Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = cylindrical air filter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2778 KiB  
Article
Carbonized Rice Husk Canal Filters for Air Purification
by Marat Tulepov, Zhanar Kudyarova, Zhanat Myshyrova, Larissa R. Sassykova, Yessengeldi Mussatay, Kuanysh Umbetkaliev, Alibek Mutushev, Dauren Baiseitov, Ruimao Hua and Dauren Mukhanov
Processes 2025, 13(7), 2164; https://doi.org/10.3390/pr13072164 - 7 Jul 2025
Viewed by 437
Abstract
Air purification is a key process aimed at removing harmful impurities and providing a safe and comfortable environment for human life and work. This study presents the results of an investigation into the composition, textural, and sorption properties of a multichannel carbon filtering [...] Read more.
Air purification is a key process aimed at removing harmful impurities and providing a safe and comfortable environment for human life and work. This study presents the results of an investigation into the composition, textural, and sorption properties of a multichannel carbon filtering material developed for air purification from biological (infectious) contaminants. The filtering block has a cylindrical shape and is manufactured by extrusion of a plastic composition based on carbonized rice husk with the addition of binding agents, followed by staged thermal treatment (calcination, activation, and demineralization). The filter’s effectiveness is based on the inactivation of pathogenic microorganisms as the air passes through the porous surface of the sorbent, which is modified with broad-spectrum antiseptic agents (active against bacteria, bacilli, fungi, and protozoa). X-ray diffraction analysis revealed the presence of amorphous carbon in a tubostratic structure, with a predominance of sp- and sp2-hybridized carbon atoms not incorporated into regular graphene lattices. IR spectroscopy demonstrated the presence of reactive functional groups characteristic of the developed porous structure of the material, which is capable of selective sorption of antiseptic molecules. SEM surface analysis revealed an amorphous texture with a loose structure and elements in the form of spherical semi-ring formations formed by overlapping carbon plates. An experimental setup was also developed using cylindrical multichannel carbon blocks with a diameter of 48 mm, a length of 120 mm, and 100–120 longitudinal channels with a cross-section of 1 mm2. The obtained results confirm the potential of the proposed material for use in air purification and disinfection systems under conditions of elevated biological risk. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

11 pages, 1497 KiB  
Article
Experimental Investigation of Bulk Elastic Wave Propagation in the Volume of Metamaterials
by Aleksandr Korobov, Natalia Shirgina, Aleksey Kokshaiskii, Natalia Odina and Aleksandr Volodarskii
Acoustics 2025, 7(3), 40; https://doi.org/10.3390/acoustics7030040 - 26 Jun 2025
Viewed by 341
Abstract
This paper presents the results of experimental studies on the propagation of longitudinal and transverse ultrasonic waves through a metamaterial—a composite material based on polymer matrix with periodically arranged cylindrical elements. Such structures are known as phononic crystals. Amplitude–frequency characteristics were measured for [...] Read more.
This paper presents the results of experimental studies on the propagation of longitudinal and transverse ultrasonic waves through a metamaterial—a composite material based on polymer matrix with periodically arranged cylindrical elements. Such structures are known as phononic crystals. Amplitude–frequency characteristics were measured for phononic crystals with air and metal cylindrical elements, for both longitudinal waves (in the frequency range from 1.5 to 3 MHz) and transverse waves (in the range from 0.2 to 1.2 MHz). A twofold decrease in the amplitude of the transmitted longitudinal ultrasonic wave was experimentally demonstrated in the passband centered at 1.87 MHz during rotation of the phononic crystal. It was also found that the polarization angle of the transverse ultrasonic wave influences the localization of band gaps and passbands. Band gaps, characterized by amplitude minima near 240 kHz, 290 kHz, and 830 kHz and observed for waves polarized parallel to the crystal axis, are replaced by passbands when the wave is polarized perpendicularly. These results suggest the potential for developing analog ultrasonic frequency filters tunable by the angle of rotation. Full article
Show Figures

Figure 1

39 pages, 15196 KiB  
Article
Experimental Testing of Filter Materials for Two-Stage Inlet Air Systems of Internal Combustion Engines
by Tadeusz Dziubak
Energies 2024, 17(11), 2462; https://doi.org/10.3390/en17112462 - 21 May 2024
Cited by 6 | Viewed by 1828
Abstract
This paper presents an experimental study of the effect of the mass of dust retained on a fibrous filter bed operating singly and in a “cyclone-filter-bed” system on changes in filtration efficiency and accuracy, as well as the increase in flow resistance. The [...] Read more.
This paper presents an experimental study of the effect of the mass of dust retained on a fibrous filter bed operating singly and in a “cyclone-filter-bed” system on changes in filtration efficiency and accuracy, as well as the increase in flow resistance. The research was carried out using a novel and unprecedented method, determining the dust absorption coefficient km of the filter baffle under laboratory conditions. A filtration system built of a single cyclone and a cylindrical filter cartridge with an appropriately sized surface set behind it was studied. Conditions corresponding to the actual operating conditions of the air filter were maintained: dust concentration, filtration speed and dust extraction from the cyclone settling tank. The purpose of the research was to evaluate filter materials with different structures in terms of filtration efficiency and accuracy, as well as flow resistance. The study showed that the parameters of the structure of filter materials—permeability, grammage and thickness—affect the process of retaining dust particles. It was shown that the increase in the flow resistance of the filter bed has a higher intensity when dust grains of small sizes are directed at it, which is the case when the bed is operated behind a cyclone, which separates larger dust grains from the air. There is a reduction in the operating time of the filtration system due to the limitation of the permissible resistance ∆pfdop, and the corresponding dust absorption km has a lower value. For a fixed value of the flow resistance, the dust absorption coefficient km2 of three different filtration baffles AC, B2, and B, working with a cyclone, take values 50–100% smaller than when working in a single-stage system. It has been shown that the “cyclone-filter baffle” unit, due to its greater dust separation capability, allows the filter cartridge to operate for a longer time until a certain flow resistance is reached. This allows the unit to operate longer at lower flow resistance without changing the filter cartridge, thus saving energy. The km values obtained during the tests, using the proposed original method, allow the selection of the filter bed for specific vehicle operating conditions by modelling its course. Full article
Show Figures

Figure 1

25 pages, 9132 KiB  
Article
A UAV-Borne Six-Vessel Negative-Pressure Enrichment Device with Filters Designed to Collect Infectious Fungal Spores in Rice Fields
by Xiaoyan Guo, Yuanzhen Ou, Konghong Deng, Xiaolong Fan, Rui Jiang and Zhiyan Zhou
Agronomy 2024, 14(4), 716; https://doi.org/10.3390/agronomy14040716 - 29 Mar 2024
Viewed by 1370
Abstract
Fungal spores that cause infectious fungal diseases in rice are mainly transmitted through air. The existing fixed, portable or vehicle-mounted fungal spore collection devices used for rice infectious diseases have several disadvantages, such as low efficiency, large volume, low precision and incomplete information. [...] Read more.
Fungal spores that cause infectious fungal diseases in rice are mainly transmitted through air. The existing fixed, portable or vehicle-mounted fungal spore collection devices used for rice infectious diseases have several disadvantages, such as low efficiency, large volume, low precision and incomplete information. In this study, a mobile fungal spore collection device is designed, consisting of six filters called “Capture-A”, which can collect spores and other airborne particles onto a filter located on a rotating disc of six filters that can be rotated to a position allowing for the capture of six individual samples. They are captured one at a time and designed and validated by capturing spores above the rice field, and the parameters of the key components of the collector are optimized through fluid simulation and verification experiments. The parameter combination of the “Capturer-A” in the best working state is as follows: sampling vessel filter screen with aperture size of 0.150 mm, bent air duct with inner diameter of 20 mm, negative pressure fan with 1500 Pa and spore sampling of cylindrical shape. In the field test, the self-developed “Capturer-A” was compared with the existing “YFBZ3” (mobile spore collection device made by Yunfei Co., Ltd., Zhengzhou, China). The two devices were experimented on at 15 sampling points in three diseased rice fields, and the samples were examined and counted under a microscope in the laboratory. It was found that the spores of rice blast disease and rice flax spot disease of rice were contained in the samples; the number of samples collected by a single sampling vessel of “Capturer-A” was about twice that of the device “YFBZ3”in the test. Full article
(This article belongs to the Special Issue Unmanned Farms in Smart Agriculture)
Show Figures

Figure 1

27 pages, 7542 KiB  
Article
Experimental Studies of PowerCore Filters and Pleated Filter Baffles
by Tadeusz Dziubak
Materials 2022, 15(20), 7292; https://doi.org/10.3390/ma15207292 - 18 Oct 2022
Cited by 20 | Viewed by 2942
Abstract
The material most commonly used to filter and clean the intake air of vehicle internal combustion engines is pleated filter paper, which in most cases is shaped in the form of a cylinder or panel. The production technology has a low cost and [...] Read more.
The material most commonly used to filter and clean the intake air of vehicle internal combustion engines is pleated filter paper, which in most cases is shaped in the form of a cylinder or panel. The production technology has a low cost and is not complicated. In addition to high separation efficiency and filtration performance, pleated filter media are required to have low initial pressure drop, which depends on the geometry of the bed. Much research has been conducted in this area. Dust accumulated in the filter bed causes an increase in pressure drop, which is the cause of deformation and sticking of pleats. The lack of stability of the pleats, the need to strengthen them, and the need to obtain small sizes while achieving high efficiency and accuracy of filtration of engine intake air was the reason for the development of a different design and a new technology for making filter cartridges called PowerCore. The distinctive feature of these filters is axial flow in one direction of the air stream, which avoids turbulence and thus minimizes pressure drop. This paper presents a comparative analysis of a standard PowerCore and PowerCore G2 filter bed and two cylindrical filters with a pleated filter bed made of cellulose and polyester. The conditions and methodology of experimental testing of filters with test dust are presented. During the tests, the characteristics of separation efficiency and filtration performance, as well as pressure drop as a function of the mass of dust retained on the filter of two PowerCore filters and two cylindrical filters were performed. Three specimens of test filters with the same filtration area were made from each sample of filter bed. The results showed that in each test of the filter bed, there is an initial filtration period characterized by low (96–98%) initial separation efficiency and the presence of large (dpmax) dust grains. As the dust loading of the bed increases, the separation efficiency and filtration performance obtain higher and higher values. The initial period of filtration ends when the conventional value (99.9%) of separation efficiency is reached. The duration of this period depends on the type of filter bed and for the PowerCore G2 filter ends for a dust loading of km = 33.1 g/m2, and for the cellulose filter for km = 117.3 g/m2. During the initial period, the air behind the PowerCore G2 filter contains grains with sizes in the range of dpmax = 9–16 µm. Behind the cellulose filter, dust grains are much larger, dpmax = 17–35 µm. The total operating time of the PowerCore G2 filter, limited by the achievement of the permittivity resistance Δpwdop = 3 kPa, is twice that of the other filter compositions tested. Full article
Show Figures

Figure 1

37 pages, 13868 KiB  
Article
Experimental Investigation of Possibilities to Improve Filtration Efficiency of Tangential Inlet Return Cyclones by Modification of Their Design
by Tadeusz Dziubak
Energies 2022, 15(11), 3871; https://doi.org/10.3390/en15113871 - 24 May 2022
Cited by 34 | Viewed by 4165
Abstract
It has been shown that tangential inlet return cyclones are commonly used for inlet air filtration of off-road vehicle engines. The wear of the engine elements, and thus their durability, is determined by the efficiency and accuracy of the inlet air filtration. It [...] Read more.
It has been shown that tangential inlet return cyclones are commonly used for inlet air filtration of off-road vehicle engines. The wear of the engine elements, and thus their durability, is determined by the efficiency and accuracy of the inlet air filtration. It has been shown that the possibilities of increasing the separation efficiency or decreasing the pressure drop of a cyclone by changing the main dimensions of the cyclone are limited, because any arbitrary change in one of the dimensions of an already operating cyclone may cause the opposite effect. A literature analysis of the possibility of increasing the filtration efficiency of cyclones by modifying the design of selected cyclone components was conducted. In this paper, three modifications of the cyclone design with a tangential inlet of the inlet air filter of a military tracked vehicle were proposed and performed. The symmetrical inlet of the cyclone was replaced with an asymmetrical inlet. The cylindrical outlet tube was replaced with a conical tube, and the edges of the inlet opening were given an additional streamlined shape. The modification process was carried out on three specimens of the reversible cyclone with a tangential inlet. After each modification, an experimental evaluation of the modifications was carried out. The influence of the modifications on the cyclone’s efficiency characteristics and pressure drop was examined. Subsequent modifications of the cyclone were performed on the same specimen without removing the previous modifications. Tests were performed in the air flow range QG = 5–30 m3/h. Polydisperse “fine” test dust with grain size dpmax = 80 µm was used for testing. The dust concentration at the cyclone inlet was set at 1 g/m2. The performed modifications caused a slight (about 1%) increase in separation efficiency in the range of small (up to QG = 22 m3/h) flux values and about 30% decrease in pressure drop in the whole range of the QG flux, which positively influences the increase in engine filling and its power. There was a noticeable increase in filtration accuracy in the range of low and high values of QG flux, which results in a decrease in the wear of engine components, especially the piston-piston ring-cylinder (P-PR-C) association, and an increase in their durability. Full article
(This article belongs to the Special Issue Advances in Internal Combustion Engines and Motor Vehicles)
Show Figures

Figure 1

17 pages, 4801 KiB  
Article
Simulation Study of a Novel Cylindrical Micro-Electrostatic Particulate Air Filter with High Filtration Efficiency and Low Resistance
by Junyi He, Junjie Liu, Lingchang Kong, Pan Wang and Xin Zhang
Buildings 2021, 11(10), 465; https://doi.org/10.3390/buildings11100465 - 11 Oct 2021
Cited by 4 | Viewed by 3151
Abstract
The purification of indoor pathogenic microorganisms has become a topic of concern. The use of nonwoven media air filters causes high resistance, and the problem of noise limited their application under high air volume. Thus, we propose a micro-electrostatic filter, which has improved [...] Read more.
The purification of indoor pathogenic microorganisms has become a topic of concern. The use of nonwoven media air filters causes high resistance, and the problem of noise limited their application under high air volume. Thus, we propose a micro-electrostatic filter, which has improved performance compared to an electrostatic filter, with a new type of cylindrical structure to tackle indoor pathogenic microbial aerosol pollution. Through simulation, it is found that the filtration performance of a cylindrical structure is better than that of a plate structure under all simulation conditions. For particles larger than 1 μm, the shortest theoretical length of the dust collecting plate required for the cylindrical structure is 34% shorter than that for the plate structure. For 0.1 μm particles, the filtration efficiency of the cylindrical structure is nearly 20~30% (the maximum value is 29.76%) higher than that of the plate structure, while the air velocity is 1.5 m/s~2.5 m/s. The resistance of the cylindrical micro-electrostatic filter is only half of that of the combined plate type micro-electrostatic filter, indicating that the cartridge structure has enormous energy-saving potential. The introduction of the quality factor further proves that the integrated filtration performance of the cartridge micro-electrostatic filter is better. The application of cylindrical micro-electrostatic filters in HVAC systems can help improve indoor air quality and reduce health risks. Full article
(This article belongs to the Special Issue Advances in the Indoor Environments and Respiratory Health)
Show Figures

Figure 1

9 pages, 3465 KiB  
Article
Generation of Negative Air Ions by Use of Piezoelectric Cold Plasma Generator
by Dariusz Korzec, Daniel Neuwirth and Stefan Nettesheim
Plasma 2021, 4(3), 399-407; https://doi.org/10.3390/plasma4030029 - 24 Aug 2021
Cited by 6 | Viewed by 4753
Abstract
The negative air ions (NAI) are used for the removal of particles or droplets from the air. In this study, three types of piezoelectric cold plasma generators (PCPG), in combination with cylindrical electrostatic ion filters, are applied for NAI production. The high voltage [...] Read more.
The negative air ions (NAI) are used for the removal of particles or droplets from the air. In this study, three types of piezoelectric cold plasma generators (PCPG), in combination with cylindrical electrostatic ion filters, are applied for NAI production. The high voltage on the filter cylinder is induced by the electric field from the piezoelectric transformer of the PCPG. To achieve the dc bias, the cylinder of the electrostatic filter is connected to the ground over ultrafast switching diodes. The ion concentrations are measured for different airflows, PCPG powers, and electrostatic filter geometries. The NAI concentration in the order of magnitude of 107 cm3, and a negative-to-positive ion concentration ratio of over 200 is reached. The production of ozone is evaluated and the PCPG configuration with a minimum ozone production rate is proposed. The ozone concentration below 60 ppb is reached in the airflow of 90 m3/h. Full article
(This article belongs to the Special Issue Piezoelectric Direct Discharge)
Show Figures

Figure 1

18 pages, 5971 KiB  
Article
Frequency Domain Analysis and Precision Realization in Deterministic Figuring of Ultra-Precision Shaft Parts
by Zizhou Sun, Hao Hu, Yifan Dai, Chaoliang Guan, Guipeng Tie and Yang Ou
Materials 2020, 13(20), 4561; https://doi.org/10.3390/ma13204561 - 14 Oct 2020
Cited by 8 | Viewed by 2120
Abstract
An aerostatic spindle is a core component in ultra-precision machine tools. The rotor of the spindle has extremely high manufacturing accuracy, which cannot be directly achieved via traditional machining, but always via manual grinding. The deterministic figuring theory is introduced into the machining [...] Read more.
An aerostatic spindle is a core component in ultra-precision machine tools. The rotor of the spindle has extremely high manufacturing accuracy, which cannot be directly achieved via traditional machining, but always via manual grinding. The deterministic figuring theory is introduced into the machining of shaft parts, which overcomes many shortcomings of manual grinding. The manufacturing error of the shaft’s surface contains different frequency components, which have different effects on its working performance and the figuring process. Because the deterministic figuring method can only correct the error within a limited frequency range, in order to ensure high efficiency and high precision of the figuring process, we need to use reasonable filtering parameters to filter out the error with unnecessary frequencies. In this paper, the influence of contour error with different frequencies and amplitudes on the air film are analyzed using computational fluid dynamics (CFD) software, and the amplitude–frequency analysis as a function of the power spectral density (PSD) characteristic curve is used to study the filtering parameters of the measured data. After the figuring experiment using the filtering parameters obtained from the analysis, the average roundness of the shaft converged from 0.419 μm to 0.101 μm, and the cylindricity converged from 0.76 μm to 0.35 μm. The precision reached the level of manual grinding, which proves the rationality of the analysis using filtering parameters in a shaft’s deterministic figuring. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

Back to TopTop