Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (115)

Search Parameters:
Keywords = cyto-architecture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8682 KB  
Article
Hybrid Alginate–Graphene Composites: Biochemical Features and Biomedical Potential
by Marcin H. Kudzin, Anna Kaczmarek, Zdzisława Mrozińska, Cesar Hernandez, Klaudia Piekarska, Katarzyna Woźniak, Michał Juszczak and Paulina Król
Mar. Drugs 2025, 23(8), 323; https://doi.org/10.3390/md23080323 - 9 Aug 2025
Viewed by 572
Abstract
Alginate-based materials are widely studied for biomedical use, but their limited mechanical properties and variable biocompatibility pose challenges. In this work, hybrid composites composed of alginate, calcium, and graphene oxide were fabricated using a freeze-drying method and cross-linked with calcium ions via calcium [...] Read more.
Alginate-based materials are widely studied for biomedical use, but their limited mechanical properties and variable biocompatibility pose challenges. In this work, hybrid composites composed of alginate, calcium, and graphene oxide were fabricated using a freeze-drying method and cross-linked with calcium ions via calcium chloride at different concentrations. Structural and morphological features were assessed using SEM, EDS, ICP-MS, and BET analysis. The resulting composites exhibited a porous architecture, with calcium incorporation confirmed by elemental analysis. Surface characteristics and pore parameters were influenced by the presence of graphene oxide and the cross-linking process. The effects of the materials on haemostasis were evaluated through activated partial thromboplastin time (aPTT) and prothrombin time (PT) assays, revealing modulation of the intrinsic coagulation pathway without significant changes in the extrinsic pathway. In this study, we analysed the effect of alginate–graphene oxide composites on the viability of peripheral blood mononuclear (PBM) cells and human foreskin fibroblasts from the Hs68 cell line. We also assessed the genotoxic potential of alginate–graphene oxide composites on these cells. Our results showed no cyto- or genotoxic effects of the material on either cell type. These findings suggest the biocompatibility and safe character of alginate–graphene oxide composites for use with blood and skin cells. Full article
(This article belongs to the Section Biomaterials of Marine Origin)
Show Figures

Figure 1

27 pages, 31050 KB  
Article
Diagnostic System for Early In Situ Melanoma Detection Using Acoustic Microscopy and Infrared Spectroscopic Mapping Imaging
by Georgios th Karagiannis, Ioannis Grivas, Anastasia Tsingotjidou, Georgios Apostolidis, Eirini Tsardaka, Ioanna Dori, Kyriaki-Nefeli Poulatsidou, Ioannis Tsougos, Stefan Wesarg, Argyrios Doumas and Panagiotis Georgoulias
Cancers 2025, 17(15), 2599; https://doi.org/10.3390/cancers17152599 - 7 Aug 2025
Viewed by 509
Abstract
This study proposes a novel diagnostic system for the early detection of cutaneous melanoma based on morphological and biochemical changes during tumor formation. The methods used in this system are acoustic microscopy and infrared (IR) spectroscopy. The former identifies the anatomical parameters of [...] Read more.
This study proposes a novel diagnostic system for the early detection of cutaneous melanoma based on morphological and biochemical changes during tumor formation. The methods used in this system are acoustic microscopy and infrared (IR) spectroscopy. The former identifies the anatomical parameters of the developing tumor, whilst the latter identifies its biochemical features, both at the micron scale. To implement this diagnostic method, an animal model that mimics human melanoma was developed. The results of this investigation show that using high-frequency (>20 MHz) acoustic microscopy in conjunction with spectroscopic images provides useful information about distinct features of melanoma tumors’ 3D structures. The structures and cytoarchitecture of the tumors were assessed using conventional histology, and their malignant nature was confirmed using histological and immumohistochemical analysis. The proposed approach may provide an invaluable tool in diagnostic dermatology, as it is noninvasive and produces highly detailed and accurate data about the early appearance and development of melanoma tumors. Full article
Show Figures

Figure 1

19 pages, 3739 KB  
Article
Disturbances in Resting State Functional Connectivity in Schizophrenia: A Study of Hippocampal Subregions, the Parahippocampal Gyrus and Functional Brain Networks
by Raghad M. Makhdoum and Adnan A. S. Alahmadi
Diagnostics 2025, 15(15), 1955; https://doi.org/10.3390/diagnostics15151955 - 4 Aug 2025
Viewed by 430
Abstract
Background/Objectives: Schizophrenia exhibits symptoms linked to the hippocampus and parahippocampal gyrus. This includes the entorhinal cortex (ERC) and perirhinal cortex (PRC) as anterior parts, along with the posterior segment known as the parahippocampal cortex (PHC). However, recent research has detailed atlases based on [...] Read more.
Background/Objectives: Schizophrenia exhibits symptoms linked to the hippocampus and parahippocampal gyrus. This includes the entorhinal cortex (ERC) and perirhinal cortex (PRC) as anterior parts, along with the posterior segment known as the parahippocampal cortex (PHC). However, recent research has detailed atlases based on cytoarchitectural characteristics and the hippocampus divided into four subregions: cornu ammonis (CA), dentate gyrus (DG), subiculum (SUB), and hippocampal–amygdaloid transition (HATA). This study aimed to explore the functional connectivity (FC) changes between these hippocampal subregions and the parahippocampal gyrus structures (ERC, PRC, and PHC) as well as between hippocampal subregions and various functional brain networks in schizophrenia. Methods: In total, 50 individuals with schizophrenia and 50 matched healthy subjects were examined using resting state functional magnetic resonance imaging (rs-fMRI). Results: The results showed alterations characterized by increases and decreases in the strength of the positive connectivity between the parahippocampal gyrus structures and the four hippocampal subregions when comparing patients with schizophrenia with healthy subjects. Alterations were observed among the hippocampal subregions and functional brain networks, as well as the formation of new connections and absence of connections. Conclusions: There is strong evidence that the different subregions of the hippocampus have unique functions and their connectivity with the parahippocampal cortices and brain networks are affected by schizophrenia. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

17 pages, 78354 KB  
Article
Three-Dimensional Visualization of the Cardiac Stroma
by Florian Kleefeldt, Peter Michelbach, Uwe Rueckschloss, Süleyman Ergün and Nicole Wagner
Cells 2025, 14(14), 1119; https://doi.org/10.3390/cells14141119 - 21 Jul 2025
Viewed by 1718
Abstract
Cardiac tissue engineering is a promising strategy to restore cardiac function in heart failure patients. Understanding the cardiac tissue architecture including the cardiac stroma is essential for developing not only advanced cardiac tissue engineering but also novel therapeutic strategies. One of the crucial [...] Read more.
Cardiac tissue engineering is a promising strategy to restore cardiac function in heart failure patients. Understanding the cardiac tissue architecture including the cardiac stroma is essential for developing not only advanced cardiac tissue engineering but also novel therapeutic strategies. One of the crucial components of the cardiac stroma is the myocardial vasculature. To enhance the spatial visualization of the cardiac stromal cytoarchitecture with a particular focus on myocardial vasculature, we performed 3D reconstructions of the murine cardiac micro vessels using Serial Block-Face Scanning Electron Microscopy (SBF-SEM). These analyses revealed that pericyte cell bodies were primarily oriented lengthwise and extended several cellular protrusions towards the endothelium. At capillary branching points, some pericytes made contact with both capillaries emerging from branching. In addition to pericytes that are completely encapsulated by the common basal lamina together with capillary endothelial cells, we identified other vascular-associated cells located outside this sheath. Based on marker expression, these cells were distinguished from fibroblasts and suggested to be telocytes. The vascular-associated cells formed electron-dense contact zones with endothelial cells, suggesting functional coupling between these both cell types. In conclusion, this study provides detailed three-dimensional visualizations of the cardiac stroma with a particular focus on cardiac microvasculature, offering enhanced insight into the cardiac stromal cytoarchitecture. Full article
(This article belongs to the Special Issue Advanced Technology for Cellular Imaging)
Show Figures

Graphical abstract

17 pages, 2081 KB  
Article
Transcriptomic Analysis Reveals Candidate Hub Genes and Putative Pathways in Arabidopsis thaliana Roots Responding to Verticillium longisporum Infection
by Qiwei Zheng, Yangpujia Zhou and Sui Ni
Curr. Issues Mol. Biol. 2025, 47(7), 536; https://doi.org/10.3390/cimb47070536 - 10 Jul 2025
Viewed by 521
Abstract
Verticillium longisporum, a soil-borne fungus responsible for Verticillium wilt, primarily colonizes members of the Brassicaceae family. Using Arabidopsis thaliana roots as an experimental host, we systematically identify V. longisporum-responsive genes and pathways through comprehensive transcriptomic analysis, alongside screening of potential hub [...] Read more.
Verticillium longisporum, a soil-borne fungus responsible for Verticillium wilt, primarily colonizes members of the Brassicaceae family. Using Arabidopsis thaliana roots as an experimental host, we systematically identify V. longisporum-responsive genes and pathways through comprehensive transcriptomic analysis, alongside screening of potential hub genes and evaluation of infection-associated regulatory mechanisms. The GSE62537 dataset was retrieved from the Gene Expression Omnibus database. After performing GEO2R analysis and filtering out low-quality data, 222 differentially expressed genes (DEGs) were identified, of which 184 were upregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed on these DEGs. A protein–protein interaction network was constructed using the STRING database. CytoHubba and CytoNCA plugins in Cytoscape v3.10.3 were used to analyze and evaluate this network; six hub genes and four functional gene modules were identified. The GeneMANIA database was used to construct a co-expression network for hub genes. Systematic screening of transcription factors within the 14 DEGs revealed the inclusion of the hub gene NAC042. Integrative bioinformatics analysis centered on NAC042 enabled prediction of a pathogen-responsive regulatory network architecture. We report V. longisporum-responsive components in Arabidopsis, providing insights for disease resistance studies in Brassicaceae crops. Full article
(This article belongs to the Special Issue Molecular Mechanisms in Plant Stress Tolerance)
Show Figures

Figure 1

26 pages, 9830 KB  
Article
Neuronal Plasticity-Dependent Paradigm and Young Plasma Treatment Prevent Synaptic and Motor Deficit in a Rett Syndrome Mouse Model
by Sofía Espinoza, Camila Navia, Rodrigo F. Torres, Nuria Llontop, Verónica Valladares, Cristina Silva, Ariel Vivero, Exequiel Novoa-Padilla, Jessica Soto-Covasich, Jessica Mella, Ricardo Kouro, Sharin Valdivia, Marco Pérez-Bustamante, Patricia Ojeda-Provoste, Nancy Pineda, Sonja Buvinic, Dasfne Lee-Liu, Juan Pablo Henríquez and Bredford Kerr
Biomolecules 2025, 15(5), 748; https://doi.org/10.3390/biom15050748 - 21 May 2025
Viewed by 886
Abstract
Classical Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the MECP2 gene, resulting in a devastating phenotype associated with a lack of gene expression control. Mouse models lacking Mecp2 expression with an RTT-like phenotype have been developed to advance therapeutic [...] Read more.
Classical Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the MECP2 gene, resulting in a devastating phenotype associated with a lack of gene expression control. Mouse models lacking Mecp2 expression with an RTT-like phenotype have been developed to advance therapeutic alternatives. Environmental enrichment (EE) attenuates RTT symptoms in patients and mouse models. However, the mechanisms underlying the effects of EE on RTT have not been fully elucidated. We housed male hemizygous Mecp2-null (Mecp2-/y) and wild-type mice in specially conditioned cages to enhance sensory, cognitive, social, and motor stimulation. EE attenuated the progression of the RTT phenotype by preserving neuronal cytoarchitecture and neural plasticity markers. Furthermore, EE ameliorated defects in neuromuscular junction organization and restored the motor deficit of Mecp2-/y mice. Treatment with plasma from young WT mice was used to assess whether the increased activity could modify plasma components, mimicking the benefits of EE in Mecp2-/y. Plasma treatment attenuated the RTT phenotype by improving neurological markers, suggesting that peripheral signals of mice with normal motor function have the potential to reactivate dormant neurodevelopment in RTT mice. These findings demonstrate how EE and treatment with young plasma ameliorate RTT-like phenotype in mice, opening new therapeutical approaches for RTT patients. Full article
(This article belongs to the Special Issue Molecular and Cellular Basis for Rare Genetic Diseases)
Show Figures

Graphical abstract

22 pages, 3855 KB  
Article
Sex-Associated Cerebellar and Hippocampal Volume Reduction in Alzheimer’s Disease: Insights from the Clinical ADNI Cohort and STZ Animal Model
by Krista Mineia Wartchow, Leticia Rodrigues, William Jones Dartora, Regina Biasibetti, Nicholas Guerini Selistre, Artur Lazarian, Carmen Barrios-Castellanos, Nicholas Bartelo, Carlos-Alberto Gonçalves, Laura Beth J. McIntire and on behalf of Alzheimer’s Disease Neuroimaging Initiative (ADNI)
Int. J. Mol. Sci. 2025, 26(10), 4810; https://doi.org/10.3390/ijms26104810 - 17 May 2025
Viewed by 736
Abstract
While the greatest risk factor for Alzheimer’s disease (AD) is aging, women are disproportionately affected by the disease. Interestingly, the hippocampus and cerebellum exhibit gender-specific cytoarchitecture differences, which are associated with AD, despite the absence of a role in animal reproductive behavior or [...] Read more.
While the greatest risk factor for Alzheimer’s disease (AD) is aging, women are disproportionately affected by the disease. Interestingly, the hippocampus and cerebellum exhibit gender-specific cytoarchitecture differences, which are associated with AD, despite the absence of a role in animal reproductive behavior or hormonal signaling. This study investigates the potential association of sex differences associated with AD by interrogating cerebellar and hippocampal volume in preclinical (MCI) as well as clinical phases of AD compared to cognitively normal patients (CN) and in an animal model of AD, the streptozotocin (STZ)-induced sporadic AD model. In order to investigate putative changes in cerebellum and hippocampus in a rat model of AD, we used a STZ-induced sporadic AD model at three different time points (2, 4, and 8 weeks) after surgery in male and female rats. Previous studies have reported hippocampal-dependent changes as well as sex-dependent behavioral and signaling effects in the STZ animal model of sporadic AD while our current study showed involvement of cerebellum-mediated changes. To interrogate the role of cerebellar volume in AD progression within the human context, we analyzed data available through the Alzheimer’s Disease Neuroimaging Initiative (ADNI). In a cross-sectional analysis, we observed that levels of peripheral Glial Acidic Fibrillary Protein (GFAP) (astrocytic protein) were associated negatively with cerebellar and hippocampal volumes (β = −0.002, p-value = 0.04; β = −6.721, p-value < 0.0001) and were associated with sex specific differences in males. Our analysis identified that the effect on hippocampal volume was earlier in disease stage, reinforcing the relevance of longitudinal alterations of cerebellum and hippocampus volume over time. The STZ animal model of sporadic AD, corroborated the progressive changes in hippocampal volume and more minor and temporally delayed involvement of the cerebellum volume changes which were dependent on sex. This suggests that cerebellar involvement may be secondary to hippocampal neurodegeneration, and both regional differences were dependent on sex. Due to the association with GFAP, our findings may be due to network astrocyte connection spread regardless of primary pathology. Overall, our study uncovers a novel role for cerebellum in AD in a model and in the human context. Full article
(This article belongs to the Special Issue The Function of Glial Cells in the Nervous System)
Show Figures

Figure 1

14 pages, 2847 KB  
Article
Linear and Non-Linear Methods to Discriminate Cortical Parcels Based on Neurodynamics: Insights from sEEG Recordings
by Karolina Armonaite, Livio Conti, Luigi Laura, Michele Primavera and Franca Tecchio
Fractal Fract. 2025, 9(5), 278; https://doi.org/10.3390/fractalfract9050278 - 25 Apr 2025
Viewed by 531
Abstract
Understanding human cortical neurodynamics is increasingly important, as highlighted by the European Innovation Council, which prioritises tools for measuring and stimulating brain activity. Unravelling how cytoarchitecture, morphology, and connectivity shape neurodynamics is essential for developing technologies that target specific brain regions. Given the [...] Read more.
Understanding human cortical neurodynamics is increasingly important, as highlighted by the European Innovation Council, which prioritises tools for measuring and stimulating brain activity. Unravelling how cytoarchitecture, morphology, and connectivity shape neurodynamics is essential for developing technologies that target specific brain regions. Given the dynamic and non-stationary nature of neural interactions, there is an urgent need for non-linear signal analysis methods, in addition to the linear ones, to track local neurodynamics and differentiate cortical parcels. Here, we explore linear and non-linear methods using data from a public stereotactic intracranial EEG (sEEG) dataset, focusing on the superior temporal gyrus (STG), postcentral gyrus (postCG), and precentral gyrus (preCG) in 55 subjects during resting-state wakefulness. For this study, we used a linear Power Spectral Density (PSD) estimate and three non-linear measures: the Higuchi fractal dimension (HFD), a one-dimensional convolutional neural network (1D-CNN), and a one-shot learning model. The PSD was able to distinguish the regions in α, β, and γ frequency bands. The HFD showed a tendency of a higher value in the preCG than in the postCG, and both were higher in the STG. The 1D-CNN showed promise in identifying cortical parcels, with an 85% accuracy for the training set, although performance in the test phase indicates that further refinement is needed to integrate dynamic neural electrical activity patterns into neural networks for suitable classification. Full article
(This article belongs to the Special Issue Fractal Analysis in Biology and Medicine)
Show Figures

Figure 1

20 pages, 4584 KB  
Article
Three-Dimensional-Bioprinted Embedded-Based Cerebral Organoids: An Alternative Approach for Mini-Brain In Vitro Modeling Beyond Conventional Generation Methods
by Rosalba Monica Ferraro, Paola Serena Ginestra, Miriam Seiti, Mattia Bugatti, Gabriele Benini, Luana Ottelli, William Vermi, Pietro Luigi Poliani, Elisabetta Ceretti and Silvia Giliani
Gels 2025, 11(4), 284; https://doi.org/10.3390/gels11040284 - 11 Apr 2025
Viewed by 1609
Abstract
Cerebral organoids (cORGs) obtained from induced pluripotent stem cells (iPSCs) have become significant instruments for investigating human neurophysiology, with the possibility of simulating diseases and enhancing drug discovery. The current approaches require a strict process of manual inclusion in animal-derived matrix Matrigel® [...] Read more.
Cerebral organoids (cORGs) obtained from induced pluripotent stem cells (iPSCs) have become significant instruments for investigating human neurophysiology, with the possibility of simulating diseases and enhancing drug discovery. The current approaches require a strict process of manual inclusion in animal-derived matrix Matrigel® and are challenged by unpredictability, operators’ skill and expertise, elevated costs, and restricted scalability, impeding their extensive applicability and translational potential. In this study, we present a novel method to generate brain organoids that address these limitations. Our approach does not require a manual, operator-dependent embedding. Instead, it employs a chemically defined hydrogel in which the Matrigel® is diluted in a solution enriched with sodium alginate (SA) and sodium carboxymethylcellulose (CMC) and used as a bioink to print neural embryoid bodies (nEBs). Immunohistochemical, immunofluorescence, and gene expression analyses confirmed that SA-CMC-Matrigel® hydrogel can sustain the generation of iPSC-derived cortical cORGs as the conventional Matrigel®-based approach does. By day 40 of differentiation, hydrogel-based 3D-bioprinted cORGs showed heterogeneous and consistent masses, with a cytoarchitecture resembling an early-stage developmental fetal brain composed of neural progenitor cells PAX6+/Ki67+ organized into tubular structures, and densely packed cell somas with extensive neurites SYP+, suggestive of cortical tissue-like neuronal layer formation. Full article
(This article belongs to the Special Issue Hydrogel-Based Scaffolds with a Focus on Medical Use (3rd Edition))
Show Figures

Figure 1

16 pages, 988 KB  
Review
AMPA Receptor Modulation in the Treatment of High-Grade Glioma: Translating Good Science into Better Outcomes
by Daniel P. Radin
Pharmaceuticals 2025, 18(3), 384; https://doi.org/10.3390/ph18030384 - 8 Mar 2025
Viewed by 1736
Abstract
Glioblastoma (GB) treatment, despite consisting of surgical resection paired with radiation, temozolomide chemotherapy and tumor-treating fields, yields a median survival of 15–20 months. One of the more recently appreciated hallmarks of GB aggressiveness is the co-opting of neurotransmitter signaling mechanisms that normally sustain [...] Read more.
Glioblastoma (GB) treatment, despite consisting of surgical resection paired with radiation, temozolomide chemotherapy and tumor-treating fields, yields a median survival of 15–20 months. One of the more recently appreciated hallmarks of GB aggressiveness is the co-opting of neurotransmitter signaling mechanisms that normally sustain excitatory synaptic communication in the CNS. AMPA-glutamate receptor (AMPAR) signaling governs the majority of excitatory synaptic activity in the mammalian brain. AMPAR activation in glioma cells activates cellular pathways that enhance proliferation and invasion and confer resistance to approved GB therapeutics. In addition, this review places a specific emphasis on discussing the redefined GB cytoarchitecture that consists of neuron-to-glioma cell synapses, whose oncogenic activity is driven by AMPAR activation on glioma cells, and the discovery of tumor microtubes, which propagate calcium signals throughout the tumor network in order to enhance resistance to complete surgical resection and radiotherapy. These new discoveries notwithstanding, some evidence suggests that AMPAR activation can produce excitotoxicity in tumor cells. This disparity warrants a closer examination at how AMPAR modulation can be leveraged to produce more durable outcomes in the treatment of GB and tumors in peripheral organs that express AMPAR. Full article
(This article belongs to the Special Issue Small Molecules in Targeted Cancer Therapy and Diagnosis)
Show Figures

Figure 1

17 pages, 2807 KB  
Article
Biomimetic 3D Hydrogels with Aligned Topography for Neural Tissue Engineering
by Liza J. Severs, Anjali Katta, Lindsay N. Cates, Dane M. Dewees, Riana T. Hoagland, Philip J. Horner, Christoph P. Hofstetter and Zin Z. Khaing
Polymers 2024, 16(24), 3556; https://doi.org/10.3390/polym16243556 - 20 Dec 2024
Cited by 4 | Viewed by 1364
Abstract
Spinal cord trauma leads to the destruction of the highly organized cytoarchitecture that carries information along the axis of the spinal column. Currently, there are no clinically accepted strategies that can help regenerate severed axons after spinal cord injury (SCI). Hydrogels are soft [...] Read more.
Spinal cord trauma leads to the destruction of the highly organized cytoarchitecture that carries information along the axis of the spinal column. Currently, there are no clinically accepted strategies that can help regenerate severed axons after spinal cord injury (SCI). Hydrogels are soft biomaterials with high water content that are widely used as scaffolds to interface with the central nervous system (CNS). Here, we examine a simple and reproducible method that results in consistently aligned fibrils within 3D matrices using thermally gelling biomimetic polymers. A collagen type I (Col)-based thermally gelling hydrogel system was used in combination with two other native extracellular matrix proteins: laminin I (LN) and hyaluronic acid (HA). Gelling kinetics for all gel types (Col, Col LN, Col HA) showed that at 37 °C, all three hydrogels formed gels consistently. A method of aspiration and ejection was used to produce Col-based hydrogels containing aligned fibrils. In vitro, embryonic spinal cord neurons survived and produced processes aligned to collagen fibrils. Next, we implanted either non-aligned or aligned hydrogels after a bilateral dorsal hemisection of the thoracic spinal cord at T7/T8. Pan neuronal antibody-positive fibrils were found within all implants; aligned hydrogels supported neurite growth along the parallel direction of the implanted hydrogels. Combined, our in vitro and in vivo data indicate that thermally gelling biomimetic hydrogels can produce aligned matrices through a method of aspiration and ejection, and this presents a novel platform for regenerative therapies for the CNS. Full article
(This article belongs to the Special Issue Biomedical Applications of Intelligent Hydrogel 2nd Edition)
Show Figures

Figure 1

18 pages, 2815 KB  
Article
Melatonin Attenuates Ferritinophagy/Ferroptosis by Acting on Autophagy in the Liver of an Autistic Mouse Model BTBR T+Itpr3tf/J
by Giorgia Cominelli, Claudio Lonati, Daniela Pinto, Fabio Rinaldi, Caterina Franco, Gaia Favero and Rita Rezzani
Int. J. Mol. Sci. 2024, 25(23), 12598; https://doi.org/10.3390/ijms252312598 - 23 Nov 2024
Viewed by 1415
Abstract
Autism spectrum disorders (ASDs) are a pool of neurodevelopment disorders in which social impairment is the main symptom. Presently, there are no definitive medications to cure the symptoms but the therapeutic strategies that are taken ameliorate them. The purpose of this study was [...] Read more.
Autism spectrum disorders (ASDs) are a pool of neurodevelopment disorders in which social impairment is the main symptom. Presently, there are no definitive medications to cure the symptoms but the therapeutic strategies that are taken ameliorate them. The purpose of this study was to investigate the effects of melatonin (MLT) in treating ASDs using an autistic mouse model BTBR T+Itpr3tf/J (BTBR). We evaluated the hepatic cytoarchitecture and some markers of autophagy, ferritinophagy/ferroptosis, in BTBR mice treated and not-treated with MLT. The hepatic morphology and the autophagy and ferritinophagy/ferroptosis pathways were analyzed by histological, immunohistochemical, and Western blotting techniques. We studied p62 and microtubule-associated protein 1 light chain 3 B (LC3B) for evaluating the autophagy; nuclear receptor co-activator 4 (NCOA4) and long-chain-coenzyme synthase (ACSL4) for monitoring ferritinophagy/ferroptosis. The liver of BTBR mice revealed that the hepatocytes showed many cytoplasmic inclusions recognized as Mallory–Denk bodies (MDBs); the expression and levels of p62 and LC3B were downregulated, whereas ACSL4 and NCOA4 were upregulated, as compared to control animals. MLT administration to BTBR mice ameliorated liver damage and reduced the impairment of autophagy and ferritinophagy/ferroptosis. In conclusion, we observed that MLT alleviates liver damage in BTBR mice by improving the degradation of intracellular MDBs, promoting autophagy, and suppressing ferritinophagy/ferroptosis. Full article
Show Figures

Graphical abstract

20 pages, 3790 KB  
Article
Exploring Extracellular Vesicle Surface Protein Markers Produced by Glioblastoma Tumors: A Characterization Study Using In Vitro 3D Patient-Derived Cultures
by Sara Franceschi, Francesca Lessi, Mariangela Morelli, Michele Menicagli, Paolo Aretini, Carlo Gambacciani, Francesco Pieri, Gianluca Grimod, Maria Grazia Trapanese, Silvia Valenti, Fabiola Paiar, Anna Luisa Di Stefano, Orazio Santo Santonocito, Francesco Pasqualetti and Chiara Maria Mazzanti
Cancers 2024, 16(22), 3748; https://doi.org/10.3390/cancers16223748 - 6 Nov 2024
Cited by 2 | Viewed by 2046
Abstract
Background/Objectives: Glioblastoma (GBM) is an aggressive brain cancer with limited treatment options. Extracellular vesicles (EVs) derived from GBM cells contain important biomarkers, such as microRNAs, proteins, and DNA mutations, which are involved in tumor progression, invasion, and resistance to treatment. Identifying surface markers [...] Read more.
Background/Objectives: Glioblastoma (GBM) is an aggressive brain cancer with limited treatment options. Extracellular vesicles (EVs) derived from GBM cells contain important biomarkers, such as microRNAs, proteins, and DNA mutations, which are involved in tumor progression, invasion, and resistance to treatment. Identifying surface markers on these EVs is crucial for their isolation and potential use in noninvasive diagnosis. This study aimed to use tumor-derived explants to investigate the surface markers of EVs and explore their role as diagnostic biomarkers for GBM. Methods: Tumor explants from nine GBM patients without IDH1/IDH2 mutations or 1p-19q co-deletion were cultured to preserve both tumor viability and cytoarchitecture. EVs were collected from the tumor microenvironment using differential centrifugation, filtration, and membrane affinity binding. Their surface protein composition was analyzed through multiplex protein assays. RNA-Seq data from TCGA and GTEx datasets, along with in silico single-cell RNA-seq data, were used to assess EV surface biomarker expression across large GBM patient cohorts. Results: The in vitro model successfully replicated the tumor microenvironment and produced EVs with distinct surface markers. Biomarker analysis in large datasets revealed specific expression patterns unique to GBM patients compared with healthy controls. These markers demonstrated potential as a GBM-specific signature and were correlated with clinical data. Furthermore, in silico single-cell RNA-seq provided detailed insights into biomarker distribution across different cell types within the tumor. Conclusions: This study underscores the efficacy of the tumor-derived explant model and its potential to advance the understanding of GBM biology and EV production. A key innovation is the isolation of EVs from a model that faithfully mimics the tumor’s original cytoarchitecture, offering a deeper understanding of the cells involved in EV release. The identified EV surface markers represent promising targets for enhancing EV isolation and optimizing their use as diagnostic tools. Moreover, further investigation into their molecular cargo may provide crucial insights into tumor characteristics and evolution. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

13 pages, 1447 KB  
Article
Approachability and Sensory Changes Following Mild Traumatic Brain Injury in Pigs
by Mark Pavlichenko, Radina L. Lilova, Amanda Logan-Wesley, Karen M. Gorse and Audrey D. Lafrenaye
Biomedicines 2024, 12(11), 2427; https://doi.org/10.3390/biomedicines12112427 - 23 Oct 2024
Viewed by 1274
Abstract
Background/Objectives: Traumatic brain injury (TBI) is a global healthcare concern affecting millions, with wide-ranging symptoms including sensory and behavioral changes that can persist long-term. Due to similarities with human brain cytoarchitecture and inflammation, minipig models are advantageous for translational TBI research. However, gaps [...] Read more.
Background/Objectives: Traumatic brain injury (TBI) is a global healthcare concern affecting millions, with wide-ranging symptoms including sensory and behavioral changes that can persist long-term. Due to similarities with human brain cytoarchitecture and inflammation, minipig models are advantageous for translational TBI research. However, gaps in knowledge exist regarding their behavioral and sensory sequelae following injury. Methods: Therefore, in this study, we assessed changes in approachability using a forced human approach task (FHAT) and mechanical nociception using the von Frey test in adult male and female Yucatan minipigs for up to one week following a sham or central fluid percussion injury (cFPI). Specifically, the FHAT assessed each animal’s response to a forced interaction with either a known or unknown experimenter. To evaluate changes in nociceptive sensory sensitivity, von Frey monofilaments ranging from 0.008 to 300 g of force were applied to the pinna of the ear or base of the tail. Results: We found that forced approachability was affected by experimenter familiarity as well as cFPI in a sex-specific manner at subacute timepoints. We also found reductions in sensitivity following cFPI on the ear in male minipigs and on the tail in female minipigs. Conclusion: Overall, the current study demonstrates that cFPI produces both behavioral and sensory changes in minipigs up to one-week post-injury. Full article
(This article belongs to the Special Issue Recent Advances in Traumatic Brain Injury Using Large Animal Models)
Show Figures

Figure 1

17 pages, 2150 KB  
Article
Harmful Effects on the Hippocampal Morpho-Histology and on Learning and Memory in the Offspring of Rats with Streptozotocin-Induced Diabetes
by Marcela Salazar-García, Laura Villavicencio-Guzmán, Cristina Revilla-Monsalve, Carlos César Patiño-Morales, Ricardo Jaime-Cruz, Tania Cristina Ramírez-Fuentes and Juan Carlos Corona
Int. J. Mol. Sci. 2024, 25(21), 11335; https://doi.org/10.3390/ijms252111335 - 22 Oct 2024
Cited by 5 | Viewed by 1655
Abstract
Learning alterations in the child population may be linked to gestational diabetes as a causal factor, though this remains an open and highly controversial question. In that sense, it has been reported that maternal hyperglycemia generates a threatening condition that affects hippocampal development [...] Read more.
Learning alterations in the child population may be linked to gestational diabetes as a causal factor, though this remains an open and highly controversial question. In that sense, it has been reported that maternal hyperglycemia generates a threatening condition that affects hippocampal development in offspring. The pyramidal cells of the CA3 subfield, a key structure in learning and memory processes, are particularly important in cognitive deficiencies. We evaluate the effect of the hyperglycemic intrauterine environment on hippocampal histomorphometry in offspring, correlating it with spatial learning and memory, as well as the morphology of dendrites and spines in 30-day-old pups (P30). The maternal hyperglycemia affected the body weight, height, and brain size of fetuses at 21 days of gestation (F21), newborn pups (P0) and P30 pups from diabetic rats, which were smaller compared to the control group. Consequently, this resulted in a decrease in hippocampal size, lower neuronal density and cytoarchitectural disorganization in the CA3 region of the hippocampus in the offspring at the three ages studied. The behavioral tests performed showed a direct relationship between morpho-histological alterations and deficiencies in learning and memory, as well as alterations in the morphology of the dendrites and spines. Therefore, knowing the harmful effects caused by gestational diabetes can be of great help to establish therapeutic and educational strategies that can help to improve learning and memory in children. Full article
(This article belongs to the Special Issue Molecular Research on Diabetes)
Show Figures

Figure 1

Back to TopTop