Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (107)

Search Parameters:
Keywords = cylindrical coordinate system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1905 KB  
Article
Analytical Solutions for One-Dimensional Water Flow Driven by Immiscible Fluid in Porous Medium
by Jianyi Wu, Yang Zhou, Xuhai Feng, Wenbo Fan and Deying Ma
Appl. Sci. 2026, 16(3), 1208; https://doi.org/10.3390/app16031208 - 24 Jan 2026
Viewed by 156
Abstract
In fields such as rock and soil grouting and petroleum extraction, the flow of water driven by an immiscible fluid (or vice versa) within a porous medium is frequently encountered. Due to the presence of an interface between the two fluids, whose position [...] Read more.
In fields such as rock and soil grouting and petroleum extraction, the flow of water driven by an immiscible fluid (or vice versa) within a porous medium is frequently encountered. Due to the presence of an interface between the two fluids, whose position changes over time and needs to be solved concurrently with the fluid pressure field, this issue represents a special two-phase moving boundary problem. In this paper, fundamental governing equations for this moving boundary problem in one-dimensional Cartesian, cylindrical, and spherical coordinate systems are developed. Analytical solutions for the pore pressure distribution and interface movement are obtained through the method of similarity transformation. By disregarding the pressure variation in the original underground water, this two-phase moving boundary problem can be reduced into a one-phase moving boundary problem. Consequently, analytical solutions for this one-phase problem are also obtained. The analytical solutions mainly address specific boundary conditions. For cases with general boundary conditions, numerical solutions are provided through a combination of finite volume method and moving node approach. By assuming the instantaneous establishment of a steady-state pore pressure distribution within the medium, the transient two-phase flow model is transformed into a quasi-steady model. Subsequently, an approximate solution for the quasi-steady model is also established. After verifying the model solutions, computational examples are presented to evaluate the effectiveness of the one-phase approximation and the quasi-steady approximation. The one-phase model tends to underestimate fluid pressure within the porous medium under pressure boundary conditions, thereby overestimating the movement speed of the two-phase interface. Additionally, under flow rate boundary conditions, the one-phase model tends to underestimate the pressure required to achieve the design flow rate. As the stiffness of the porous medium increases, the influence of the pressure variation rate term in the transient model equations gradually diminishes. Consequently, the interface movement and pore pressure distribution obtained from the quasi-steady solutions are essentially consistent with those obtained from the transient model, and the quasi-steady solutions are convenient to apply under these circumstances. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

32 pages, 7960 KB  
Article
Quality Inspection of Automated Rebar Sleeve Connections Using Point Cloud Semantic Filtering and Geometry-Prior Segmentation
by Haidong Wang, Youyu Shi, Jingjing Guo and Dachuan Chen
Buildings 2026, 16(2), 338; https://doi.org/10.3390/buildings16020338 - 13 Jan 2026
Viewed by 150
Abstract
In reinforced concrete structures, the quality of rebar sleeve connections directly impacts the structure’s safety reserve and durability. However, quality inspection is complicated by the periodic distribution of stirrups, concrete obstruction, and noise interference, presenting challenges for assessing sleeve connection integrity. This paper [...] Read more.
In reinforced concrete structures, the quality of rebar sleeve connections directly impacts the structure’s safety reserve and durability. However, quality inspection is complicated by the periodic distribution of stirrups, concrete obstruction, and noise interference, presenting challenges for assessing sleeve connection integrity. This paper proposes a training-free, interpretable framework for automated rebar sleeve connection quality inspection, leveraging point cloud semantic filtering and geometric a priori segmentation. The method constructs a polar-cylindrical framework, employing hierarchical semantic filtering to eliminate stirrup layers. Geometric a priori instance segmentation techniques are then applied, integrating θ histograms, Kasa circle fitting, and axial bridging domain constraints to reconstruct each longitudinal rebar. Sleeve detection occurs within the rebar coordinate system via radial profile analysis of length, angular coverage, and stability tests, subsequently stratified into two layers and parameterised. Sleeve projections onto column axes calculate spacing and overlap area percentages. Experiments using 18 BIM-TLS paired datasets demonstrate that this method achieves zero residual error in stirrup detection, with sleeve parameter accuracy reaching 98.9% in TLS data and recall at 57.5%, alongside stable runtime transferability. All TLS datasets meet the quality requirements of rebar sleeve connection spacing ≥35d and percentage of overlap area ≤50%. This framework enhances on-site quality inspection efficiency and consistency, providing a viable pathway for digital verification of rebar sleeve connection quality. Full article
(This article belongs to the Special Issue Intelligence and Automation in Construction—2nd Edition)
Show Figures

Figure 1

12 pages, 1016 KB  
Article
Application of Fractional-Order Differential Operators for Enhanced Electromagnetic Field Modeling in Electrical Devices and Electromechanical Systems
by Andrzej Zawadzki
Energies 2026, 19(1), 247; https://doi.org/10.3390/en19010247 - 1 Jan 2026
Viewed by 314
Abstract
Accurate mapping of electromagnetic field distributions is crucial in the analysis and design of electromechanical devices such as electric machines. Fractional calculus is a tool currently under development that allows classical models to be generalized by introducing fractional-order operators. This paper presents a [...] Read more.
Accurate mapping of electromagnetic field distributions is crucial in the analysis and design of electromechanical devices such as electric machines. Fractional calculus is a tool currently under development that allows classical models to be generalized by introducing fractional-order operators. This paper presents a theoretical framework for writing fractional-order differential operators in cylindrical and spherical coordinate systems by formulating fractional Lamé coefficients. The proposed approach allows for the consistent use of fractional derivatives in geometries commonly used in electromagnetic field modeling. Analytical examples illustrate the behavior of the derived operators and their consistency with the classical case for integer-order derivatives. The obtained results provide a theoretical basis for further research on field models using non-integer-order calculus and may in the future support the development of alternative methods for describing selected electromagnetic phenomena. Full article
Show Figures

Figure 1

23 pages, 22740 KB  
Article
LVCA-Net: Lightweight LiDAR Semantic Segmentation for Advanced Sensor-Based Perception in Autonomous Transportation Systems
by Yuxuan Gong, Yuanhao Huang, Li Bao and Jinlei Wang
Sensors 2026, 26(1), 94; https://doi.org/10.3390/s26010094 - 23 Dec 2025
Viewed by 406
Abstract
Reliable 3D scene understanding is a fundamental requirement for intelligent machines in autonomous transportation systems, as on-board perception must remain accurate and stable across diverse environments and sensing conditions. However, LiDAR point clouds acquired in real traffic scenes are often sparse and irregular, [...] Read more.
Reliable 3D scene understanding is a fundamental requirement for intelligent machines in autonomous transportation systems, as on-board perception must remain accurate and stable across diverse environments and sensing conditions. However, LiDAR point clouds acquired in real traffic scenes are often sparse and irregular, and they exhibit heterogeneous sampling patterns that hinder consistent and fine-grained semantic interpretation. To address these challenges, this paper proposes LVCA-Net, a lightweight voxel–coordinate attention framework designed for efficient LiDAR-based 3D semantic segmentation in autonomous driving scenarios. The architecture integrates (i) an anisotropic depthwise residual module for direction-aware geometric feature extraction, (ii) a hierarchical LiteDown–LiteUp pathway for multi-scale feature fusion, and (iii) a Coordinate-Guided Sparse Semantic Module that enhances spatial consistency in a cylindrical voxel space while maintaining computational sparsity. Experiments on the SemanticKITTI and nuScenes benchmarks demonstrate that LVCA-Net achieves 67.17% mean Intersection over Union (mIoU) and 91.79% overall accuracy on SemanticKITTI, as well as 77.1% mIoU on nuScenes, while maintaining real-time inference efficiency. These results indicate that LVCA-Net delivers scalable and robust 3D scene understanding with high semantic precision for LiDAR-only perception, making it well suited for deployment in autonomous vehicles and other safety-critical intelligent systems. Full article
Show Figures

Figure 1

18 pages, 968 KB  
Article
UAV-Assisted Cooperative Charging and Data Collection Strategy for Heterogeneous Wireless Sensor Networks
by Yuanxue Xin, Liang Li, Yue Ning, Yi Yang and Pengfei Shi
Drones 2025, 9(12), 859; https://doi.org/10.3390/drones9120859 - 13 Dec 2025
Viewed by 453
Abstract
Unmanned Aerial Vehicles (UAVs) are playing an increasingly crucial role in large-scale Wireless Sensor Networks (WSNs) due to their high mobility and flexible deployment capabilities. To enhance network sustainability and profitability, this paper proposes a coordinated charging and data-collection system that integrates a [...] Read more.
Unmanned Aerial Vehicles (UAVs) are playing an increasingly crucial role in large-scale Wireless Sensor Networks (WSNs) due to their high mobility and flexible deployment capabilities. To enhance network sustainability and profitability, this paper proposes a coordinated charging and data-collection system that integrates a green energy base station, Wireless Charging Vehicles (WCVs), and UAVs, ensuring full coverage of all sensor nodes in the target region. On the other hand, the economic feasibility of charging strategies is an essential factor, which is usually neglected. Thus, we further design a joint optimization algorithm to simultaneously maximize system profit and node survivability. To this end, we design a cylindrical-sector-based charging sequence for WCVs. In particular, we develop a dynamic cluster head selection algorithm that accounts for buffer size, residual energy, and inter-node distance. This scheme prevents cluster-head running out of energy before the charging devices arrive, thereby ensuring reliable data transmission. Simulation results demonstrate that the proposed strategy not only maximizes overall profit but also significantly improves node survivability and enhances the sustainability of the wireless sensor network. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

30 pages, 2551 KB  
Article
Magnetohydrodynamic Flow and Transport Behaviors of Blood-Based Ternary Nanofluids in Stenosed Arteries with Axial Symmetry: Effects of Thermal Radiation and Caputo Fractional Derivatives
by Ji-Huan He, Magaji Yunbunga Adamu, Isah Abdullahi, Nuo Xu and Chun-Hui He
Symmetry 2025, 17(12), 2024; https://doi.org/10.3390/sym17122024 - 25 Nov 2025
Cited by 1 | Viewed by 430
Abstract
The present study investigates the magnetohydrodynamic (MHD) flow characteristics of a blood-based ternary nanofluid (Au/Cu/Al2O3-blood) in stenosed arteries, with a focus on symmetry-inspired modeling rooted in the axial symmetry of arterial geometry and the symmetric distribution of external physical [...] Read more.
The present study investigates the magnetohydrodynamic (MHD) flow characteristics of a blood-based ternary nanofluid (Au/Cu/Al2O3-blood) in stenosed arteries, with a focus on symmetry-inspired modeling rooted in the axial symmetry of arterial geometry and the symmetric distribution of external physical fields (magnetic field, thermal radiation). The findings offer significant insights into the realm of hyperthermia therapy and targeted drug delivery within the domain of biomedical engineering. A mathematical model is established under a cylindrical coordinate system (consistent with arterial axial symmetry), integrating key physical effects (thermal radiation, chemical reactions, viscous dissipation, body acceleration) and fractional-order dynamics via Caputo derivatives—while ensuring the symmetry of governing equations in time and space. The numerical solutions for velocity and temperature profiles are obtained using the Laplace transform and Concentrated Matrix-Exponential (CME) method, a technique that preserves symmetric properties during the solution process. The results of the study indicate the following: The Hartmann number, which is increased, has been shown to reduce axial velocity due to the Lorentz force, thereby maintaining radial symmetry. Furthermore, thermal radiation has been demonstrated to raise fluid temperature, a critical factor in heat-based therapies, with the temperature field evolving symmetrically. In addition, it has been observed that ternary nanoparticles outperform single and binary systems in heat and mass transfer via symmetric dispersion. This work contributes to the existing body of knowledge by integrating symmetry principles into the study of fractional dynamics, electromagnetic fields, and body acceleration modeling. It establishes a comprehensive biomedical flow framework. It is imperative that future research explore pulsatile flow under symmetric boundaries and validate the model through experimental means. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

19 pages, 4095 KB  
Article
Consideration of Spatially Infinite Loads in the Problem for a Layer with a Cylindrical Cavity and Continuous Supports
by Nataliia Ukrayinets, Tetyana Alyoshechkina, Vitaly Miroshnikov, Oleksandr Savin, Basheer Younis, Vitalii Vynohradov and Olena Murahovska
Computation 2025, 13(11), 270; https://doi.org/10.3390/computation13110270 - 17 Nov 2025
Viewed by 360
Abstract
An analytical method is proposed for determining the stress-strain state in an elastic layer with a cylindrical cavity supported by linear continuous supports perpendicular to the cavity. The need for such a development is due to the fact that in aerospace and mechanical [...] Read more.
An analytical method is proposed for determining the stress-strain state in an elastic layer with a cylindrical cavity supported by linear continuous supports perpendicular to the cavity. The need for such a development is due to the fact that in aerospace and mechanical engineering, structural elements are often affected by loads and supports described by infinite functions. This complicates the calculation for spatial bodies with complex geometry and stress concentrators. The methodology is based on the generalized Fourier method within the spatial problem of elasticity theory. The model is considered as a layer with specified stresses at the outer boundaries, where the reactions of the supports are represented as applied loads. A combined approach is used to describe the geometry using a Cartesian coordinate system for the layer and a cylindrical coordinate system for the cavity. The key idea is to decompose the original problem into two simpler ones using the principle of superposition. Auxiliary problem: the stresses in a solid layer (without a cavity) are calculated to determine the stress fields at its nominal location. Main problem: a layer with a cavity is considered, on the surface of which the stresses calculated in the first step are acting but taken with the opposite sign. The complete solution is the sum of the solutions of these two problems. Each of them is reduced to an infinite system of linear algebraic equations, which is solved by the method of reduction. This approach makes it possible to calculate the stress-strain state at any point of the body with high accuracy. Numerical analysis confirmed the correctness of satisfying the boundary conditions and showed the dependence of stresses on the nature of the distributed loads. The cylindrical cavity acts as a stress concentrator, which leads to a local increase in stresses σx and σz at the upper and lower boundaries of the layer to values that exceed both the applied load by and the calculated resistance of concrete of class C25/30. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Graphical abstract

14 pages, 5889 KB  
Article
Deep Neural Network-Based Prediction of Flow-Induced Noise Around Cylindrical Bodies
by Minjoon Kim, Im-jun Ban and Sung-chul Shin
J. Mar. Sci. Eng. 2025, 13(11), 2161; https://doi.org/10.3390/jmse13112161 - 16 Nov 2025
Viewed by 447
Abstract
Cylindrical bodies generate flow-induced noise when exposed to external flows, which can be predicted numerically using Computational Fluid Dynamics (CFD) combined with the Ffowcs Williams–Hawkings (FW–H) Equation. Accurate prediction, however, requires turbulence models such as Detached Eddy Simulation (DES) with fine spatial resolution [...] Read more.
Cylindrical bodies generate flow-induced noise when exposed to external flows, which can be predicted numerically using Computational Fluid Dynamics (CFD) combined with the Ffowcs Williams–Hawkings (FW–H) Equation. Accurate prediction, however, requires turbulence models such as Detached Eddy Simulation (DES) with fine spatial resolution and small time steps, in addition to time-dependent surface pressure data and receiver arrangements. These requirements greatly increase computational costs and limit the applicability of such methods during the design stage. To address this challenge, a Deep Neural Network (DNN) model was developed to predict flow-induced noise around a cylinder. Training data were generated from CFD cases using cylinder geometry and inflow velocity as design variables, with multiple receivers arranged in a polar coordinate system. Acoustic signals were computed using Farassat’s Formulation 1A, the time-domain surface solution of the FW–H Equation. The DNN was trained with design variables, receiver coordinates, and octave-band center frequencies as inputs, while the Sound Pressure Level (SPL) served as the output. Model performance was evaluated using the adjusted coefficient of determination (Radj2) and the root mean squared error (RMSE). In addition, interpolation capability was tested by varying receiver spacing to examine robustness under sparse data conditions. The results confirm that the proposed framework provides accurate and computationally efficient predictions suitable for early-stage design. Full article
(This article belongs to the Special Issue Design Optimisation in Marine Engineering)
Show Figures

Figure 1

16 pages, 1339 KB  
Article
Slow Motion of a Spherical Particle Perpendicular to Two Planar Walls with Slip Surfaces
by Yi C. Chen and Huan J. Keh
Fluids 2025, 10(11), 287; https://doi.org/10.3390/fluids10110287 - 3 Nov 2025
Viewed by 507
Abstract
The quasi-steady creeping flow of a viscous fluid around a slip sphere translating perpendicular to one or two large slip planar walls at arbitrary relative positions is analyzed. To solve the axisymmetric Stokes equation for the fluid flow, we construct a general solution [...] Read more.
The quasi-steady creeping flow of a viscous fluid around a slip sphere translating perpendicular to one or two large slip planar walls at arbitrary relative positions is analyzed. To solve the axisymmetric Stokes equation for the fluid flow, we construct a general solution using fundamental solutions in spherical and cylindrical coordinate systems. Boundary conditions are first applied to the planar walls using the Hankel transform and then to the particle surface using a collocation method. Numerical results of the drag force exerted by the fluid on the particle are obtained for different values of the relevant stickiness/slip and configuration parameters. Our force results agree well with existing solutions for the motion of a slip sphere perpendicular to one or two nonslip planar walls. The hydrodynamic drag force acting on the particle is a monotonic increasing function of the stickiness of the planar walls and the ratio of its radius to distance from each planar wall. With other parameters remaining constant, this drag force generally increases with increasing stickiness of the particle surface. The influence of the slip planar walls on the axisymmetric translation of a slip sphere is significantly stronger than its axisymmetric rotation. Full article
(This article belongs to the Section Flow of Multi-Phase Fluids and Granular Materials)
Show Figures

Figure 1

20 pages, 7813 KB  
Article
Integrated Error Compensation for Robotic Arm Polishing of Cylindrical Aspheric Optical Components
by Yao Liu, Ruiliang Li, Jingjing Xie, Yiming Wang and Lin Sun
Machines 2025, 13(11), 979; https://doi.org/10.3390/machines13110979 - 24 Oct 2025
Viewed by 587
Abstract
This research tackles the intricate machining properties of cylindrical aspheric surfaces with a versatile adaption approach utilizing a robotic arm and a compact tool head, incorporating trajectory optimization. A three-step integrated error compensation framework was established as the core to address spatial inaccuracies [...] Read more.
This research tackles the intricate machining properties of cylindrical aspheric surfaces with a versatile adaption approach utilizing a robotic arm and a compact tool head, incorporating trajectory optimization. A three-step integrated error compensation framework was established as the core to address spatial inaccuracies in robotic systems, incorporating coordinate measuring machine (CMM)-based cylindrical generatrix offset correction, laser tracker-assisted progressive coordinate calibration, and contour profiler-driven feedback compensation. Complemented by a curvature-driven trajectory design, the method ensures uniform polishing coverage for non-uniform curvature surfaces. Experimental validation on S-TiH53 glass cylindrical aspheric components demonstrated a surface profile accuracy of peak-to-valley (PV) value ≤ 2 μm, meeting stringent requirements for high-power laser applications. This systematic approach enhances both efficiency and accuracy in robotic polishing, offering a viable solution for high-end optical manufacturing. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

39 pages, 19794 KB  
Article
Cylindrical Coordinate Analytical Solution for Axisymmetric Consolidation of Unsaturated Soils: Dual Bessel–Trigonometric Orthogonal Expansion Approach to Radial–Vertical Composite Seepage Systems
by Yiru Hu and Lei Ouyang
Symmetry 2025, 17(10), 1714; https://doi.org/10.3390/sym17101714 - 13 Oct 2025
Viewed by 568
Abstract
This study develops a novel analytical solution for three-dimensional axisymmetric consolidation of unsaturated soils incorporating radial–vertical composite seepage mechanisms and anisotropic permeability characteristics. A groundbreaking dual orthogonal expansion framework is established, utilizing innovative Bessel–trigonometric function coupling to solve the inherently complex spatiotemporal coupled [...] Read more.
This study develops a novel analytical solution for three-dimensional axisymmetric consolidation of unsaturated soils incorporating radial–vertical composite seepage mechanisms and anisotropic permeability characteristics. A groundbreaking dual orthogonal expansion framework is established, utilizing innovative Bessel–trigonometric function coupling to solve the inherently complex spatiotemporal coupled partial differential equations in cylindrical coordinate systems. The mathematical approach synergistically combines modal expansion theory with Laplace transform methodology, achieving simultaneous spatial expansion of gas–liquid two-phase pressure fields through orthogonal function series, thereby transforming the three-dimensional problem into solvable ordinary differential equations. Rigorous validation demonstrates exceptional accuracy with coefficient of determination R2 exceeding 0.999 and relative errors below 2% compared to numerical simulations, confirming theoretical correctness and practical applicability. The analytical solutions reveal four critical findings with quantitative engineering implications: (1) dual-directional drainage achieves 28% higher pressure dissipation efficiency than unidirectional drainage, providing design optimization criteria for vertical drainage systems; (2) normalized matric suction variation exhibits characteristic three-stage evolution featuring rapid decline, plateau stabilization, and slow recovery phases, while water phase follows bidirectional inverted S-curve patterns, enabling accurate consolidation behavior prediction under varying saturation conditions; (3) gas-water permeability ratio ka/kw spanning 0.1 to 1000 produces two orders of magnitude time compression effect from 10−2 s to 10−4 s, offering parametric design methods for construction sequence control; (4) initial pressure gradient parameters λa and λw demonstrate opposite regulatory mechanisms, where increasing λa retards consolidation while λw promotes the process, providing differentiated treatment strategies for various geological conditions. The unified framework accommodates both uniform and gradient initial pore pressure distributions, delivering theoretical support for refined embankment engineering design and construction control. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

15 pages, 16893 KB  
Article
Electromagnetic Analysis and Experimental Validation of an Ironless Tubular Permanent Magnet Synchronous Linear Motor
by Weiyi Shao, Pengda Xing, Bo Deng, Caiyi Liu, Yang Liu, Hanzhang Zhao and Yan Peng
Symmetry 2025, 17(9), 1480; https://doi.org/10.3390/sym17091480 - 8 Sep 2025
Viewed by 956
Abstract
The ironless tubular permanent magnet synchronous linear motor (TPMSLM) is in high demand for high-precision servo control applications due to its advantages of having zero cogging effect and high dynamic response. However, its electromagnetic field analysis model has not yet been perfected. This [...] Read more.
The ironless tubular permanent magnet synchronous linear motor (TPMSLM) is in high demand for high-precision servo control applications due to its advantages of having zero cogging effect and high dynamic response. However, its electromagnetic field analysis model has not yet been perfected. This paper aims to accurately predict the magnetic field distribution and electromagnetic performance parameters of an ironless TPMSLM. Taking the axially magnetized ironless TPMSLM as an example, and disregarding the influence of the armature magnetic field on the air gap magnetic field, a simplified analytical model of the TPMSLM is established in the cylindrical coordinate system based on the equivalent magnetization current method (EMC), and the analytical formula for the air gap magnetic flux density is then derived. Subsequently, by applying electromagnetic field theory and the analytical formula for the magnetic flux density in the air gap, analytical expressions for the back electromotive force (back EMF) and thrust are derived, reducing analytical complexity while maintaining accuracy. The accuracy and practicality of the proposed analytical formulas are validated through comparisons with finite element analysis (FEA) and experimental prototypes. This analytical approach facilitates the optimization of linear motor parameters and the study of thrust fluctuation suppression, thereby laying the foundation for high-precision servo control of linear motors. Full article
(This article belongs to the Special Issue Symmetry Study in Electromagnetism: Topics and Advances)
Show Figures

Figure 1

21 pages, 1551 KB  
Article
Excitonic States in GaAs/AlxGa1−xAs Quantum Wells: Direct Coulomb Interaction Modeling via Finite Element Electrostatics and Parametric Analysis Under Impurity and Field Effects
by Fabian Andres Castaño, David Laroze and Carlos Alberto Duque
Nanomaterials 2025, 15(17), 1345; https://doi.org/10.3390/nano15171345 - 1 Sep 2025
Viewed by 1022
Abstract
This study presents a comprehensive numerical investigation of excitonic states in GaAs quantum wells embedded in AlxGa1xAs barriers, incorporating the effects of donor and acceptor impurities, external electric and magnetic fields, and varying well widths. The electron [...] Read more.
This study presents a comprehensive numerical investigation of excitonic states in GaAs quantum wells embedded in AlxGa1xAs barriers, incorporating the effects of donor and acceptor impurities, external electric and magnetic fields, and varying well widths. The electron and hole wavefunctions are computed by directly solving the Schrödinger equation using the finite element method in cylindrical coordinates, without assuming trial forms. To evaluate the exciton binding energy, the implementation and comparison of two independent approaches were performed: a numerical integration method based on elliptic function corrections, and a novel finite element electrostatic formulation using COMSOL Multiphysics v5.6. The latter computes the Coulomb interaction by solving Poisson’s equation with the hole charge distribution and integrating the resulting potential over the electron density. Both methods agree within 1% and capture the spatial and field-induced modifications in excitonic properties. The results show that quantum confinement enhances binding in narrow wells, while donor impurities and electric fields reduce binding via spatial separation of carriers. Magnetic fields counteract this effect by providing radial confinement. The FEM-based electrostatic method demonstrates high spatial accuracy, computational efficiency, and flexibility for complex heterostructures, making it a promising tool for exciton modeling in low-dimensional systems. Full article
(This article belongs to the Special Issue Theoretical Calculation Study of Nanomaterials: 2nd Edition)
Show Figures

Figure 1

30 pages, 5867 KB  
Article
Theoretical and Experimental Investigation on Motion Error and Force-Induced Error of Machine Tools in the Gear Rolling Process
by Ziyong Ma, Yungao Zhu, Zilong Wang, Qingyuan Hu and Wei Yang
Appl. Sci. 2025, 15(17), 9524; https://doi.org/10.3390/app15179524 - 29 Aug 2025
Viewed by 720
Abstract
Cylindrical gears are used extensively due to their significant advantages including high efficiency, high load-bearing capacity, and long lifespan. However, the machining accuracy of cylindrical gears is significantly affected by motion errors and force-induced errors of machine tools. In this study, a motion [...] Read more.
Cylindrical gears are used extensively due to their significant advantages including high efficiency, high load-bearing capacity, and long lifespan. However, the machining accuracy of cylindrical gears is significantly affected by motion errors and force-induced errors of machine tools. In this study, a motion error model of the machine tools was established based on multi-body system theory and homogeneous coordinate transformation method, quantifying the contributions and variation patterns of 12 key errors in the A and B-axes to workpiece geometric errors. Then, by using the stiffness analytical model and the spatial meshing theory, the influence of the force-induced elastic deformation of the shaft of rolling wheel and the springback of the workpiece tooth flank on the geometric error was revealed. Finally, taking the through rolling of a spur cylindrical gear with a module of 1.75 mm, a pressure angle of 20°, and 46 teeth as an example, the force-induced elastic deformation model of the shaft was verified by the rolling tests. Results show that for 40CrNiMo steel, the total profile deviation, total helix deviation, and single pitch deviation in the X-direction caused by rolling forces are 32.48 μm, 32.13 μm, and 32.13 μm, respectively, with a maximum contact rebound is δc = 28.27 μm. The relative error between theoretical and measured X-direction spindle deformation is 8.26%. This study provides theoretical foundation and experimental support for improving the precision of rolling process. Full article
Show Figures

Figure 1

19 pages, 12652 KB  
Article
Automated Arch Profile Extraction from Point Clouds and Its Application in Arch Bridge Construction Monitoring
by Xiaojun Wei, Yang Liu, Xianglong Zuo, Jiwei Zhong, Yihua Yuan, Yafei Wang, Cheng Li and Yang Zou
Buildings 2025, 15(16), 2912; https://doi.org/10.3390/buildings15162912 - 17 Aug 2025
Cited by 1 | Viewed by 1086
Abstract
Accurate extraction of the arch profile, the key spatial geometric parameter of the core load-bearing component in arch bridges, is crucial for construction process control and for achieving the designed final bridge configuration. To overcome the limitations of existing methods—geometric information loss, sensitivity [...] Read more.
Accurate extraction of the arch profile, the key spatial geometric parameter of the core load-bearing component in arch bridges, is crucial for construction process control and for achieving the designed final bridge configuration. To overcome the limitations of existing methods—geometric information loss, sensitivity to noise, and inefficiency—when extracting continuous, precise profiles from point clouds of complex spatially curved arch ribs, this paper proposes a multi-step point cloud processing workflow. The approach integrates geometric feature constraints specific to arch bridges to enable automated, high-precision extraction of the arch profile during construction. The approach comprises three steps. First, arch point cloud subset partitioning: the primitive arch point cloud is efficiently divided using parameters from down-sampling arch point cloud data. Second, component segmentation: a Random Sample Consensus (RANSAC) algorithm, optimized with cylindrical geometric constraints, is then employed to precisely segment the point cloud of individual arch tube components from each subset point cloud. Third, arch profile extraction: the geometric invariance of the bottom edge of each arch tube is leveraged to identify feature points via local coordinate system transformation and longitudinal constraints. These feature points are then spliced together to reconstruct the complete arch profile. The proposed method is employed in multiple construction stages of a concrete-filled steel tubular (CFST) arch bridge and quantifies the vertical deformation between adjacent stages. Compared with Total Station (TS) measurements, the average error ranged from 0.24 mm to 4.13 mm, with an overall average error of 2.105 mm, demonstrating accuracy and reliability. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

Back to TopTop