for VRUs. First, Unmanned Aerial Vehicle aerial imagery combined with the YOLOv7 and DeepSort algorithms is utilized to achieve target detection and tracking at unsignalized intersections, thereby constructing a vehicle–pedestrian interaction trajectory dataset. Subsequently, key foundational modules for collision warning are developed, including the vehicle trajectory module, the pedestrian trajectory module, and the risk detection module. The vehicle trajectory module is based on a kinematic model, while the pedestrian trajectory module adopts an Attention-based Social GAN (AS-GAN) model that integrates a generative adversarial network with a soft attention mechanism, enhancing prediction accuracy through a dual-discriminator strategy involving adversarial loss and displacement loss. The risk detection module applies an elliptical buffer zone algorithm to perform dynamic spatial collision determination. Finally, a collision warning framework based on the Monte Carlo (MC) method is developed. Multiple sampled pedestrian trajectories are generated by applying Gaussian perturbations to the predicted mean trajectory and combined with vehicle trajectories and collision determination results to identify potential collision targets. Furthermore, the driver perception–braking time (TTM) is incorporated to estimate the joint collision probability and assist in warning decision-making. Simulation results show that the proposed warning method achieves an accuracy of 94.5% at unsignalized intersections, outperforming traditional Time-to-Collision (TTC) and braking distance models, and effectively reducing missed and false warnings, thereby improving pedestrian traffic safety at unsignalized intersections. Full article
Show Figures

Figure 1

21 pages, 4944 KiB  
Article
Multi-Objective Optimization Methods for University Campus Planning and Design—A Case Study of Dalian University of Technology
by Lin Qi, Chaoran Chen and Jun Dong
Buildings 2025, 15(14), 2551; https://doi.org/10.3390/buildings15142551 - 19 Jul 2025
Viewed by 347
Abstract
This study focuses on the multi-objective coordination problem in university campus planning and design, proposing an optimized methodology integrating an improved multi-objective decision-making framework. A five-dimensional objective system—comprising energy efficiency, spatial quality, economic cost, ecological benefits, and cultural expression—was established, alongside the identification [...] Read more.
This study focuses on the multi-objective coordination problem in university campus planning and design, proposing an optimized methodology integrating an improved multi-objective decision-making framework. A five-dimensional objective system—comprising energy efficiency, spatial quality, economic cost, ecological benefits, and cultural expression—was established, alongside the identification and standardization of 29 key variables to construct mapping relationships among objective functions. On the algorithmic level, an adapted NSGA-III was implemented on the MATLAB platform (version R2022b), introducing a dynamic reference point mechanism and hybrid constraint-handling strategy to enhance convergence and solution diversity. Taking the northern residential area of the western campus of Dalian University of Technology as a case study, multiple Pareto-optimal solutions were generated. Five representative alternatives were selected and evaluated through the AHP–TOPSIS method to determine the optimal scheme. The results indicated significant improvements in energy, economic, spatial, and ecological dimensions, while also achieving quantifiable control over cultural expression. On this basis, an integrated optimization strategy targeting “form–function–environment–culture” was proposed, offering data-informed support and procedural reference for systematic campus planning. This study demonstrates the effectiveness, adaptability, and practical value of the proposed approach in addressing multi-objective conflicts in university planning. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

19 pages, 1167 KiB  
Article
A Reservoir Group Flood Control Operation Decision-Making Risk Analysis Model Considering Indicator and Weight Uncertainties
by Tangsong Luo, Xiaofeng Sun, Hailong Zhou, Yueping Xu and Yu Zhang
Water 2025, 17(14), 2145; https://doi.org/10.3390/w17142145 - 18 Jul 2025
Viewed by 240
Abstract
Reservoir group flood control scheduling decision-making faces multiple uncertainties, such as dynamic fluctuations of evaluation indicators and conflicts in weight assignment. This study proposes a risk analysis model for the decision-making process: capturing the temporal uncertainties of flood control indicators (such as reservoir [...] Read more.
Reservoir group flood control scheduling decision-making faces multiple uncertainties, such as dynamic fluctuations of evaluation indicators and conflicts in weight assignment. This study proposes a risk analysis model for the decision-making process: capturing the temporal uncertainties of flood control indicators (such as reservoir maximum water level and downstream control section flow) through the Long Short-Term Memory (LSTM) network, constructing a feasible weight space including four scenarios (unique fixed value, uniform distribution, etc.), resolving conflicts among the weight results from four methods (Analytic Hierarchy Process (AHP), Entropy Weight, Criteria Importance Through Intercriteria Correlation (CRITIC), Principal Component Analysis (PCA)) using game theory, defining decision-making risk as the probability that the actual safety level fails to reach the evaluation threshold, and quantifying risks based on the First-Order Second-Moment (FOSM) method. Case verification in the cascade reservoirs of the Qiantang River Basin of China shows that the model provides a risk assessment framework integrating multi-source uncertainties for flood control scheduling decisions through probabilistic description of indicator uncertainties (e.g., Zmax1 with μ = 65.3 and σ = 8.5) and definition of weight feasible regions (99% weight distribution covered by the 3σ criterion), filling the methodological gap in risk quantification during the decision-making process in existing research. Full article
(This article belongs to the Special Issue Flood Risk Identification and Management, 2nd Edition)
Show Figures

Figure 1

Back to TopTop