Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (396)

Search Parameters:
Keywords = dead tree

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2137 KiB  
Article
Electrophysiology and Behavior of Tomicus yunnanensis to Pinus yunnanensis Volatile Organic Compounds Across Infestation Stages in Southwest China
by Jinlin Liu, Mengdie Zhang, Lubing Qian, Zhenji Wang and Zongbo Li
Forests 2025, 16(7), 1178; https://doi.org/10.3390/f16071178 (registering DOI) - 17 Jul 2025
Abstract
Tomicus yunnanensis Kirkendall and Faccoli, a native bark beetle species and key pest of Pinus yunnanensis Franch. in southwestern China, relies on host-derived volatile organic compounds (VOCs) for host selection. To unravel these mechanisms, we collected VOCs from P. yunnanensis trunks across four [...] Read more.
Tomicus yunnanensis Kirkendall and Faccoli, a native bark beetle species and key pest of Pinus yunnanensis Franch. in southwestern China, relies on host-derived volatile organic compounds (VOCs) for host selection. To unravel these mechanisms, we collected VOCs from P. yunnanensis trunks across four infestation stages (healthy, early-infested, weakened, near-dead) using dynamic headspace sampling. Chemical profiling via gas chromatography–mass spectrometry (GC-MS) identified 51 terpenoids, with α-pinene as the most abundant component. VOC profiles differed markedly between healthy and early-infested trees, while gradual shifts in compound diversity and abundance occurred from the weakened to near-dead stages. Bioactive compounds were screened using gas chromatography–electroantennographic detection (GC-EAD) and a Y-tube olfactometer. Electrophysiological responses in T. yunnanensis were triggered by α-pinene, β-pinene, 3-carene, 2-thujene, and 4-allylanisole. Behavioral tests revealed that α-pinene, 3-carene, and 2-thujene acted as attractants, whereas β-pinene and 4-allylanisole functioned as repellents. These results indicate that infestation-induced VOC dynamics guide beetle behavior, with attractants likely promoting host colonization during early infestation and repellents signaling deteriorating host suitability in later stages. By mapping these chemical interactions, our study identifies potential plant-derived semiochemicals for targeted pest management. Integrating these compounds with pheromones could enhance the monitoring and control strategies for T. yunnanensis, offering ecologically sustainable solutions for pine ecosystems. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

25 pages, 2032 KiB  
Article
Pedunculate Oak (Quercus robur L.) Crown Defoliation as an Indicator of Timber Value
by Branko Ursić and Dinko Vusić
Forests 2025, 16(7), 1111; https://doi.org/10.3390/f16071111 - 4 Jul 2025
Viewed by 155
Abstract
Pedunculate oak (Quercus robur L.), an ecologically and economically important tree species has been significantly affected by oak dieback in recent years. Since one of the symptoms of oak dieback is crown defoliation, this research aimed to determine the quantity, quality, average [...] Read more.
Pedunculate oak (Quercus robur L.), an ecologically and economically important tree species has been significantly affected by oak dieback in recent years. Since one of the symptoms of oak dieback is crown defoliation, this research aimed to determine the quantity, quality, average tree value, and wood defects that influence grading in different stages of oak dieback indicated by tree crown defoliation degree. The research was conducted in a 62- and 116-year-old stand of the lowland Croatian forest. In total, 115 pedunculate oak trees were sampled and processed in 983 logs that were analyzed. The prescribed single-entry volume tables underestimate harvesting volume by 5.45% on site A and 6.16% on site B, while the calculation of net harvesting volume underestimates net volume by 0.26% on site A and overestimates net volume on site B by 4.59%. The analysis of wood defect presence showed that insect holes, rot, and covered knots were the main reasons for the degradation of quality class. Dead trees showed a decreased average tree value in DBH classes 32.5–42.5 cm compared to the healthy trees. Based on the findings of this research, tree crown defoliation degree could be used as a timber quality and average tree value indicator. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

14 pages, 12231 KiB  
Article
Habitat Requirements of the Grey-Headed Woodpecker in Lowland Areas of NE Poland: Evidence from the Playback Experiment
by Grzegorz Zawadzki and Dorota Zawadzka
Birds 2025, 6(3), 32; https://doi.org/10.3390/birds6030032 - 20 Jun 2025
Viewed by 367
Abstract
The grey-headed woodpecker (Picus canus) (GHW) is one of the least-studied European woodpeckers, listed in Annex I of the Birds Directive. We examined the key environmental characteristics that determine the possibility of GHW occurrence in vast forests in northeast Poland. Woodpeckers [...] Read more.
The grey-headed woodpecker (Picus canus) (GHW) is one of the least-studied European woodpeckers, listed in Annex I of the Birds Directive. We examined the key environmental characteristics that determine the possibility of GHW occurrence in vast forests in northeast Poland. Woodpeckers were inventoried in spring on 54 study plots (4 km2) covering 20% of the forest area. Active territories were detected and mapped using the playback experiment of territorial voices and drumming. The generalized linear model GLM, random forest RF, and Boosting were used for modeling. GLM was used to indicate the most critical factors affecting the abundance of GHW. The number of territories in a single study plot ranged from 0 to 3; the most frequent were areas without woodpeckers. The probability of the nesting of the GHW was increasing at plots with watercourses, a bigger share of mixed forest area, and a proportion of stands over 120 years old. The calculation for all 400 quadrats allowed us to estimate the population size at approximately 180–200 breeding pairs. The overall density of GHW in the study area was assessed at 0.13/km2, while at the optimal quadrats, it increased to about 0.75/km2. Preference for watercourses was linked to alders growing along water banks. Near the water, there are often small meadows where the GHW can prey on ants. In turn, old-growth forests above 120 years old increased the probability of the presence of the GHW. There are more dead and dying trees in older forests, which are the ones the GHW chooses to excavate cavities. To effectively protect the habitats of the GHW, it is necessary to maintain a larger area of stands over 120 years old, mainly on wet sites. Full article
Show Figures

Figure 1

15 pages, 2837 KiB  
Article
Spatial Reconfiguration of Living Stems and Snags Reveals Stand Structural Simplification During Moso Bamboo (Phyllostachys edulis (Carrière) J.Houz.) Invasion into Coniferbroad-Leaf Forests
by Xi Chen, Xiumei Zhou, Songheng Jin and Shangbin Bai
Plants 2025, 14(11), 1698; https://doi.org/10.3390/plants14111698 - 2 Jun 2025
Viewed by 446
Abstract
In subtropical regions of China, the expansion of Moso bamboo has become increasingly prominent, resulting in massive mortality of original trees in adjacent forest stands. Significant changes have also occurred in the population characteristics and spatial distribution patterns of these native tree species. [...] Read more.
In subtropical regions of China, the expansion of Moso bamboo has become increasingly prominent, resulting in massive mortality of original trees in adjacent forest stands. Significant changes have also occurred in the population characteristics and spatial distribution patterns of these native tree species. This study aims to examine the impacts of Moso bamboo (Phyllostachys edulis) expansion on the successional dynamics of coniferous and broad-leaved mixed forests. Three sample plots were successively set up in the transition zone from bamboo to conifer and broad-leaved forest, including conifer and broad-leaved mixed forest (CF), transition forest (TF), and Moso bamboo forest (MF); a total of 72 10 m × 10 m quadrats (24 per forest type) were included. The species composition, diameter class structure and distribution pattern of living stems and snags (dead standing stems) were studied. The results showed that during the late expansion phase of bamboo, the density of living stems and snags separately increased by 2234 stems·ha−1 and 433 stems·ha−1, basal area increments of 23.45 m2·ha−1 and 7.81 m2·ha−1. The individuals with large diameter in living stems and snags gradually decreased, and the distribution range of the diameter steps mainly narrowed to 10–15 cm. On the scale of 0–10 m, the spatial pattern of standing stems changed from random and weak aggregation distribution to strong aggregation distribution and then to weak aggregation and random distribution in the three stands, while the overall distribution of snags in the three stands was random. The spatial correlation between living stems and snags evolved from uncorrelated in CF, to significant positive correlation in TF, and then to positive correlation and uncorrelation in MF. These results indicated that the bamboo expansion accelerated the mortality rate of the original tree species, leading to the diversity of tree species decreased, the composition of diameter classes was simplified, the degree of stem aggregation increased, and intra- and inter-species competition became the main reasons for tree death. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

26 pages, 4438 KiB  
Article
Ecology, Floristic–Vegetational Features, and Future Perspectives of Spruce Forests Affected by Ips typographus: Insight from the Southern Alps
by Luca Giupponi, Riccardo Panza, Davide Pedrali, Stefano Sala and Annamaria Giorgi
Plants 2025, 14(11), 1681; https://doi.org/10.3390/plants14111681 - 31 May 2025
Viewed by 632
Abstract
In recent years, many spruce (Picea abies (L.) H. Karst., Pinaceae) forests have been severely affected by bark beetle (Ips typographus L., Coleoptera: Curculionidae) outbreaks in the Southern Alps, but their ecological impacts remain poorly studied. We analyzed the distribution, ecological, [...] Read more.
In recent years, many spruce (Picea abies (L.) H. Karst., Pinaceae) forests have been severely affected by bark beetle (Ips typographus L., Coleoptera: Curculionidae) outbreaks in the Southern Alps, but their ecological impacts remain poorly studied. We analyzed the distribution, ecological, and floristic–vegetational characteristics of forests recently affected by the bark beetle in the upper basin of the Oglio River (Northern Italy) and developed a MaxEnt model to map forests with a bioclimate more prone to severe insect attacks in the coming decades. The results showed that the spruce forests affected by the bark beetle are located exclusively in the submountain and mountain belts (below 1600 m a.s.l.) and that 85% of them are found in areas with high annual solar radiation (>3500 MJ m−2). The predictive model for areas susceptible to severe bark beetle attacks proved highly accurate (AUC = 0.91) and was primarily defined by the mean temperature of the dry winter quarter (contribution: 80.1%), with values between −2.5 and 2.5 °C being particularly suitable for the pest. According to the model, more than 58% of the current spruce forests in the study area will exhibit high susceptibility (probability > 0.7) to severe bark beetle attacks by 2080. The floristic–vegetational and ecological analysis of plant communities of 11 bark beetle-affected areas indicated that more thermophilic and significantly different forest communities (in both floristic and physiognomic terms) are expected to develop compared to those of pre-disturbance. Furthermore, the high coverage of spruce snags/standing dead trees appears to accelerate plant succession, enabling the establishment of mature forest communities in a shorter time frame. Full article
Show Figures

Figure 1

10 pages, 5284 KiB  
Article
Reference Values for Postmortem Examination of the Heart in the Macropod (Macropodidae) and Koala (Phascolarctidae)
by Ella Cousins, Lucy Woolford, David McLelland, Sarah Brownrigg and Natasha Speight
Animals 2025, 15(10), 1397; https://doi.org/10.3390/ani15101397 - 12 May 2025
Viewed by 614
Abstract
Morphometric cardiac reference values are reported for macropods and koalas (Phascolarctos cinereus). Body weight (BW), heart weight (HW), left ventricle (LV) wall, interventricular septum (S), right ventricle (RV) wall thickness, and LV+S and RV weights were measured at postmortem examination of [...] Read more.
Morphometric cardiac reference values are reported for macropods and koalas (Phascolarctos cinereus). Body weight (BW), heart weight (HW), left ventricle (LV) wall, interventricular septum (S), right ventricle (RV) wall thickness, and LV+S and RV weights were measured at postmortem examination of 48 macropods and 32 koalas that had no evidence of cardiovascular disease. The HW/BW% (0.43–0.96%) and (LV+S)/RV (2.80–4.22) for macropods were comparable to domestic species. In koalas, the HW/BW% (0.25–0.51%) was lower, and the (LV+S)/RV (3.06–5.41) ranged higher than in macropods and domestic species. The LV:RV of koalas (1.0–10.8) was more variable than in macropods (1.17–4.27). Two macropods with cardiac disease were assessed on postmortem examination against the generated reference values. An adult male common wallaroo (Osphranter robustus) was found dead with copious serous peritoneal effusion, chronic passive hepatic congestion with centrilobular fibrosis, and dilation of the RV, while the LV:RV was elevated, supportive of RV thinning. A 21-year-old female zoo-housed Matschie’s tree kangaroo (Dendrolagus matschiei) had a flaccid thin-walled RV, LV cardiomyocyte hypertrophy, interstitial myocardial fibrosis and myofiber degeneration, pulmonary oedema, and serous pericardial effusion. The (LV+S)/RV and LV:RV were elevated and RV:S decreased, supporting left hypertrophic cardiomyopathy. Species-specific reference values presented in this study facilitate objective and improved postmortem cardiac assessment in macropods and koalas. Full article
(This article belongs to the Special Issue Wildlife Diseases: Pathology and Diagnostic Investigation)
Show Figures

Figure 1

22 pages, 398 KiB  
Article
High-Dimensional Modeling of Huanglongbing Dynamics with Time-Varying Impulsive Control
by Feiping Xie, Youquan Luo, Yan Zhang and Shujing Gao
Mathematics 2025, 13(10), 1546; https://doi.org/10.3390/math13101546 - 8 May 2025
Viewed by 261
Abstract
This study develops a high-dimensional impulsive differential equation model to analyze Huanglongbing (HLB) transmission dynamics, incorporating seasonal fluctuations in vector psyllid populations and multi-pronged control measures: (1) periodic removal of infected/dead citrus trees to eliminate pathogen reservoirs and (2) non-uniform pesticide applications timed [...] Read more.
This study develops a high-dimensional impulsive differential equation model to analyze Huanglongbing (HLB) transmission dynamics, incorporating seasonal fluctuations in vector psyllid populations and multi-pronged control measures: (1) periodic removal of infected/dead citrus trees to eliminate pathogen reservoirs and (2) non-uniform pesticide applications timed to disrupt psyllid life cycles. The model analytically derives the basic reproduction number (R0) and proves the existence of a unique disease-free periodic solution. Theoretical analysis reveals a threshold-dependent stability: when R0<1, the disease-free solution is globally asymptotically stable, ensuring pathogen extinction; when R0>1, the system becomes uniformly persistent, indicating endemic HLB. Numerical simulations validate these findings and demonstrate that integrated interventions, combining psyllid population control and removal of infected plants, can significantly suppress HLB spread. The results provide a mathematical framework for optimizing intervention timing and intensity, offering actionable strategies for citrus growers. Full article
Show Figures

Figure 1

23 pages, 23951 KiB  
Article
Evaluation of Temporal Trends in Forest Health Status Using Precise Remote Sensing
by Tobias Leidemer, Maximo Larry Lopez Caceres, Yago Diez, Chiara Ferracini, Ching-Ying Tsou and Mitsuhiko Katahira
Drones 2025, 9(5), 337; https://doi.org/10.3390/drones9050337 - 30 Apr 2025
Viewed by 665
Abstract
In recent decades, forests have experienced an increasing trend in the number of pest outbreaks worldwide, apparently driven by strong annual variability in precipitation, higher air temperatures, and strong winds. Pest outbreaks have negative ecological, economic, and environmental impacts on forest ecosystems, such [...] Read more.
In recent decades, forests have experienced an increasing trend in the number of pest outbreaks worldwide, apparently driven by strong annual variability in precipitation, higher air temperatures, and strong winds. Pest outbreaks have negative ecological, economic, and environmental impacts on forest ecosystems, such as reduced biodiversity, carbon sequestration, and overall forest health. Traditional monitoring methods of these disturbances, while accurate, are time-consuming and limited in scope. Remote sensing, particularly UAV (Unmanned Aerial Vehicle)-based technologies, offers a precise and cost effective alternative for monitoring forest health. This study evaluates the temporal and spatial progression of bark beetle damage in a fir-dominated forest in the Zao Mountains, Japan, using UAV RGB imagery and DL (Deep Learning) models (YOLO - You Only Look Ones), over a four-year period (2021–2024). Trees were classified into six health categories: Healthy, Light Damage, Medium Damage, Heavy Damage, Dead, and Fallen. The results revealed a significant decline in healthy trees, from 67.4% in 2021 to 25.6% in 2024, with a corresponding increase in damaged and dead trees. Light damage emerged as a potential early indicator of forest health decline. The DL model achieved an accuracy of 74.9% to 82.8%. The results showed the effectiveness of DL in detecting severe damage but highlighted that challenges in distinguishing between healthy and lightly damaged trees still remain. The study highlights the potential of UAV-based remote sensing and DL for monitoring forest health, providing valuable insights for targeted management interventions. However, further refinement of the classification methods is needed to improve accuracy, particularly in the precise detection of tree health categories. This approach offers a scalable solution for monitoring forest health in similar ecosystems in other subalpine areas of Japan and the world. Full article
Show Figures

Figure 1

16 pages, 8161 KiB  
Article
Influences of Tree Mortality on Fire Intensity and Burn Severity for a Southern California Forest Using Airborne and Satellite Imagery
by Nowshin Nawar, Douglas A. Stow, Philip Riggan, Robert Tissell, Daniel Sousa, Megan K. Jennings and Lynn Wolden
Fire 2025, 8(4), 144; https://doi.org/10.3390/fire8040144 - 2 Apr 2025
Viewed by 553
Abstract
In this study, we investigated the influence of pre-fire tree mortality on fire behavior. Although other studies have focused on the environmental factors affecting wildfire, the influence of pre-fire tree mortality has not been explored in detail. We used high-spatial-resolution (1.6 m) airborne [...] Read more.
In this study, we investigated the influence of pre-fire tree mortality on fire behavior. Although other studies have focused on the environmental factors affecting wildfire, the influence of pre-fire tree mortality has not been explored in detail. We used high-spatial-resolution (1.6 m) airborne multispectral orthoimages to detect and map pre-fire dead trees in a portion of the San Bernardino Mountains, where the ‘Old Fire’ burned in 2003, and assessed whether spatial patterns of fire intensity and burn severity coincide with patterns of tree mortality. Dead trees were mapped through a hybrid deep learning classification and manual editing approach and facilitated with Google Earth Pro historical images. Apparent thermal infrared (TIR) brightness temperature captured during the Old Fire was derived from maximum digital number values from FireMapper airborne thermal infrared imagery (7 m) as a measure of fire intensity. Burn severity was analyzed using normalized burn ratio maps derived from pre- and post-fire Landsat 5 satellite imagery (30 m). Pre-fire dead trees were prevalent with 192 dead trees and 108 live trees per ha, with most dead trees clustered near the northwestern part of the study area east of Lake Arrowhead. The degree of spatial correspondence among dead tree density, fire intensity, and burn severity was analyzed using graphical and statistical analyses. The results revealed a significant but weak spatial association of dead trees with fire intensity (R2 = 0.31) and burn severity (R2 = 0.14). The findings revealed that areas impacted by pre-fire tree mortality were subject to higher fire intensity, followed by severe burn effects, though other biophysical factors also influenced these fire behavior variables. These results contradict a previous study that found no effect of tree mortality on the behavior of the Old Fire. Full article
(This article belongs to the Section Fire Science Models, Remote Sensing, and Data)
Show Figures

Graphical abstract

18 pages, 2096 KiB  
Article
Predictable Overcompensation in Post-Thinning Stand Dynamics of Canadian Forests: A Synthesis
by Chao Li, Bernard Roitberg, Shongming Huang and Robert Lalonde
Plants 2025, 14(7), 982; https://doi.org/10.3390/plants14070982 - 21 Mar 2025
Cited by 1 | Viewed by 413
Abstract
Most experiments on thinning effects are based upon short-term outcomes, which has led to a common conclusion that stand gross volume will be reduced after various thinning operations. However, contrary results are emerging from more recent long-term thinning experiments. The well-known biological concept [...] Read more.
Most experiments on thinning effects are based upon short-term outcomes, which has led to a common conclusion that stand gross volume will be reduced after various thinning operations. However, contrary results are emerging from more recent long-term thinning experiments. The well-known biological concept of compensatory growth was introduced to reconcile these opposing results. This synthetic article describes a systematic investigation on overcompensation under the conceptual framework of compensatory growth and consists of the following: (1) empirical evidence of overcompensation in forests; (2) a theoretical proof of the possibility of emerging overcompensation using a life-history-theory based analytical tree adaptive growth (TAG) model; and (3) an empirical data-based tree compensatory growth (TreeCG) model that resembles the growth relationships from natural stands. Our results indicate that (1) overcompensation is an expected common phenomenon across different tree species and geographical regions, and (2) overcompensation can be predicted from at least two different mechanisms: optimal allocation of available energy to growth, reproduction, maintenance and reserves, and redistribution of freed resources from dead trees. Therefore, overcompensation is a predictable phenomenon, and forest managers can make SFM (Sustainable Forest Management) decisions based on their specific management goals. Research recommendations are suggested for next steps. Full article
(This article belongs to the Collection Forest Environment and Ecology)
Show Figures

Figure 1

17 pages, 11177 KiB  
Article
Phenological, Physiological, and Ultrastructural Analyses of ‘Green Islands’ on Senescent Leaves of Norway Maple (Acer platanoides L.)
by Violetta Katarzyna Macioszek, Kamila Chalamońska, Jakub Oliwa, Aleksandra Maria Staszak and Mirosław Sobczak
Plants 2025, 14(6), 909; https://doi.org/10.3390/plants14060909 - 14 Mar 2025
Cited by 1 | Viewed by 639
Abstract
‘Green island’ symptoms in the form of vivid green, round spots visible on the senescent leaves of many plants and trees are mostly the results of pathogenic colonization by fungi, and the greenish tissue is often dead. Therefore, this study investigates whether green [...] Read more.
‘Green island’ symptoms in the form of vivid green, round spots visible on the senescent leaves of many plants and trees are mostly the results of pathogenic colonization by fungi, and the greenish tissue is often dead. Therefore, this study investigates whether green spots observed on senescent Norway maple (Acer platanoides L.) leaves were still alive and photosynthetically active. The appearance of ‘green islands’ on the leaves of young Norway maple trees was observed from the autumn of 2019 to 2022 in an urban forest (Bialystok, eastern Poland). However, in the late summer (September) of 2023 and 2024, mostly tar spots caused by the fungus Rhytisma spp. on maple leaves could be observed, with only a few leaves having ‘green island’ symptoms. The percentage of ‘green island’ areas on senescent leaves observed during the 4 years (2019–2022) was influenced by a year of sampling (p < 0.001). A non-destructive physiological analysis of chlorophyll, flavonoids, and nitrogen balance index (NBI) in leaves revealed that these parameters were significantly lower in ‘green islands’ than in the summer leaves, but higher than in the senescent yellow area of the autumn leaves. In the case of anthocyanins, their level was significantly higher in ‘green islands’ than in yellow areas, although, in the summer leaves, anthocyanins were undetectable. The amount of chlorophyll and most photosynthetic parameters were significantly (p < 0.05) reduced in the ‘green islands’ of the senescent leaves compared to the mature green leaves. However, these parameters were significantly higher in the ‘green islands’ than in senescent yellow leaves. Carotenoid content in the ‘green island’ and yellow areas of senescent leaves were at the same level, twice as higher than in summer leaves. Green mature leaves and the ‘green islands’ on senescent leaves had the same structure and anatomy. The main differences concerned the chloroplasts, which were smaller and had less grana and starch grains, but had more plastoglobuli in ‘green island’ cells. The cells building the mesophyll in the yellow area of the leaf deteriorated and their chloroplasts collapsed. Epiphytes were present on the adaxial epidermis surface in all types of samples. Full article
Show Figures

Figure 1

16 pages, 2961 KiB  
Article
Assessing Ash (Fraxinus excelsior L.) Dieback Dynamics in the Białowieża Forest, Poland, Using Bi-Temporal High-Resolution Remote Sensing Data
by Agnieszka Kamińska, Maciej Lisiewicz, Bartłomiej Kraszewski, Miłosz Tkaczyk, Krzysztof Stereńczak and Emilia Wysocka-Fijorek
Forests 2025, 16(3), 506; https://doi.org/10.3390/f16030506 - 13 Mar 2025
Viewed by 1173
Abstract
The ash dieback epidemic, caused by the fungus Hymenoscyphus fraxineus, has been a significant issue in Europe for over 20 years, severely affecting ash tree populations (Fraxinus excelsior L.). In the Białowieża Forest, ash trees now represent less than 1% of [...] Read more.
The ash dieback epidemic, caused by the fungus Hymenoscyphus fraxineus, has been a significant issue in Europe for over 20 years, severely affecting ash tree populations (Fraxinus excelsior L.). In the Białowieża Forest, ash trees now represent less than 1% of the species composition, with a sharp decline observed over the past several decades. This study aims to map the dynamics of ash mortality in the Białowieża Forest and assess the influence of habitat and stand factors on the severity of mortality. We utilized bi-temporal high-resolution remote sensing data from 2015 to 2019 to track the decline of ash trees and to identify factors affecting mortality. The analysis employed a combination of Boosted Regression Trees (BRTs) and hotspot analyses. Our results show that between 2015 and 2019, 29% of the living ash trees in the canopy layer of the forest died. The findings indicate that ash mortality was most pronounced in stands with a high proportion of ash trees, particularly where dead deciduous trees were already present. Intensive dieback of other deciduous trees was also noted in these stands. This study provides valuable insights into the factors influencing ash mortality dynamics and demonstrates the potential of remote sensing for large-scale monitoring of tree health. The results have important implications for forest management and conservation, offering baseline data that can inform strategies to manage ash dieback and guide targeted interventions in affected forest areas. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

27 pages, 5854 KiB  
Article
Naturalness and Tree Composition Determine the Abundance of Rare and Threatened Orchids in Mature and Old-Growth Abies alba Forests in the Northern Apennines (Italy)
by Antonio Pica, Bartolomeo Schirone, Sara Magrini, Paolo Laghi, Kevin Cianfaglione and Alfredo Di Filippo
Land 2025, 14(3), 579; https://doi.org/10.3390/land14030579 - 10 Mar 2025
Viewed by 1043
Abstract
Forest Orchidaceae are important for European temperate forests, yet their distribution and abundance have so far interested limited research. In three pure or mixed silver fir stands in the Foreste Casentinesi National Park (NP) (Northern Apennines, Italy) we analysed how structural traits in [...] Read more.
Forest Orchidaceae are important for European temperate forests, yet their distribution and abundance have so far interested limited research. In three pure or mixed silver fir stands in the Foreste Casentinesi National Park (NP) (Northern Apennines, Italy) we analysed how structural traits in mature and old-growth forests affected orchid communities in terms of abundance of the main genera, trophic strategy and rarity in the NP. We established three 20 × 60 m plots to quantify the structure of living and dead tree community, including a set of old-growth attributes connected to large trees, deadwood, and established regeneration. In each plot, we measured the abundance of all orchid species and explored their behaviour according to the trophic strategy (autotrophy/mixotrophy, obligate mycoheterotrophy), rarity within the NP, and threatened status according to the IUCN Red List. We used multivariate ordination and classification techniques to assess plot similarities according to forest structure and Orchid Community and identify the main structural factors related to orchid features. The main structural factors were used as predictors of community traits. Forest composition (i.e., the dominance/abundance of silver fir) affected the presence of the main orchid genera: Epipactis were abundant in silver fir-dominated forests, Cephalanthera in mixed beech and fir forests. Interestingly, Cephalanthera could become limited even in beech-dominated conditions if fir regeneration was abundant and established. Old-growth attributes like the density of deadwood and large tree volume were important determinants of the presence of rare and mycoheterotrophic species. Our results provided a first quantitative description of forest reference conditions to be used in the protection and restoration of threatened and rare orchid species. Full article
(This article belongs to the Special Issue Species Vulnerability and Habitat Loss II)
Show Figures

Figure 1

26 pages, 5129 KiB  
Article
Impacts of the 2019–2020 Black Summer Drought on Eastern Australian Forests
by Nuwanthi Arampola, Belinda Medlyn, Samuel Hislop, Brendan Choat, Stefan Olin, Ali Mansourian, Pengxiang Zhao and Benjamin Smith
Remote Sens. 2025, 17(5), 910; https://doi.org/10.3390/rs17050910 - 5 Mar 2025
Viewed by 1129
Abstract
Droughts present a significant global challenge, particularly to forest ecosystems in regions such as eastern New South Wales, Australia, which is known for its dry climate and frequent, intense droughts. Recent studies have indicated a notable increase in tree mortality and canopy browning [...] Read more.
Droughts present a significant global challenge, particularly to forest ecosystems in regions such as eastern New South Wales, Australia, which is known for its dry climate and frequent, intense droughts. Recent studies have indicated a notable increase in tree mortality and canopy browning across this area, especially during the recent extreme drought period culminating in the Black Summer of 2019–2020. Our study investigates the impacts of drought on eucalypt forests by leveraging remote sensing and field observation data to detect and analyse vegetation health and stress indicators. Utilising data from Sentinel-2, alongside historical Landsat observations, we applied multiple spectral vegetation indices, namely the Normalized Difference Vegetation Index (NDVI), Normalized Difference Moisture Index (NDMI), Normalized Burn Ratio (NBR), and Tasseled Cap Transformation, to assess the extent of drought impacts. We found NBR to show the most consistent agreement with ground-based observations of drought-related tree mortality. Additionally, by integrating ground-based data from the “Dead Tree Detective” citizen science project, we were able to validate the remote sensing outcomes with a 90.22% consistency, providing confirmation of the extensive spatial distribution and severity of the inferred impacts. Our findings reveal that 13.16% of eucalypt forests and woodlands across eastern New South Wales experienced severe stress associated with drought during the 2019–2020 Black Summer drought. This study demonstrates the utility of satellite-derived drought indicators in monitoring forest health and highlights the necessity for continuous monitoring and research to understand the factors that trigger tree vitality loss. Full article
Show Figures

Figure 1

18 pages, 8958 KiB  
Article
Where is the Eastern Larch Beetle? An Exploration of Different Detection Methods in Northern Wisconsin
by Holly Francart, Amanda M. McGraw, Joseph Knight and Marcella A. Windmuller-Campione
Forests 2025, 16(3), 403; https://doi.org/10.3390/f16030403 - 24 Feb 2025
Viewed by 476
Abstract
Foresters and natural resource managers are increasingly exploring opportunities for the early detection of emerging forest health concerns. One of these emerging concerns is the eastern larch beetle (ELB, Dendroctonus simplex LeConte), a native insect of tamarack (Larix laricina (Du Roi) K., [...] Read more.
Foresters and natural resource managers are increasingly exploring opportunities for the early detection of emerging forest health concerns. One of these emerging concerns is the eastern larch beetle (ELB, Dendroctonus simplex LeConte), a native insect of tamarack (Larix laricina (Du Roi) K., Koch). Historically, the ELB attacked only dead or dying trees, but with climate change, it is now becoming a damaging disturbance agent that affects healthy trees as well. This shift creates a need to evaluate the methods used to detect and quantify the impacted areas. In northern Wisconsin, USA, 50 tamarack stands or aerial detection polygons were surveyed in the field during the 2023 growing season to explore different detection tools for ELBs. We visited 20 polygons identified by aerial sketch map surveys as having ELB mortality, 20 tamarack stands identified by the Astrape satellite imagery algorithm as disturbed, and 10 randomly selected stands from the Wisconsin forest inventory database (WisFIRs) for landscape-level context. For each of the detection methods and the Random stands, information on species composition, mortality, signs of ELB, invasive species, and water presence was quantified. ELBs were common across the landscape, but were not always associated with high levels of mortality. While overstory tree mortality was frequently observed in both aerial sketch map surveys and Astrape, it was not always linked to tamarack mortality. Current methods of detection may need to be re-evaluated in this environment. Tamarack stands in northern Wisconsin were highly heterogeneous in species, which is likely contributing to the difficulties in identifying both tamarack mortality and tamarack mortality specifically caused by ELBs across the two detection methods. Given the evolving impacts of climate change and the shifting dynamics between forests and insects, it is essential to evaluate and innovate detection methods to manage these ecosystems effectively. Full article
Show Figures

Figure 1

Back to TopTop