Generation of Negative Air Ions by Use of Piezoelectric Cold Plasma Generator
Abstract
:1. Introduction
2. Experimental Details
2.1. The PCPG Operation Principle
2.2. Setup for NAI Measurement
2.3. Ozone Concentration Measurement
3. Results and Discussion
3.1. Non-Potted PDD
3.1.1. Influence of Airflow
3.1.2. Influence of Number of Diodes
3.1.3. Influence of Cylinder Length
3.2. Potted PCPGs
3.2.1. Potted vs. Non-Potted
3.2.2. Influence of Power
3.2.3. Ozone Concentration Control
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, S.Y.; Ma, A.; Ramachandran, S. Negative air ions and their effects on human health and air quality improvement. Int. J. Mol. Sci. 2018, 19, 2966. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Ma, L.; Xu, X.; Luo, J. Effects of the position reversal of friction pairs on the strength of tribocharging and tribodischarging. arXiv 2017, arXiv:1709.08067. [Google Scholar]
- Beattie, J.K. The mechanism of spray electrification: The waterfall effect. Atmos. Chem. Phys. Discuss. 2016, 2016, 1–9. [Google Scholar]
- Wu, R.; Zheng, J.; Sun, Y.; Wang, Q.; Deng, C.; Ye, D. Research on generation of negative air ions by plants and stomatal characteristics under pulsed electrical field stimulation. Int. J. Agric. Biol. 2017, 19, 1235–1245. [Google Scholar] [CrossRef]
- Lin, H.F.; Lin, J.M. Generation and determination of negative air ions. J. Anal. Test. 2017, 1, 1–6. [Google Scholar] [CrossRef]
- Yu, K.P. Enhancement of the deposition of ultrafine secondary organic aerosols by the negative air ion and the effect of relative humidity. J. Air Waste Manag. Assoc. 2012, 62, 1296–1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adachi, M.; Okuyama, K.; Kousaka, Y. Simple evaluation method of bipolar diffusion charging of aerosol particles and its application to smoke detectors. Aerosol Sci. Technol. 1987, 7, 217–229. [Google Scholar] [CrossRef]
- Barn, P. Residential Air Cleaner Use to Improve Indoor Air Quality and Health: A Review of the Evidence. National Collaborating Centre for Environmental Health. 2010. Available online: https://www.ncceh.ca/sites/default/files/Air_Cleaners_Oct_2010.pdf (accessed on 23 August 2021).
- Shiue, A.; Hu, S.C.; Tu, M.L. Particles removal by negative ionic air purifier in cleanroom. Aerosol Air Qual. Res. 2011, 11, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Sawant, V.; Meena, G.; Jadhav, D. Effect of negative air ions on fog and smoke. Aerosol Air Qual. Res. 2012, 12, 1007–1015. [Google Scholar] [CrossRef]
- Sawant, V. Removal of particulate matter by using negative electric discharge. Int. J. Eng. Innov. Technol. 2013, 2, 1–4. [Google Scholar]
- Dobrynin, D.; Friedman, G.; Fridman, A.; Starikovskiy, A. Inactivation of bacteria using dc corona discharge: Role of ions and humidity. New J. Phys. 2011, 13, 103033. [Google Scholar] [CrossRef]
- Mitchell, B.W.; King, D.J. Effect of negative air ionization on airborne transmission of Newcastle disease virus. Avian Dis. 1994, 38, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Hagbom, M.; Nordgren, J.; Nybom, R.; Hedlund, K.O.; Wigzell, H.; Svensson, L. Ionizing air affects influenza virus infectivity and prevents airborne-transmission. Nat. Sci. Rep. 2015, 5, 1–10. [Google Scholar] [CrossRef]
- Iwama, H. Negative air ions created by water shearing improve erythrocyte deformability and aerobic metabolism. Indoor Air 2004, 14, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Steiner, G.; Reischl, G.P. The effect of carrier gas contaminants on the charging probability of aerosols under bipolar charging conditions. J. Aerosol Sci. 2012, 54, 21–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallner, P.; Kundi, M.; Panny, M.; Tappler, P.; Hutter, H.P. Exposure to air ions in indoor environments: Experimental study with healthy adults. Int. J. Environ. Res. Public Health 2015, 12, 14301–14311. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Wang, Z.; Zhang, Q.; Lv, Y.; Pu, J. Negative oxygen ion (NOI) production by enhanced photocatalytic TiO2/GO composites anchored on wooden substrates. Holzforschung 2019, 73, 415–422. [Google Scholar] [CrossRef]
- Fletcher, L.A.; Gaunt, L.F.; Beggs, C.B.; Shepherd, S.J.; Sleigh, P.A.; Noakes, C.J.; Kerr, K.G. Bactericidal action of positive and negative ions in air. BMC Microbiol. 2007, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniels, S. “On the ionization of air for removal of noxious effluvia” (Air ionization of indoor environments for control of volatile and particulate contaminants with nonthermal plasmas generated by dielectric-barrier discharge). IEEE Trans. Plasma Sci. 2002, 30, 1471–1481. [Google Scholar] [CrossRef]
- Kwon, S.; Fujimoto, T.; Kuga, Y.; Sakurai, H.; Seto, T. Characteristics of aerosol charge distribution by surface-discharge microplasma aerosol charger (SMAC). Aerosol Sci. Technol. 2005, 39, 987–1001. [Google Scholar] [CrossRef]
- Manirakiza, E.; Seto, T.; Osone, S.; Fukumori, K.; Otani, Y. High-efficiency unipolar charger for sub-10 nm aerosol particles using surface-discharge microplasma with a voltage of sinc function. Aerosol Sci. Technol. 2013, 47, 60–68. [Google Scholar] [CrossRef] [Green Version]
- EPCOS AG. CeraPlas® HF Series. Piezoelectric Based Plasma Generator. Data Sheet. 2018. Available online: https://www.mouser.de/datasheet/2/400/ceraplas-db-1487530.pdf (accessed on 23 August 2021).
- EPCOS AG. Evaluation Kit CeraPlas® HF Driver for CeraPlas® Series. Data Sheet. 2018. Available online: https://www.mouser.de/datasheet/2/400/ceraplas-driving-circuit-user-guide-1487527.pdf (accessed on 1 August 2021).
- Britigan, N.; Alshawa, A.; Nizkorodov, S.A. Quantification of ozone levels in indoor environments generated by ionization and ozonolysis air purifiers. J. Air Waste Manage. Assoc. 2006, 56, 601–610. [Google Scholar] [CrossRef] [Green Version]
- Jakober, C.; Phillips, T. Evaluation of Ozone Emissions from Portable Indoor Air Cleaners: Electrostatic Precipitators and Ionizers; Technical Report; California Environmental Protection Agency: Sacramento, DA, USA, 2008. [Google Scholar]
- Johnson, M.; Go, D.B. Piezoelectric transformers for low-voltage generation of gas discharges and ionic winds in atmospheric air. J. Appl. Phys. 2015, 118, 1–10. [Google Scholar] [CrossRef]
- Eliasson, B.; Hirth, M.; Kogelschatz, U. Ozone synthesis from oxygen in dielectric barrier discharges. J. Phys. D Appl. Phys. 1987, 20, 1421–1437. [Google Scholar] [CrossRef]
- Korzec, D.; Hoppenthaler, F.; Nettesheim, S. Piezoelectric direct discharge: Devices and applications. Plasma 2021, 4, 1–41. [Google Scholar] [CrossRef]
- Korzec, D.; Hoppenthaler, F.; Shestakov, A.; Burger, D.; Shapiro, A.; Andres, T.; Lerach, S.; Nettesheim, S. Multi-device piezoelectric direct discharge for large area plasma treatment. Plasma 2021, 4, 281–293. [Google Scholar] [CrossRef]
- ON Semiconductor. MUR180E and MUR1100E SWITCHMODE Power Rectifiers Ultrafast E Series with High Reverse Energy Capability. Data Sheet. 2006. Available online: https://datasheet.octopart.com/MUR1100EG-ON-Semiconductor-datasheet-598048.pdf (accessed on 1 August 2021).
- Molina, L.T.; Molina, M.J. Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range. J. Geophys. Res. 1986, 91, 14501–14508. [Google Scholar] [CrossRef]
- Daumont, D.; Brion, J.; Charbonnier, J.; Malicet, J. Ozone UV spectroscopy I: Absorption cross-section at room temperautre. J. Atmos. Chem. 1992, 15, 145–155. [Google Scholar] [CrossRef]
- Franchin, A.; Ehrhart, S.; Leppä, J.; Nieminen, T.; Gagné, S.; Schobesberger, S.; Wimmer, D.; Duplissy, J.; Riccobono, F.; Dunne, E.M.; et al. Experimental investigation of ion–ion recombination under atmospheric conditions. Atmos. Chem. Phys. 2015, 15, 7203–7216. [Google Scholar] [CrossRef] [Green Version]
- Leppä, J.; Anttila, T.; Kerminen, V.M.; Kulmala, M.; Lehtinen, K.E.J. Atmospheric new particle formation: Real and apparent growth of neutral and charged particles. Atmos. Chem. Phys. 2011, 11, 4939–4955. [Google Scholar] [CrossRef] [Green Version]
- Aleksandrov, N.; Anokhin, E.; Kindysheva, S.; Kirpichnikov, A.; Kosarev, I.; Nudnova, M.; Starikovskaia, S.; Starikovskii, A. Plasma decay in air and O2 after a high-voltage nanosecond discharge. J. Phys. Appl. Phys. 2012, 45, 255202. [Google Scholar] [CrossRef]
- Benson, S.W.; Axworthy, A.E. Mechanism of the gas phase, thermal decomposition of ozone. J. Chem. Phys. 1957, 26, 1718–1726. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korzec, D.; Neuwirth, D.; Nettesheim, S. Generation of Negative Air Ions by Use of Piezoelectric Cold Plasma Generator. Plasma 2021, 4, 399-407. https://doi.org/10.3390/plasma4030029
Korzec D, Neuwirth D, Nettesheim S. Generation of Negative Air Ions by Use of Piezoelectric Cold Plasma Generator. Plasma. 2021; 4(3):399-407. https://doi.org/10.3390/plasma4030029
Chicago/Turabian StyleKorzec, Dariusz, Daniel Neuwirth, and Stefan Nettesheim. 2021. "Generation of Negative Air Ions by Use of Piezoelectric Cold Plasma Generator" Plasma 4, no. 3: 399-407. https://doi.org/10.3390/plasma4030029
APA StyleKorzec, D., Neuwirth, D., & Nettesheim, S. (2021). Generation of Negative Air Ions by Use of Piezoelectric Cold Plasma Generator. Plasma, 4(3), 399-407. https://doi.org/10.3390/plasma4030029