Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = dead metal zone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4303 KB  
Article
Revisiting Tundish Flow Characterization: A Combined Eulerian-Lagrangian Study on the Effects of Dams, Baffles, and Side-Wall Inclination
by Ali Mostafazade Abolmaali, Mohamad Bayat, Venkata Karthik Nadimpalli, Thomas Dahmen and Jesper Hattel
Materials 2025, 18(18), 4392; https://doi.org/10.3390/ma18184392 - 20 Sep 2025
Viewed by 648
Abstract
This study aims to use Computational Fluid Dynamics (CFD) analysis to improve inclusion removal efficiency in tundishes used in the steelmaking industry, with the broader goal of promoting more sustainable steel production and supporting circular economy objectives by producing cleaner steel. Inclusions are [...] Read more.
This study aims to use Computational Fluid Dynamics (CFD) analysis to improve inclusion removal efficiency in tundishes used in the steelmaking industry, with the broader goal of promoting more sustainable steel production and supporting circular economy objectives by producing cleaner steel. Inclusions are non-metallic particles, such as alumina, that enter the tundish with the molten steel and travel through it; if not removed, they can exit through the nozzles and adversely affect the mechanical properties of the final product and process yield. An existing tundish design is modified using three passive techniques, including adding a vertical dam, adding a horizontal baffle, and inclining the side walls, to assess their influence on fluid flow behavior and inclusion removal. Residence time distribution (RTD) analysis is employed to evaluate flow characteristics via key metrics such as dead zone and plug flow volume fractions, as well as plug-to-dead and plug-to-mixed flow ratios. In parallel, a discrete phase model (DPM) analysis is conducted to track inclusion trajectories for particles ranging from 5 to 80 μm. Results show that temperature gradients due to heat losses significantly influence flow patterns via buoyancy-driven circulation, changing RTD characteristics. Among the tested modifications, inclining the side walls proves most effective, achieving average inclusion removal improvements of 8% (Case B1) and 19% (Case B2), albeit with increased heat loss due to greater top surface exposure. Vertical dam and horizontal baffle, despite showing favorable RTD metrics, generally reduce the inclusion removal rate, highlighting a disconnect between RTD-based predictions and DPM-based outcomes. These findings demonstrate the limitations of relying solely on RTD metrics for evaluating tundish performance and suggest that DPM analysis is essential for a more accurate assessment of inclusion removal capability. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

18 pages, 5066 KB  
Article
Influence of Pulse Duration on Cutting-Edge Quality and Electrochemical Performance of Lithium Metal Anodes
by Lars O. Schmidt, Houssin Wehbe, Sven Hartwig and Maja W. Kandula
Batteries 2025, 11(8), 286; https://doi.org/10.3390/batteries11080286 - 26 Jul 2025
Cited by 1 | Viewed by 1141
Abstract
Lithium metal is a promising anode material for next-generation batteries due to its high specific capacity and low density. However, conventional mechanical processing methods are unsuitable due to lithium’s high reactivity and adhesion. Laser cutting offers a non-contact alternative, but photothermal effects can [...] Read more.
Lithium metal is a promising anode material for next-generation batteries due to its high specific capacity and low density. However, conventional mechanical processing methods are unsuitable due to lithium’s high reactivity and adhesion. Laser cutting offers a non-contact alternative, but photothermal effects can negatively impact the cutting quality and electrochemical performance. This study investigates the influence of pulse duration on the cutting-edge characteristics and electrochemical behavior of laser-cut 20 µm lithium metal on 10 µm copper foils using nanosecond and picosecond laser systems. It was demonstrated that shorter pulse durations significantly reduce the heat-affected zone (HAZ), resulting in improved cutting quality. Electrochemical tests in symmetric Li|Li cells revealed that laser-cut electrodes exhibit enhanced cycling stability compared with mechanically separated anodes, despite the presence of localized dead lithium “reservoirs”. While the overall pulse duration did not show a direct impact on ionic resistance, the characteristics of the cutting edge, particularly the extent of the HAZ, were found to influence the electrochemical performance. Full article
(This article belongs to the Section Battery Processing, Manufacturing and Recycling)
Show Figures

Figure 1

26 pages, 4568 KB  
Article
Optimization of ATIG Weld Based on a Swarm Intelligence Approach: Application to the Design of Welding in Selected Manufacturing Processes
by Kamel Touileb and Sahbi Boubaker
Crystals 2025, 15(6), 523; https://doi.org/10.3390/cryst15060523 - 29 May 2025
Cited by 1 | Viewed by 1463
Abstract
Tungsten Inert Gas (TIG) welding is a widespread welding process used in the industry for high-quality joints. However, this welding process suffers from lower productivity. Activated Tungsten Inert Gas (ATIG) is a variant of the TIG that aims to increase the depth penetration [...] Read more.
Tungsten Inert Gas (TIG) welding is a widespread welding process used in the industry for high-quality joints. However, this welding process suffers from lower productivity. Activated Tungsten Inert Gas (ATIG) is a variant of the TIG that aims to increase the depth penetration capability of conventional TIG welding. This is achieved by applying a thin coating of activating flux material onto the workpiece surface before welding. This work investigates the effect of the thermophysical properties of individual metallic oxide fluxes on 316L stainless steel weld morphology. Four levels of current intensity (120, 150, 180, 200 A) are considered. The weld speed up to 15 cm/min and arc length of 2 mm are maintained constant. Thirteen oxides were tested under various levels of current intensity in addition to multiple thermophysical properties combinations, and the depth penetration (D) and the aspect ratio (R) were recorded. This process has provided 52 combinations (13 oxides * 4 currents). Based on the numerical observations, linear and nonlinear models for describing the effect of the thermophysical parameters on the weld characteristics were tuned using a particle swarm optimization algorithm. While the linear model provided good prediction accuracy, the nonlinear exponential model outperformed the linear one for the depth yielding a mean absolute percentage error of 17%, a coefficient of determination of 0.8266, and a root mean square error of 0.9665 mm. The inverse optimization process, where the depth penetration ranged from 1.5 mm to 12 mm, thus covering a large spectrum of industries, the automotive, power plants, and construction industries, was solved to determine the envelopes’ lower and upper limits of optimal oxide thermophysical properties. The results that allowed the design of the fluxes to be used in advance were promising since they provided the oxide designer with the numerical ranges of the oxide components to achieve the targeted depths. Future directions of this work can be built around investigating additional nonlinear models, including saturation and dead-zone, to efficiently estimate the effect of the thermophysical properties on the welding process of other materials. Full article
Show Figures

Figure 1

15 pages, 7217 KB  
Article
Defect Analysis and Improvement Method of Eccentric Camshaft Forging by Vertical Upsetting Extrusion Forming
by Tao Wang, Hongxing Sun, Nan Hu, Dan Liu, Zhen Wang, Guanghui Liu, Chao Zhang and Hua Liu
Materials 2025, 18(7), 1468; https://doi.org/10.3390/ma18071468 - 26 Mar 2025
Viewed by 978
Abstract
Eccentric camshaft components serve as critical elements in emergency pump systems for commercial vehicle steering mechanisms. To optimize material utilization efficiency, reduce production costs, and enhance manufacturing throughput, this investigation implemented a vertical upsetting extrusion forming methodology for camshaft forging production. Initial trials [...] Read more.
Eccentric camshaft components serve as critical elements in emergency pump systems for commercial vehicle steering mechanisms. To optimize material utilization efficiency, reduce production costs, and enhance manufacturing throughput, this investigation implemented a vertical upsetting extrusion forming methodology for camshaft forging production. Initial trials revealed defect formation in forged components. By analyzing the causes of the defects, an improved process method was developed to eliminate them. The chemical composition, macroscopic and microscopic morphologies of defects, forging process, and metal streamlines were analyzed and studied by means of a direct reading spectrometer, high-resolution camera, metallographic microscope, DEFORM finite element analysis software, and chemical etching. Findings indicate that the observed defects constitute forging-induced cracks, with subsequent normalizing heat treatment exacerbating decarburization phenomena in defect-adjacent microstructures. During the forging process of the forgings, the metal continuously extruded into the die cavity, and the inflowing metal pulled the dead zone metal downward, causing the flow lines aligned with the contour to bend into S-shaped metal streamlines. Cracks formed when the tensile stress in the dead zone metal exceeded the material’s critical tensile stress. An improved process was proposed: adopting a vertical upsetting extrusion forming method with a 40° diversion angle at the junction between the first step and the thin rod in the die cavity. Numerical simulations confirmed complete elimination of deformation dead zones in the optimized process. Experimental verification demonstrated crack-free forgings. Therefore, the eccentric camshafts formed by the initial process exhibited forging cracks, and the proposed improved method of vertical upsetting extrusion forming with a diversion angle effectively eliminated the forging cracks. Full article
(This article belongs to the Special Issue Fracture and Fatigue in Metals and Alloys)
Show Figures

Graphical abstract

22 pages, 10467 KB  
Article
A Study on the Effect of Ladle Structures and Stirrer Positions on the Internal Flow Field in the Hot Metal Desulfurization Process
by Lifei Wang, Qingchun Yu, Shubiao Yin, Guozhi Wang and Songlai Zhang
Metals 2025, 15(1), 90; https://doi.org/10.3390/met15010090 - 18 Jan 2025
Cited by 2 | Viewed by 1518
Abstract
The geometry of the ladle bottom and the position of stirring paddles during hot metal stirring significantly influence hydrodynamic characteristics, thereby affecting desulfurization efficiency. Water model experiments and hydrodynamic simulations were conducted to investigate the effects of ladle structures and stirrer positions on [...] Read more.
The geometry of the ladle bottom and the position of stirring paddles during hot metal stirring significantly influence hydrodynamic characteristics, thereby affecting desulfurization efficiency. Water model experiments and hydrodynamic simulations were conducted to investigate the effects of ladle structures and stirrer positions on the flow field and mixing characteristics in hot metal desulfurization. The results indicate that ladles with a spherical-bottom structure effectively reduced the “dead zone” volume in the hot metal flow. In the water model tests, the mixing time for the spherical-bottom ladle was reduced by 22.5% and 20% at different stirring paddle speeds compared to the flat-bottom ladle, facilitating the better dispersion of the desulfurization agents. The hot metal flow velocities in all directions were also superior in spherical-bottom ladles. Under identical conditions, eccentric stirring generated shallower and broader vortices, with the vortex center offset from the stirring shaft axis, thereby minimizing the risk of “air entrainment” associated with high-speed central stirring. During eccentric stirring, the flow-field distribution was uneven, and the polarization of the stirrer was observed in the water model, whereas central stirring revealed a more uniform and stable flow field, reducing the risk of paddle wear and ladle wall erosion. Central stirring exhibits distinct advantages in the desulfurization process, whereas eccentric stirring is exclusively applicable to metallurgical modes requiring a rapid enhancement of bottom flow and localized rapid dispersion of desulfurizing agents. Full article
(This article belongs to the Special Issue Metallurgy Investigation in Nonferrous Metal Smelting)
Show Figures

Graphical abstract

19 pages, 10921 KB  
Article
Determination of the Minimum Uncut Chip Thickness of Ti-6Al-4V Titanium Alloy Based on Dead Metal Zone
by Yaohui Zheng, Wentao Huang, Yangyang Liu, Pengchao Duan and Yingxiao Wang
Micromachines 2024, 15(12), 1458; https://doi.org/10.3390/mi15121458 - 29 Nov 2024
Cited by 4 | Viewed by 1511
Abstract
In Ti-6Al-4V titanium alloy micro-machining, since the uncut chip thickness (UCT) is comparable to the radius of the tool cutting edge, there exists a minimum uncut chip thickness (MUCT), and when the UCT is smaller than the MUCT, the plowing effect dominates the [...] Read more.
In Ti-6Al-4V titanium alloy micro-machining, since the uncut chip thickness (UCT) is comparable to the radius of the tool cutting edge, there exists a minimum uncut chip thickness (MUCT), and when the UCT is smaller than the MUCT, the plowing effect dominates the cutting process, which seriously affects the machined surface quality and tool life. Therefore, the reliable prediction of the MUCT is of great significance. This paper used Deform to establish an orthogonal cutting simulation model, studied the effect of the dead metal zone (DMZ) on the micro-cutting material flow, determined the DMZ range, and proposed a new method for determining the MUCT based on the DMZ. Cutting experiments were conducted to verify the accuracy of the simulation model firstly by cutting force, and then confirming the accuracy of the DMZ-based MUCT determination method through chip analysis and surface quality analysis. Finally, the effects of different cutting conditions on DMZ and MUCT were further investigated using the proposed DMZ-based MUCT determination method. The results show that the MUCT of Ti-6Al-4V titanium alloy is 4.833 μm for a tool cutting edge radius of 40 μm and a cutting speed of 10 m/min. The DMZ boundary can be used as the boundary of micro-cutting plastic deformation, and the ratio of MUCT to cutting edge radius, hp/rn will gradually decrease with the increase in the tool cutting edge radius and the cutting speed. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

16 pages, 5528 KB  
Article
Effect of Pouring Techniques and Funnel Structures on Crucible Metallurgy: Physical and Numerical Simulations
by Wenwen Feng, Wenkang Yao, Lin Yuan, Ye Yuan, Yiming Li, Pu Wang and Jiaquan Zhang
Materials 2024, 17(19), 4920; https://doi.org/10.3390/ma17194920 - 8 Oct 2024
Viewed by 1375
Abstract
In the planar flow casting process of amorphous strips, the flow behavior of molten metal and the inclusion content in the crucible are crucial to the morphology and magnetic properties of the material. This study conducts a comparative analysis of the effects of [...] Read more.
In the planar flow casting process of amorphous strips, the flow behavior of molten metal and the inclusion content in the crucible are crucial to the morphology and magnetic properties of the material. This study conducts a comparative analysis of the effects of non-immersed and immersed funnels, as well as various funnel structures, on the fluid flow and inclusion removal efficiency in the crucible by integrating numerical and physical models. The findings reveal that for the same pouring flow rate, the diameter of the liquid column in non-immersed pouring conditions is smaller than that of the funnel outlet, leading to a faster injection flow velocity. As a result, the melt in the crucible is subjected to severe impacts, accompanied by an increased possibility of slag entrapment. Conversely, immersed pouring substantially reduces the velocity of the molten metal at the funnel outlet, thereby extending the residence time in the crucible and diminishing the volume of the dead zone. Additionally, the molten metal backflows due to the negative pressure formed in the inner chamber of the funnel. The design of a trumpet-shaped funnel increases the effective volume while reducing the height of the backflow fluid, consequently reducing the velocity of the molten metal at the funnel outlet and prolonging the residence time. Compared to the conventional pouring process with the non-immersed funnel, the outlet velocity is reduced from 1.1 m/s to 0.12 m/s by adopting the immersed funnel with an inverted trapezoidal trumpet structure. This reduction results in a stable flow state, a 9.69% reduction in the dead zone volume fraction, and a 22.96% increase in average inclusion removal efficiency. These improvements demonstrate that a crucible funnel with a well-designed structure and the implementation of an immersion process can significantly improve the metallurgical effects in the planar flow casting process. Full article
(This article belongs to the Special Issue Advanced Metallurgy Technologies: Physical and Numerical Modelling)
Show Figures

Figure 1

10 pages, 36171 KB  
Article
Variation in Flow Characteristics of Molten Baths at Different Blowing Stages in the Converter
by Ming Lv, Yijie Hao, Fuqing Hou, Shuangping Chen, Hongmin Guo and Zhaohui Zhang
Metals 2024, 14(8), 860; https://doi.org/10.3390/met14080860 - 26 Jul 2024
Viewed by 1205
Abstract
The metallurgical tasks at different stages of converter blowing are different. The process operation and physical properties of molten baths are also different. It is very important to determine the flow characteristics of molten baths at different blowing stages for optimizing process operation. [...] Read more.
The metallurgical tasks at different stages of converter blowing are different. The process operation and physical properties of molten baths are also different. It is very important to determine the flow characteristics of molten baths at different blowing stages for optimizing process operation. In this paper, a three-dimensional, full-scale model of a 120 t top–bottom combined blowing converter is established. Based on the parameters of oxygen lance position, bath temperature, bottom blowing intensity, and bath physical properties at different blowing stages, the changes in bath flow field, turbulent kinetic energy, impact depth, impact area, and wall shear force with blowing process are studied. The results show that at the initial stage of blowing, the lance position is high, the impact depth of the molten bath is 0.23 m, the impact area is 5.06 m2, the dead zone area of the longitudinal section is 0.40 m2, and the high-speed zone area is 2.73 m2. As the blowing time increases, the lance position decreases, the impact depth of the molten bath increases, the impact area decreases, and the internal velocity of the molten bath increases. In the later stage of tuyere blowing, the lance level decreases to its lowest, the impact depth increases to 0.42 m, the impact area decreases to 2.83 m2, the dead zone area of longitudinal section decreases to 0.18 m2, and the high-speed area increases to 3.34 m2. The area with the highest wall shear stress is situated within the gas–slag–metal three-phase region, where the lining experiences the most significant erosion. The fluctuation in the slag–metal interface is small, and the wall shear force is 2.80 Pa at the initial stage of blowing. From the early to late stages of blowing, the lance position decreases, the fluctuation range of the slag–metal interface increases, and the erosion of the furnace lining increases. In the later stage of blowing, the maximum wall shear force is 3.81 Pa. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

28 pages, 25094 KB  
Article
Dynamic Dead-Time Compensation Method Based on Switching Characteristics of the MOSFET for PMSM Drive System
by Xi Liu, Hui Li, Yingzhe Wu, Lisheng Wang and Shan Yin
Electronics 2023, 12(23), 4855; https://doi.org/10.3390/electronics12234855 - 30 Nov 2023
Cited by 10 | Viewed by 3590
Abstract
In order to effectively avoid the shoot-through issue of the semiconductor device (such as the power metal-oxide-semiconductor field-effect transistor (MOSFET)) adopted in the phase leg of the motor drives, a dead-time zone should be inserted. However, the nonlinearity caused by the dead-time effect [...] Read more.
In order to effectively avoid the shoot-through issue of the semiconductor device (such as the power metal-oxide-semiconductor field-effect transistor (MOSFET)) adopted in the phase leg of the motor drives, a dead-time zone should be inserted. However, the nonlinearity caused by the dead-time effect will bring about voltage/current distortion, as well as high-order harmonics, which largely degrades the performance of motor drives, especially in low-speed operations with slight loads. In this paper, a dead-time compensation method is proposed to suppress such side effects caused by dead-time zones and improve the performance of motor drives. Compared with other existing methods, the proposed method is mainly focused on the switching characteristics of the power MOSFET, which is directly relative to the compensation time in each pulse-width modulation (PWM) period. Firstly, a detailed derivation process is elaborated to reveal the relationship between compensation time and the switching performance of the MOSFET. Meanwhile, the switching process of the MOSFET is also well analyzed, which summarizes the variations in the switching time of the MOSFET with a varied load current. Then, the multipulse test (MPT) is carried out to obtain accurate values of the switching time with the varied load current in a wide range (0–80 A) and form a 2D lookup table. As a result, the compensation method can easily be realized by combining the lookup table and linear interpolation based on the phase current of the motor dynamically. Finally, the effectiveness of the proposed method is verified based on a 12 V permanent magnet synchronous machine (PMSM) drive system. According to the relative experiment results, it can be clearly observed that the time-domain waveform distortion, high-order harmonics, and total harmonic distortion (THD) value are reduced significantly with the proposed dynamic compensation method. Full article
Show Figures

Figure 1

15 pages, 5056 KB  
Article
Antibacterial Activity and Biocompatibility of Ag-Montmorillonite/Chitosan Colloidal Dressing in a Skin Infection Rat Model: An In Vitro and In Vivo Study
by Kaining Yang, Lei Shen, Lin Zhang, Wenxin Sun, Yuhong Zou, Yande Ren and Rongchang Zeng
J. Funct. Biomater. 2023, 14(9), 470; https://doi.org/10.3390/jfb14090470 - 12 Sep 2023
Cited by 5 | Viewed by 2646
Abstract
(1) Background: Traditional dressings can only superficially cover the wound, they have widespread issues with inadequate bacterial isolation and liquid absorption, and it is simple to inflict secondary wound injury when changing dressings. Therefore, it is crucial for wound healing to develop a [...] Read more.
(1) Background: Traditional dressings can only superficially cover the wound, they have widespread issues with inadequate bacterial isolation and liquid absorption, and it is simple to inflict secondary wound injury when changing dressings. Therefore, it is crucial for wound healing to develop a new kind of antimicrobial colloidal dressing with good antibacterial, hygroscopic, and biocompatible qualities. (2) Methods: Ag-montmorillonite/chitosan (Ag-MMT/CS) colloid, a new type of antibacterial material, was prepared from two eco-friendly materials—namely, montmorillonite and chitosan—as auxiliary materials, wherein these materials were mixed with the natural metal Ag, which is an antibacterial agent. The optimum preparation technology was explored, and Ag-MMT/CS was characterized. Next, Staphylococcus aureus, which is a common skin infection bacterium, was considered as the experimental strain, and the in vitro antibacterial activity and cytocompatibility of the Ag-MMT/CS colloid were investigated through various experiments. Subsequently, a rat skin infection model was established to explore the in vivo antibacterial effect. (3) Results: In vitro studies revealed that the Ag-MMT/CS colloid had a good antibacterial effect on S. aureus, with an inhibition zone diameter of 18 mm and an antibacterial rate of 99.18%. After co-culture with cells for 24 h and 72 h, the cell survival rates were 88% and 94%, respectively. The cells showed normal growth and proliferation, and no evident dead cells were observed under the laser confocal microscope. After applying the colloid to the rat skin infection model, the Ag-MMT/CS treatment group exhibited faster wound healing and better local exudation and absorption in the wound than the control group, suggesting that the Ag-MMT/CS colloid exhibited a better antibacterial effect on the S. aureus. (4) Conclusions: Ag+, chitosan, and MMT present in the Ag-MMT/CS colloid dressing exert synergistic effects, and it has good antibacterial effects, cytocompatibility, and hygroscopicity, indicating that this colloid has the potential to become a next-generation clinical antibacterial dressing. Full article
(This article belongs to the Section Antibacterial Biomaterials)
Show Figures

Figure 1

26 pages, 5602 KB  
Article
Experimental Investigation of Fluid Flow through Zinc Open-Cell Foams Produced by the Excess Salt Replication Process and Suitable as a Catalyst in Wastewater Treatment
by Amel Hind Hassein-Bey, Abd-Elmouneïm Belhadj, Hichem Tahraoui, Selma Toumi, Asma Nour El Houda Sid, Mohammed Kebir, Derradji Chebli, Abdeltif Amrane, Jie Zhang and Lotfi Mouni
Water 2023, 15(7), 1405; https://doi.org/10.3390/w15071405 - 4 Apr 2023
Cited by 2 | Viewed by 2696
Abstract
The “excess salt replication process” is a new simple method of fabrication of open-cell metal foam based on the commonly known salt replication method. Porous materials with porosity between 46% and 66% result when the employed alloy is 25% antimonial lead alloy and [...] Read more.
The “excess salt replication process” is a new simple method of fabrication of open-cell metal foam based on the commonly known salt replication method. Porous materials with porosity between 46% and 66% result when the employed alloy is 25% antimonial lead alloy and when it is 58% to 65% zamak 5. These foams are proposed as structured catalysts instead of packed beds in the treatment of wastewater. The local regimes influencing macroscopic air flow behaviour through these foams are delimited and boundaries are analysed in terms of sample length. Most of the experimental tests in this work exhibited a general trend of air flow in ESR foams dominated by the “strong inertia regime”. It was established that the law governing the unidirectional air flow through these foams was the full cubic law. The permeability and inertia coefficient of five samples with a cell diameter between 2.5 and 4.5 mm were calculated, and an empirical correlation was fitted. The irregular cuboid shape of salt grains used in the ESR foam was the origin of the special cell form of ESR foams leading to an anisotropic ordered porous media. This can explain the macroscopic turbulence of air flow because there were many dead zones present in the corner of each cubic cell, thus causing kinetic energy loss starting at earlier regimes. Full article
Show Figures

Figure 1

19 pages, 6769 KB  
Article
The Effect of the Bridge’s Angle during Porthole Die Extrusion of Aluminum AA6082
by Yu Wang and Mary A. Wells
Metals 2023, 13(3), 605; https://doi.org/10.3390/met13030605 - 16 Mar 2023
Cited by 2 | Viewed by 3151
Abstract
During the porthole die extrusion, the separated metal streams are welded together in the welding chamber. The conditions under which this occurs and the integrity of weld seam in the extrudate are impacted by the design of the bridge, including features such as [...] Read more.
During the porthole die extrusion, the separated metal streams are welded together in the welding chamber. The conditions under which this occurs and the integrity of weld seam in the extrudate are impacted by the design of the bridge, including features such as its shape and dimensions. In this research, the commercial finite element method (FEM) software package, DEFORM, was used to run a series of simulation experiments in order to quantitatively understand the relationship between the bridge design and the thermal mechanical history experienced by the material during welding and the impact this has on final weld seam quality. The bridge can be roughly divided into two parts: the lower part, close to the welding chamber, and the upper part, which initially split the billet into metal streams. The results showed that increasing the lower bridge angle led to slightly higher extrusion loads and higher extrudate exit temperatures. As the lower bridge angle increased, creating a streamlined profile to a blunt profile, a dead metal zone formed under the bridge that produced higher strains near the surface of the material. In contrast, changes to the geometry of the upper bridge had little effect on the porthole die extrusion process or the thermal mechanical conditions experienced by the material. Full article
(This article belongs to the Special Issue Advances in Modeling and Simulation in Metal Forming)
Show Figures

Figure 1

22 pages, 3649 KB  
Review
Optically Transparent Antennas: A Review of the State-of-the-Art, Innovative Solutions and Future Trends
by Abdul Rehman Chishti, Abdul Aziz, Muhammad Ali Qureshi, Muhammad Nawaz Abbasi, Abdullah M. Algarni, Azzedine Zerguine, Niamat Hussain and Rifaqat Hussain
Appl. Sci. 2023, 13(1), 210; https://doi.org/10.3390/app13010210 - 24 Dec 2022
Cited by 39 | Viewed by 11470
Abstract
The requirement of mounting several access points and base stations is increasing tremendously due to recent advancements and the need for high-data-rate communication services of 5G and 6G wireless communication systems. In the near future, the enormous number of these access points might [...] Read more.
The requirement of mounting several access points and base stations is increasing tremendously due to recent advancements and the need for high-data-rate communication services of 5G and 6G wireless communication systems. In the near future, the enormous number of these access points might cause a mess. In such cases, an optically transparent antenna (OTA) is the best option for making the environment more appealing and pleasant. OTAs provide the possible solution as these maintain the device aesthetics to achieve transparency as well as fulfill the basic coverage and bandwidth requirements. Various attempts have been made to design OTAs to provide coverage for wireless communication, particularly for the dead zones. These antennas can be installed on building windows, car windscreens, towers, trees, and smart windows, which enables network access for vehicles and people passing by those locations. Several transparent materials and techniques are used for transparent antenna design. Thin-film and mesh-grid techniques are very popular to transform metallic parts of the antenna into a transparent material. In this article, a comprehensive review of both the techniques used for the design of OTAs is presented. The performance comparison of OTAs on the basis of bandwidth, gain, transparency, transmittance, and efficiency is also presented. An OTA is the best choice in these situations to improve the aesthetics and comfort of the surroundings with high antenna performance. Full article
Show Figures

Figure 1

13 pages, 5053 KB  
Article
Study on the Formation Mechanism of Cutting Dead Metal Zone for Turning AISI4340 with Different Chamfering Tools
by Shujing Wu, Dazhong Wang, Jiajia Zhang and Alexey B. Nadykto
Micromachines 2022, 13(7), 1156; https://doi.org/10.3390/mi13071156 - 21 Jul 2022
Cited by 10 | Viewed by 2900
Abstract
Tools with chamfered edges are often used in high speed machining of hard materials because they provide compelling cutting toughness and reduced tool wear. Chamfered tools are also responsible for the dead metal zone (DMZ). Through numerical simulation of orthogonal cutting with AISI [...] Read more.
Tools with chamfered edges are often used in high speed machining of hard materials because they provide compelling cutting toughness and reduced tool wear. Chamfered tools are also responsible for the dead metal zone (DMZ). Through numerical simulation of orthogonal cutting with AISI 4340 steel, this paper examines the mechanism of the DMZ, the cutting speed, the impacts of the chamfer angle, and the coefficient of friction on the generation of the DMZ. The analysis is based upon the Arbitrary Lagrangian-Eulerian (ALE) finite element method (FEM) for the continuous process of chip formation. The different chamfered angles, cutting speeds, and friction coefficient conditions are utilized in the simulation. The research demonstrates that a zone of trapped material called DMZ has been formed beneath the chamfer and serves as an effective cutting edge of the tool. Additionally, the dead metal zone DMZ becomes smaller while the cutting speed increases or the friction coefficient decreases. The machining forces rise with increasing chamfer angles, rise with increasing friction coefficients, and fall with increasing cutting speed in both the cutting and thrust directions. In this paper, the effect of different chamfering tools on AISI 4340 steel using carbide tools in the simulation environment is studied. It has certain reference significance for studying the formation mechanism of the dead zone of difficult-to-machine materials such as AISI4340 and improving the processing efficiency and workpiece surface quality. Full article
(This article belongs to the Special Issue Advances in Micro-Milling)
Show Figures

Figure 1

18 pages, 4873 KB  
Article
A Fully-Integrated Ambient RF Energy Harvesting System with 423-μW Output Power
by Kishore Kumar Pakkirisami Churchill, Harikrishnan Ramiah, Gabriel Chong, Yong Chen, Pui-In Mak and Rui P. Martins
Sensors 2022, 22(12), 4415; https://doi.org/10.3390/s22124415 - 10 Jun 2022
Cited by 23 | Viewed by 8606
Abstract
This paper proposes a 2.4-GHz fully-integrated single-frequency multi-channel RF energy harvesting (RFEH) system with increased harvested power density. The RFEH can produce an output power of ~423-μW in harvesting ambient RF energy. The front-end consists of an on-chip impedance matching network with a [...] Read more.
This paper proposes a 2.4-GHz fully-integrated single-frequency multi-channel RF energy harvesting (RFEH) system with increased harvested power density. The RFEH can produce an output power of ~423-μW in harvesting ambient RF energy. The front-end consists of an on-chip impedance matching network with a stacked rectifier concurrently matched to a 50 Ω input source. The circuit mitigates the “dead-zone” by enhancing the pumping efficiency, achieved through the increase of Vgs drivability of the proposed internal gate boosting 6-stage low-input voltage charge pump and the 5-stage shared-auxiliary-biasing ring-voltage-controlled-oscillator (VCO) integrated to improve the start-up. The RFEH system, simulated in 180-nm complementary metal–oxide–semiconductor (CMOS), occupies an active area of 1.02 mm2. Post-layout simulations show a peak power conversion efficiency(PCE) of 21.15%, driving a 3.3-kΩ load at an input power of 0 dBm and sensitivity of −14.1 dBm corresponding to an output voltage, Vout,RFEH of 1.25 V. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

Back to TopTop