Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (203)

Search Parameters:
Keywords = cyr

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5727 KiB  
Article
Mapping QTLs for Stripe Rust Resistance and Agronomic Traits in Chinese Winter Wheat Lantian 31 Using 15K SNP Array
by Xin Li, Wenjing Tan, Junming Feng, Qiong Yan, Ran Tian, Qilin Chen, Qin Li, Shengfu Zhong, Suizhuang Yang, Chongjing Xia and Xinli Zhou
Agriculture 2025, 15(13), 1444; https://doi.org/10.3390/agriculture15131444 - 4 Jul 2025
Viewed by 257
Abstract
Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst) resistance and agronomic traits are crucial determinants of wheat yield. Elucidating the quantitative trait loci (QTLs) associated with these essential traits can furnish valuable genetic resources for improving both the yield [...] Read more.
Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst) resistance and agronomic traits are crucial determinants of wheat yield. Elucidating the quantitative trait loci (QTLs) associated with these essential traits can furnish valuable genetic resources for improving both the yield potential and disease resistance in wheat. Lantian 31 is an excellent Chinese winter wheat cultivar; multi-environment phenotyping across three ecological regions (2022–2024) confirmed stable adult-plant resistance (IT 1–2; DS < 30%) against predominant Chinese Pst races (CYR31–CYR34), alongside superior thousand-kernel weight (TKW) and kernel morphology. Here, we dissected the genetic architecture of these traits using a total of 234 recombinant inbred lines (RILs) derived from a cross between Lantian 31 and the susceptible cultivar Avocet S (AvS). Genotyping with a 15K SNP array, complemented by 660K SNP-derived KASP and SSR markers, identified four stable QTLs for stripe rust resistance (QYrlt.swust-1B, -1D, -2D, -6B) and eight QTLs governing plant height (PH), spike length (SL), and kernel traits. Notably, QYrlt.swust-1B (1BL; 29.9% phenotypic variance) likely represents the pleiotropic Yr29/Lr46 locus, while QYrlt.swust-1D (1DL; 22.9% variance) is the first reported APR locus on chromosome 1DL. A pleiotropic cluster on 1B (670.4–689.9 Mb) concurrently enhanced the TKW and the kernel width and area, demonstrating Lantian 31’s dual utility as a resistance and yield donor. The integrated genotyping pipeline—combining 15K SNP discovery, 660K SNP fine-mapping, and KASP validation—precisely delimited QYrlt.swust-1B to a 1.5 Mb interval, offering a cost-effective model for QTL resolution in common wheat. This work provides breeder-friendly markers and a genetic roadmap for pyramiding durable resistance and yield traits in wheat breeding programs. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

16 pages, 1983 KiB  
Article
Genome-Wide Identification of Wheat Gene Resources Conferring Resistance to Stripe Rust
by Qiaoyun Ma, Dong Yan, Binshuang Pang, Jianfang Bai, Weibing Yang, Jiangang Gao, Xianchao Chen, Qiling Hou, Honghong Zhang, Li Tian, Yahui Li, Jizeng Jia, Lei Zhang, Zhaobo Chen, Lifeng Gao and Xiangzheng Liao
Plants 2025, 14(12), 1883; https://doi.org/10.3390/plants14121883 - 19 Jun 2025
Viewed by 395
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), threatens global wheat production. Breeding resistant varieties is a key to disease control. In this study, 198 modern wheat varieties were phenotyped with the prevalent Pst races CYR33 and CYR34 at [...] Read more.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), threatens global wheat production. Breeding resistant varieties is a key to disease control. In this study, 198 modern wheat varieties were phenotyped with the prevalent Pst races CYR33 and CYR34 at the seedling stage and with mixed Pst races at the adult-plant stage. Seven stable resistance varieties with infection type (IT) ≤ 2 and disease severity (DS) ≤ 20% were found, including five Chinese accessions (Zhengpinmai8, Zhengmai1860, Zhoumai36, Lantian36, and Chuanmai32), one USA accession (GA081628-13E16), and one Pakistani accession (Pa12). The genotyping applied a 55K wheat single-nucleotide polymorphism (SNP) array. A genome-wide association study (GWAS) identified 14 QTL using a significance threshold of p ≤ 0.001, which distributed on chromosomes 1B (4), 1D (2), 2B (4), 6B, 6D, 7B, and 7D (4 for CYR33, 7 for CYR34, 3 for mixed Pst races), explaining 6.04% to 18.32% of the phenotypic variance. Nine of these QTL were potentially novel, as they did not overlap with the previously reported Yr or QTL loci within a ±5.0 Mb interval (consistent with genome-wide LD decay). The haplotypes and resistance effects were evaluated to identify the favorable haplotype for each QTL. Candidate genes within the QTL regions were inferred based on their transcription levels following the stripe rust inoculation. These resistant varieties, QTL haplotypes, and favorable alleles will aid in wheat breeding for stripe rust resistance. Full article
(This article belongs to the Special Issue Improvement of Agronomic Traits and Nutritional Quality of Wheat)
Show Figures

Figure 1

17 pages, 6547 KiB  
Article
Direct Estimation of Forest Aboveground Biomass from UAV LiDAR and RGB Observations in Forest Stands with Various Tree Densities
by Kangyu So, Jenny Chau, Sean Rudd, Derek T. Robinson, Jiaxin Chen, Dominic Cyr and Alemu Gonsamo
Remote Sens. 2025, 17(12), 2091; https://doi.org/10.3390/rs17122091 - 18 Jun 2025
Viewed by 768
Abstract
Canada’s vast forests play a substantial role in the global carbon balance but require laborious and expensive forest inventory campaigns to monitor changes in aboveground biomass (AGB). Light detection and ranging (LiDAR) or reflectance observations onboard airborne or unoccupied aerial vehicles (UAVs) may [...] Read more.
Canada’s vast forests play a substantial role in the global carbon balance but require laborious and expensive forest inventory campaigns to monitor changes in aboveground biomass (AGB). Light detection and ranging (LiDAR) or reflectance observations onboard airborne or unoccupied aerial vehicles (UAVs) may address scalability limitations associated with traditional forest inventory but require simple forest structures or large sets of manually delineated crowns. Here, we introduce a deep learning approach for crown delineation and AGB estimation reproducible for complex forest structures without relying on hand annotations for training. Firstly, we detect treetops and delineate crowns with a LiDAR point cloud using marker-controlled watershed segmentation (MCWS). Then we train a deep learning model on annotations derived from MCWS to make crown predictions on UAV red, blue, and green (RGB) tiles. Finally, we estimate AGB metrics from tree height- and crown diameter-based allometric equations, all derived from UAV data. We validate our approach using 14 ha mixed forest stands with various experimental tree densities in Southern Ontario, Canada. Our results show that using an unsupervised LiDAR-only algorithm for tree crown delineation alongside a self-supervised RGB deep learning model trained on LiDAR-derived annotations leads to an 18% improvement in AGB estimation accuracy. In unharvested stands, the self-supervised RGB model performs well for height (adjusted R2, Ra2 = 0.79) and AGB (Ra2 = 0.80) estimation. In thinned stands, the performance of both unsupervised and self-supervised methods varied with stand density, crown clumping, canopy height variation, and species diversity. These findings suggest that MCWS can be supplemented with self-supervised deep learning to directly estimate biomass components in complex forest structures as well as atypical forest conditions where stand density and spatial patterns are manipulated. Full article
Show Figures

Figure 1

18 pages, 2007 KiB  
Article
An XGBoost-Based Machine Learning Approach to Simulate Carbon Metrics for Forest Harvest Planning
by Bibek Subedi, Alexandre Morneau, Luc LeBel, Shuva Gautam, Guillaume Cyr, Roxanne Tremblay and Jean-François Carle
Sustainability 2025, 17(12), 5454; https://doi.org/10.3390/su17125454 - 13 Jun 2025
Viewed by 487
Abstract
It has become increasingly important to incorporate carbon metrics in the forest harvest planning process. The Generic Carbon Budget Model (GCBM) is a well-recognized tool to evaluate the potential impact of management decisions on carbon sequestration and storage, supporting sustainable forest management planning. [...] Read more.
It has become increasingly important to incorporate carbon metrics in the forest harvest planning process. The Generic Carbon Budget Model (GCBM) is a well-recognized tool to evaluate the potential impact of management decisions on carbon sequestration and storage, supporting sustainable forest management planning. Although GCBM is effective in carbon budgeting and estimating carbon metrics, its computational complexity makes it difficult to integrate into forest planning with multiple scenarios. In this regard, this study proposes using machine algorithms to expedite the output generated by GCBM. XGBoost was implemented to estimate the carbon pool and NEP in managed forests of Quebec. Furthermore, polynomial regression was also implemented to serve as a validation benchmark. Datasets with total sizes of 13.53 million and 7.56 million samples were compiled for NEP and carbon pool forecasting to run the model. The results indicate that XGBoost was able to accurately replicate the performance of the GCBM model for both NEP forecasting (R2 = 0.883) and carbon pool estimation (R2 = 0.967 for aboveground biomass). Although machine learning approaches are comparatively faster, GCBM still offers better accuracy. Hence, the decision on which method to use, either machine learning or GCBM, should be dictated by the specific objectives and the constraints of the project. Full article
Show Figures

Figure 1

18 pages, 8355 KiB  
Article
Transcriptome Analysis Reveals Mechanisms of Stripe Rust Response in Wheat Cultivar Anmai1350
by Feng Gao, Jingyi Zhu, Xin Xue, Hongqi Chen, Xiaojin Nong, Chunling Yang, Weimin Shen and Pengfei Gan
Int. J. Mol. Sci. 2025, 26(12), 5538; https://doi.org/10.3390/ijms26125538 - 10 Jun 2025
Viewed by 442
Abstract
Wheat (Triticum aestivum L.) is the world’s most indispensable staple crop and a vital source of food for human diet. Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), constitutes a severe threat to wheat production and in [...] Read more.
Wheat (Triticum aestivum L.) is the world’s most indispensable staple crop and a vital source of food for human diet. Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), constitutes a severe threat to wheat production and in severe cases, the crop fails completely. Anmai1350 (AM1350) is moderately resistant to leaf rust and powdery mildew, and highly susceptible to sheath blight and fusarium head blight. We found that the length and area of mycelium in AM1350 cells varied at different time points of Pst infection. To investigate the molecular mechanism of AM1350 resistance to Pst, we performed transcriptome sequencing (RNA-seq). In this study, we analyzed the transcriptomic changes of the seedling leaves of AM1350 at different stages of Pst infection at 0 h post-infection (hpi), 6 hpi, 24 hpi, 48 hpi, 72 hpi, and 120 hpi through RNA-seq. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) was used to validate RNA-seq data. It was determined that there were differences in the differentially expressed genes (DEGs) of AM1350, and the upregulation and downregulation of the DEGs changed with the time of infection. At different time points, there were varying degrees of enrichment in the response pathways of AM1350, such as the ”MAPK signaling pathway–plant”, the “plant–pathogen interaction” pathway and other pathways. After Pst infected AM1350, the reactive oxygen species (ROS) content gradually increases. The ROS is toxic to Pst, promotes the synthesis of phytoalexins, and inhibits the spread of Pst. As a result, AM1350 shows resistance to Pst race CYR34. The main objective of this study is to provide a better understanding for resistance mechanisms of wheat in response to Pst infections and to avoid production loss. Full article
(This article belongs to the Special Issue Plant–Microbe Interactions: 2nd Edition)
Show Figures

Figure 1

34 pages, 423 KiB  
Review
Current Advances in the Diagnosis and Treatment of Major Myeloproliferative Neoplasms
by Le Wang, Julie Li, Leah Arbitman, Hailing Zhang, Haipeng Shao, Michael Martin, Lynn Moscinski and Jinming Song
Cancers 2025, 17(11), 1834; https://doi.org/10.3390/cancers17111834 - 30 May 2025
Viewed by 1154
Abstract
Myeloproliferative neoplasms (MPNs) are a group of rare blood cancers characterized by the excessive production of blood cells in the bone marrow. These disorders arise from acquired genetic driver mutations, with or without underlying genetic predispositions, resulting in the uncontrolled production of red [...] Read more.
Myeloproliferative neoplasms (MPNs) are a group of rare blood cancers characterized by the excessive production of blood cells in the bone marrow. These disorders arise from acquired genetic driver mutations, with or without underlying genetic predispositions, resulting in the uncontrolled production of red blood cells, white blood cells, or platelets. The excessive cell production and abnormal signaling from driver mutations cause chronic inflammation and a higher risk of blood clots and vascular complications. The primary goals of MPN treatment are to induce remission, improve quality of life and survival, as well as to reduce the risk of complications such as thrombosis, vascular events, and leukemic transformation. This review provides a comprehensive update on the diagnosis and therapeutic advancements in major MPN subtypes, including chronic myeloid leukemia, polycythemia vera, essential thrombocythemia, and primary myelofibrosis. It examines these complex diseases from a molecular and evolutionary perspective, highlighting key clinical trials’ long-term follow-up and therapies targeting driver mutations that have transformed treatment strategies. Additionally, several important advancements in addressing challenges such as anemia in myelofibrosis, along with promising emerging therapies, are also discussed. Full article
20 pages, 1443 KiB  
Article
Oral Glucoraphanin and Curcumin Supplements Modulate Key Cytoprotective Enzymes in the Skin of Healthy Human Subjects: A Randomized Trial
by Anna L. Chien, Hua Liu, Saleh Rachidi, Jessica L. Feig, Ruizhi Wang, Kristina L. Wade, Katherine K. Stephenson, Aysegul Sevim Kecici, Jed W. Fahey and Sewon Kang
Metabolites 2025, 15(6), 360; https://doi.org/10.3390/metabo15060360 - 29 May 2025
Viewed by 730
Abstract
Background/Objectives: Oxidative stress plays a pivotal role in skin aging and carcinogenesis. Phytochemicals such as sulforaphane (SF, from broccoli sprouts or seeds) or curcumin (CUR, from turmeric) can be highly protective against this stress. They each induce a suite of cytoprotective and antioxidant [...] Read more.
Background/Objectives: Oxidative stress plays a pivotal role in skin aging and carcinogenesis. Phytochemicals such as sulforaphane (SF, from broccoli sprouts or seeds) or curcumin (CUR, from turmeric) can be highly protective against this stress. They each induce a suite of cytoprotective and antioxidant enzymes that are coordinately transcribed via the Keap1-Nrf2-ARE pathway in mammals, such as the prototypical cytoprotective enzyme NAD(P)H dehydrogenase 1 (NQO1). Methods: Eighteen healthy human volunteers (9 males, 9 females, aged 18–69. were randomized to receive daily glucoraphanin (GR), which is converted to SF upon ingestion (450 mg; 1 mmol), CUR (1000 mg; 2.7 mmol), or both (450 mg GR + 1000 mg CUR), as oral supplements. After 8 days of a diet low in both compounds, blood and urine were collected for compliance and biomarker measurements. Randomized spots on the buttock’s skin were exposed to 2 x M.E.D. of UVB, and punch biopsies were obtained 1 and 3 days later for biomarker and histological measurement. Erythema was measured with a chromameter daily for 3 consecutive days following UVB. The process was repeated after receiving oral supplements, both with and without UVB exposure. Results: Compared to baseline, each treatment (n = 6 for each) induced NQO1 mRNA levels in skin biopsies: 3.1-fold with GR, 3.3-fold with CUR, and 3.6-fold with the combination of GR and CUR. Across all treatments (n = 18), expression of the pro-inflammatory cytokines IL-1β and TNF-α were reduced, as were IL-6, IL-17, STING, and CYR61, though less robustly. Modulation of these biomarkers persisted, but was less pronounced, in biopsies taken following UV exposure. The presence of SF and its metabolites in the skin post-treatment was confirmed by examining 6 of 12 subjects who ingested GR. Supplement effects on erythema following UV exposure were not significant, and no significant changes were measured in the same biomarkers in blood cells (PBMC), or by counting dyskeratotic keratinocytes. Supplements were well tolerated and compliance was excellent. Conclusions: Oral GR and CUR are well tolerated and have for the first time been shown to result in increased expression of cytoprotective genes and reduced expression of inflammatory cytokine genes in human skin in vivo. This mechanism-based clinical study suggests that an antioxidant, anti-inflammatory, and cytoprotective benefit from these oral supplements is delivered to the skin in humans. Full article
(This article belongs to the Special Issue Food Intake and Bioactive Metabolism in Humans)
Show Figures

Figure 1

16 pages, 1790 KiB  
Review
CYR61 as a Potential Biomarker and Target in Cancer Prognosis and Therapies
by Andrew J. Schenker and Greisha L. Ortiz-Hernández
Cells 2025, 14(11), 761; https://doi.org/10.3390/cells14110761 - 22 May 2025
Viewed by 876
Abstract
Cysteine-rich protein 61 (CYR61) is a matricellular protein in the CCN family that is involved in cellular adhesion, migration, proliferation, and angiogenesis. CYR61 interacts with integrins α6β1, αvβ3, αvβ5, and αIIbβ3 to modulate tumor progression and metastasis while modifying the tumor microenvironment. CYR61 [...] Read more.
Cysteine-rich protein 61 (CYR61) is a matricellular protein in the CCN family that is involved in cellular adhesion, migration, proliferation, and angiogenesis. CYR61 interacts with integrins α6β1, αvβ3, αvβ5, and αIIbβ3 to modulate tumor progression and metastasis while modifying the tumor microenvironment. CYR61 exhibits context-dependent roles in cancer, acting as both a tumor promoter and suppressor. Increased CYR61 expression is linked to extracellular matrix remodeling, immune modulation, and integrin-mediated signaling, making it a potential prognostic biomarker and therapeutic target. Emerging research highlights the utility of CYR61 in liquid biopsies for cancer detection and monitoring. Integrin-targeted therapies, including CYR61-blocking antibodies and CAR-T approaches, offer novel treatment strategies. However, therapy-induced toxicity and resistance remain challenges with these strategies. The further elucidation of the molecular mechanisms of CYR61 may enhance targeted therapeutic interventions and improve patient outcomes. Full article
Show Figures

Graphical abstract

14 pages, 2383 KiB  
Article
Myricetin Exerts Antibiofilm Effects on Candida albicans by Targeting the RAS1/cAMP/EFG1 Pathway and Disruption of the Hyphal Network
by Melda Meral Ocal, Merve Aydin, Esra Sumlu, Emine Nedime Korucu and Ali Ozturk
J. Fungi 2025, 11(5), 398; https://doi.org/10.3390/jof11050398 - 21 May 2025
Viewed by 670
Abstract
Increasing antifungal resistance and side effects of existing drugs demand alternative approaches for treating Candida (C.) infections. This study aimed to comprehensively evaluate the antifungal efficacy of myricetin (MYR), a natural flavonoid, against both fluconazole (FLC)-resistant and susceptible clinical Candida strains, [...] Read more.
Increasing antifungal resistance and side effects of existing drugs demand alternative approaches for treating Candida (C.) infections. This study aimed to comprehensively evaluate the antifungal efficacy of myricetin (MYR), a natural flavonoid, against both fluconazole (FLC)-resistant and susceptible clinical Candida strains, with a particular focus on its inhibitory effects on C. albicans biofilms. Antifungal susceptibility was evaluated on Candida spp. by the broth microdilution method, and the impact of myricetin on C. albicans biofilms was determined using the Cell Counting Kit-8 (CCK-8) assay. To understand the molecular mechanisms underlying the antibiofilm properties of myricetin, expression analysis of genes in the RAS1/cAMP/EFG1 pathway (ALS3, HWP1, ECE1, UME6, HGC1) and cAMP-dependent protein kinase regulation (RAS1, CYR1, EFG1) involved in the transition from yeast to hyphae was performed. Field emission scanning electron microscopy (FESEM) was used to study the ultrastructural changes and morphological dynamics of Candida biofilms after exposure to MYR and FLC. The in vivo toxicity of myricetin was evaluated by survival analysis using the Galleria mellonella model. Myricetin significantly suppressed key genes related to hyphae development (RAS1, CYR1, EFG1, UME6, and HGC1) and adhesion (ALS3 and HWP1) in both clinical and reference Candida strains at a concentration of 640 µg/mL. FESEM analysis revealed that myricetin inhibited hyphae growth and elongation in C. albicans. This study highlights the promising antibiofilm potential of myricetin through a significant inhibition of biofilm formation and hyphal morphogenesis. Full article
(This article belongs to the Special Issue Alternative Therapeutic Approaches of Candida Infections, 4th Edition)
Show Figures

Figure 1

16 pages, 425 KiB  
Systematic Review
Use of External Fixator Device for Mandible Fracture Related to War Injury: A Systematic Review
by Franck Masumbuko, Gregory Reychler, Olivier Cornu, Caroline Huart, Jean Cyr Yombi and Raphael Olszewski
J. Clin. Med. 2025, 14(9), 3061; https://doi.org/10.3390/jcm14093061 - 29 Apr 2025
Viewed by 553
Abstract
Background/Objectives: In maxillo-facial high-velocity complex war injuries, a rigid internal fixation is inappropriate, and external fixation is suitable with described benefits. This systematic review aimed to summarize the literature regarding the benefits, side effects and complications of external fixators in the management [...] Read more.
Background/Objectives: In maxillo-facial high-velocity complex war injuries, a rigid internal fixation is inappropriate, and external fixation is suitable with described benefits. This systematic review aimed to summarize the literature regarding the benefits, side effects and complications of external fixators in the management of mandibular war-related injuries. Methods: An electronic search was performed in the databases of PubMed and Google Scholar in December 2024. The title and abstracts from retrieved items were read by two reviewers to identify studies within the selection criteria. Included articles had to be published in English up to December 2024 and related to external fixators used in mandibular fracture war injuries. Results: The search strategy initially identified 445 studies through PubMed and 987 studies through Google Scholar. Following the application of inclusion criteria, 12 articles were selected for this review, describing the use of an external fixator for a mandibular fracture in a war injury. Conclusions: The external fixator offers effective treatment for severe mandibular fractures in war-related injuries with low rates of complications and high success rates. Where a manufacturer external fixator is not available, orthopedic external fixators and self-crafted external fixators are used. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

15 pages, 2112 KiB  
Article
The Cellular and Molecular Characteristics of Postnatal Human Thymus Stromal Stem Cells
by Josipa Skelin Ilic, Ildikó Bódi, Lidija Milkovic, Zsolt Prodan, Dražen Belina, Darko Heckel, Lipa Cicin-Sain, Danka Grčević, Domenico Vittorio Delfino, Delfa Radic Kristo, Maja Matulić and Mariastefania Antica
Biomedicines 2025, 13(4), 1004; https://doi.org/10.3390/biomedicines13041004 - 21 Apr 2025
Viewed by 535
Abstract
Background: The thymus is the central hub of T-cell differentiation, where epithelial cells guide the process of their maturation. Objective: Our goal was to identify and describe progenitor cells within the human thymus that can differentiate into epithelial cells. Methods: [...] Read more.
Background: The thymus is the central hub of T-cell differentiation, where epithelial cells guide the process of their maturation. Objective: Our goal was to identify and describe progenitor cells within the human thymus that can differentiate into epithelial cells. Methods: When we plated enriched thymic cells in 3D culture conditions, rare individual cells capable of self-renewal and differentiation formed spheroids. Results: Both neonatal and adult thymuses produced similar numbers of spheroids, suggesting that progenitor potential remains consistent across age groups. Some cells within the spheres express genes typical of mature epithelial cells, while others express genes associated with the immature compartment active during thymic organogenesis. However, there were also cells expressing PDGFRβ. We treated the tissues with 2-deoxyguanosine before digestion, which improved the yield of progenitor cells. We also cultured the enriched stromal thymocytes with Cyr61 and Interleukin-22, which affected the spheroid size. Conclusions: Our efforts towards thymic reconstitution are ongoing, but our research uncovers previously unknown characteristics of the elusive epithelial progenitor population. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Graphical abstract

15 pages, 10600 KiB  
Article
The Role of Hippo Signaling in Brain Arteriovenous Malformations: Molecular Insights into Post-Embolization Remodeling
by Belal Neyazi, Vanessa Magdalena Swiatek, Mohammad Ali Karimpour, Sarah Stassen, Klaus-Peter Stein, Ali Rashidi, Claudia Alexandra Dumitru and I. Erol Sandalcioglu
Int. J. Mol. Sci. 2025, 26(8), 3791; https://doi.org/10.3390/ijms26083791 - 17 Apr 2025
Viewed by 509
Abstract
Brain arteriovenous malformations (bAVMs) are complex vascular lesions with significant clinical risks. The Hippo signaling pathway, particularly its downstream effector YAP, plays a crucial role in angiogenesis and vascular remodeling. This study investigates the role of YAP and related molecular markers in bAVMs, [...] Read more.
Brain arteriovenous malformations (bAVMs) are complex vascular lesions with significant clinical risks. The Hippo signaling pathway, particularly its downstream effector YAP, plays a crucial role in angiogenesis and vascular remodeling. This study investigates the role of YAP and related molecular markers in bAVMs, focusing on the effects of embolization. Immunohistochemical analysis was conducted on tissue samples from bAVM patients (n = 127), as well as on healthy blood vessels (n = 17). YAP, HIF-1α, FGFR1, CTGF, and CYR61 expression were quantified and correlated with clinical parameters. Results: In healthy vessels, YAP exhibited nuclear localization in (sub)endothelial cells and the tunica media, while CTGF and CYR61 were detected in the cytoplasm and extracellular matrix. The expression of YAP, CTGF, and CYR61 was significantly lower in bAVM tissues. Embolized bAVMs exhibited significantly higher expression of YAP, CTGF, and CYR61 compared to non-embolized tissues, suggesting a link between embolization and pro-angiogenic signaling. Additionally, FGFR1 was upregulated in embolized tissues. These results suggest that upregulation of YAP expression via the Hippo pathway might play a key role in bAVM pathophysiology. Embolization may further promote vascular remodeling. Dysregulation of YAP and related molecules in bAVMs warrants further studies to explore potential therapeutic strategies targeting the Hippo pathway. Full article
(This article belongs to the Special Issue The Molecular Basis of Vascular Pathology)
Show Figures

Figure 1

17 pages, 1840 KiB  
Article
Leveraging Artificial Intelligence to Predict Potential TB Hotspots at the Community Level in Bangui, Republic of Central Africa
by Kobto G. Koura, Sumbul Hashmi, Sonia Menon, Hervé G. Gando, Aziz K. Yamodo, Anne-Laure Budts, Vincent Meurrens, Saint-Cyr S. Koyato Lapelou, Olivia B. Mbitikon, Matthys Potgieter and Caroline Van Cauwelaert
Trop. Med. Infect. Dis. 2025, 10(4), 93; https://doi.org/10.3390/tropicalmed10040093 - 3 Apr 2025
Cited by 1 | Viewed by 1205
Abstract
Tuberculosis (TB) is a global health challenge, particularly in the Central African Republic (CAR), which is classified as a high TB burden country. In the CAR, factors like poverty, limited healthcare access, high HIV prevalence, malnutrition, inadequate sanitation, low measles vaccination coverage, and [...] Read more.
Tuberculosis (TB) is a global health challenge, particularly in the Central African Republic (CAR), which is classified as a high TB burden country. In the CAR, factors like poverty, limited healthcare access, high HIV prevalence, malnutrition, inadequate sanitation, low measles vaccination coverage, and conflict-driven crowded living conditions elevate TB risk. Improved AI-driven surveillance is hypothesized to address under-reporting and underdiagnosis. Therefore, we created an epidemiological digital representation of TB in Bangui by employing passive data collection, spatial analysis using a 100 × 100 m grid, and mapping TB treatment services. Our approach included estimating undiagnosed TB cases through the integration of TB incidence, notification rates, and diagnostic data. High-resolution predictions are achieved by subdividing the area into smaller units while considering influencing variables within the Bayesian model. By designating moderate and high-risk hotspots, the model highlighted the potential for precise resource allocation in TB control. The strength of our model lies in its adaptability to overcome challenges, although this may have been to the detriment of precision in some areas. Research is envisioned to evaluate the model’s accuracy, and future research should consider exploring the integration of multidrug-resistant TB within the model. Full article
(This article belongs to the Section Infectious Diseases)
Show Figures

Figure 1

11 pages, 566 KiB  
Article
Development of an In Vitro Method for Assessing the Potential Irritation of Medical Devices and OTC Products Used in the Oral Cavity
by Christian Pellevoisin, Marek Puskar, Jennifer Molignano, Kaitlyn Coen, Mitchell Klausner and Silvia Letasiova
Toxics 2025, 13(4), 233; https://doi.org/10.3390/toxics13040233 - 22 Mar 2025
Viewed by 634
Abstract
The aim of this study was to evaluate an in vitro method using the EpiOralTM model, a three-dimensional cultured human buccal epithelium, for assessing the oral irritation potential of various products. We evaluated different concentrations of nine chemicals commonly found in over-the-counter [...] Read more.
The aim of this study was to evaluate an in vitro method using the EpiOralTM model, a three-dimensional cultured human buccal epithelium, for assessing the oral irritation potential of various products. We evaluated different concentrations of nine chemicals commonly found in over-the-counter (OTC) products and medical devices, including chlorhexidine digluconate, sodium hypochlorite, phosphoric acid, hydrogen peroxide, lactic acid, ethanol, sodium dodecyl sulfate, 1-decanol and methyl methacrylate. The method was able to identify the irritants with a clear dose–response relationship between cell viability and an increasing concentration of the chemicals in the tested solutions. Using three exposure times (1, 4 and 18 h) and calculating the ET-50 (time required to induce a 50% reduction in cell viability), the solutions were classified according to their irritant potency (strong, moderate, mild or non-irritant). The results showed excellent correlation with historical in vivo data by matching the potency classifications in most cases. This study highlighted the importance of multiple exposure times for accurate assessment, as some solutions with irritant chemicals require longer exposure to produce effects. By providing information on both the irritant potential and potency, this method proved useful for toxicologists in the risk assessment of OTC products and medical devices that come into contact with the oral cavity. Full article
Show Figures

Figure 1

33 pages, 6996 KiB  
Article
Transcription of Clock Genes in Medulloblastoma
by Jerry Vriend and Aleksandra Glogowska
Cancers 2025, 17(4), 575; https://doi.org/10.3390/cancers17040575 - 8 Feb 2025
Cited by 1 | Viewed by 998
Abstract
We investigated the transcription of circadian clock genes in publicly available datasets of gene expression in medulloblastoma (MB) tissues using the R2 Genomics Analysis and Visualization Platform. Differential expression of the core clock genes among the four consensus subgroups of MB (defined in [...] Read more.
We investigated the transcription of circadian clock genes in publicly available datasets of gene expression in medulloblastoma (MB) tissues using the R2 Genomics Analysis and Visualization Platform. Differential expression of the core clock genes among the four consensus subgroups of MB (defined in 2012 as Group 3, Group 4, the SHH group, and the WNT group) included the core clock genes (CLOCK, NPAS2, PER1, PER2, CRY1, CRY2, BMAL1, BMAL2, NR1D1, and TIMELESS) and genes which encode proteins that regulate the transcription of clock genes (CIPC, FBXL21, and USP2). The over-expression of several clock genes, including CIPC, was found in individuals with the isochromosome 17q chromosomal aberration in MB Group 3 and Group 4. The most significant biological pathways associated with clock gene expression were ribosome subunits, phototransduction, GABAergic synapse, WNT signaling pathway, and the Fanconi anemia pathway. Survival analysis of clock genes was examined using the Kaplan–Meier method and the Cox proportional hazards regression model through the R2 Genomics Platform. Two clock genes most significantly related to survival were CRY1 and USP2. The data suggest that several clock proteins, including CRY1 and USP2, be investigated as potential therapeutic targets in MB. Full article
(This article belongs to the Special Issue Circadian Rhythms, Cancers and Chronotherapy)
Show Figures

Graphical abstract

Back to TopTop