Experimental Investigation of Bulk Elastic Wave Propagation in the Volume of Metamaterials
Abstract
1. Introduction
2. Materials and Methods
2.1. Design of the Phononic Crystal
2.2. Experimental Setup
2.3. Statistics and Error Estimation
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABS | Polyacrylonitrile-butadiene-styrene |
ADC | Analog-to-digital converter |
AFC | Amplitude Frequency Characteristic |
PC | Personal computer |
FDM | Fused deposition modeling |
References
- Pendry, J.B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000, 85, 3966–3969. [Google Scholar] [CrossRef] [PubMed]
- Silveirinha, M.; Engheta, N. Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends using ε-Near-Zero Materials. Phys. Rev. Lett. 2006, 97, 157403. [Google Scholar] [CrossRef]
- Erofeev, V.I.; Pavlov, I.S. Mechanics and acoustics of metamaterials: Mathematical modeling, experimental research, prospects for application in mechanical engineering. Probl. Strength Plast. 2021, 83, 391–414. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Veselago, V.G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Uspekhi 1968, 10, 509–514. [Google Scholar] [CrossRef]
- Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat-Nasser, S.C.; Schultz, S. Composite Medium with Simultaneously Negative Permeability and Permittivity. Phys. Rev. Lett. 2000, 84, 4184–4187. [Google Scholar] [CrossRef]
- Vendik, I.B.; Vendik, O.G. Metamaterials and their application in microwaves: A review. Tech. Phys. 2013, 58, 1–24. [Google Scholar] [CrossRef]
- Veselago, V.G. Waves in metamaterials: Their role in modern physics. Phys.-Uspekhi 2011, 54, 1161–1165. [Google Scholar] [CrossRef]
- Muhammad; Lim, C.W. From photonic crystals to seismic metamaterials: A review via phononic crystals and acoustic metamaterials. Arch. Comput. Methods Eng. 2022, 29, 1137–1198. [Google Scholar] [CrossRef]
- Huang, H.; Huo, S.; Chen, J. Subwavelength elastic topological negative refraction in ternary locally resonant phononic crystals. Intern. J. Mech. Sc. 2021, 198, 106391. [Google Scholar] [CrossRef]
- Laude, V. Principles and properties of phononic crystal waveguides. APL Mater. 2021, 9, 080701. [Google Scholar] [CrossRef]
- Akbari-Farahani, F.; Ebrahimi-Nejad, S. From defect mode to topological metamaterials: A state-of-the-art review of phononic crystals & acoustic metamaterials for energy harvesting. Sens. Act. A Phys. 2024, 365, 114871. [Google Scholar] [CrossRef]
- Dhillon, J.; Walker, E.; Krokhin, A.; Neogi, A. Energy trapping in a phononic crystal cavity enhanced by nonreciprocal acoustic wave transmission. App. Acoust. 2023, 203, 109192. [Google Scholar] [CrossRef]
- Kushwaha, M.S.; Halevi, P.; Dobrzynski, L.; Djafari-Rouhani, B. Acoustic Band-Structure of Periodic Elastic Composites. Phys. Rev. Lett. 1993, 71, 2022–2025. [Google Scholar] [CrossRef] [PubMed]
- Sigalas, M.; Economou, E.N. Band structure of elastic waves in two dimensional systems. Solid State Commun. 1993, 86, 141–143. [Google Scholar] [CrossRef]
- Vasseur, J.O.; Deymier, P.A.; Chenni, B.; Djafari-Rouhani, B.; Dobrzynski, L.; Prevost, D. Experimental and Theoretical Evidence for the Existence of Absolute Acoustic Band Gaps in Two-Dimensional Solid Phononic Crystals. Phys. Rev. Lett. 2001, 86, 3012–3015. [Google Scholar] [CrossRef]
- Li, Y.F.; Meng, F.; Li, S.; Jia, B.; Zhou, S.; Huang, X. Designing broad phononic band gaps for in-plane modes. Phys. Lett. A 2018, 382, 679–684. [Google Scholar] [CrossRef]
- Krushynska, A.O.; Miniaci, M.; Bosia, F.; Pugno, N.M. Coupling local resonance with Bragg band gaps in single-phase mechanical metamaterials. Extrem. Mech. Lett. 2017, 12, 30–36. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, C.; Dong, Y.; Zhu, S.; Pei, W.; Weng, J. Research on bending vibration characteristics of phononic crystal plates based on Mindlin’s piezoelectric plate theory. Smart Mater. Struct. 2023, 32, 105012. [Google Scholar] [CrossRef]
- Jing, J.; Sun, P.; Wu, Z.; Li, F. Investigation on enhanced band-gap properties of 2D hierarchical phononic crystals. Mech. Syst. Sig. Proc. 2025, 223, 111827. [Google Scholar] [CrossRef]
- Mukhin, N.; Kutia, M.; Aman, A.; Steinmann, U.; Lucklum, R. Two-dimensional phononic crystal based sensor for characterization of mixtures and heterogeneous liquids. Sensors 2022, 22, 2816. [Google Scholar] [CrossRef] [PubMed]
- Sekar, V.; Cantwell, W.J.; Liao, K.; Berton, B.; Jacquart, P.M.; Abu Al-Rub, R.K. Additively manufactured metamaterials for acoustic absorption: A review. Virtual Phys. Prototyp. 2024, 19, e2435562. [Google Scholar] [CrossRef]
- Khelif, A.; Hsiao, F.-L.; Choujaa, A.; Benchabane, S.; Laude, V. Octave omnidirectional band gap in a three-dimensional phononic crystal. IEEE Trans. Ultrason. Ferroelec. Freq. Control 2010, 57, 1621–1625. [Google Scholar] [CrossRef]
- Hladky-Hennion, A.-C.; Vasseur, J.O.; Haw, G.; Croënne, C.; Haumesser, L.; Norris, A.N. Negative refraction of acoustic waves using a foam-like metallic structure. Appl. Phys. Lett. 2013, 102, 144103. [Google Scholar] [CrossRef]
- Jiang, G.; Liu, Y.; Wu, Y.; Xu, W.; Kong, Q.; Zhang, C. Transmission and radiation of acoustic oblique incident through tube arrays based on phononic crystals theory. Appl. Acous. 2017, 116, 117–126. [Google Scholar] [CrossRef]
- Ibarias, M.; Sánchez-Dehesa, J.; Krokhin, A. Phononic supercrystal as a highly absorbing metamaterial. Phys. Rev. Res. 2024, 6, L042005. [Google Scholar] [CrossRef]
ρ, kg/m3 | VL, m/s | VT, m/s | ZL, N∙s/m3 | ZT, N∙s/m3 | |
---|---|---|---|---|---|
ABS | 1020 | 1690 ± 50 | 830 ± 30 | 1.72 × 106 | 8.5 × 105 |
Air | 1.28 | 330 | - | 4.2 × 102 | - |
Steel | 7800 | 6100 | 3300 | 4.8 × 107 | 2.6 × 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korobov, A.; Shirgina, N.; Kokshaiskii, A.; Odina, N.; Volodarskii, A. Experimental Investigation of Bulk Elastic Wave Propagation in the Volume of Metamaterials. Acoustics 2025, 7, 40. https://doi.org/10.3390/acoustics7030040
Korobov A, Shirgina N, Kokshaiskii A, Odina N, Volodarskii A. Experimental Investigation of Bulk Elastic Wave Propagation in the Volume of Metamaterials. Acoustics. 2025; 7(3):40. https://doi.org/10.3390/acoustics7030040
Chicago/Turabian StyleKorobov, Aleksandr, Natalia Shirgina, Aleksey Kokshaiskii, Natalia Odina, and Aleksandr Volodarskii. 2025. "Experimental Investigation of Bulk Elastic Wave Propagation in the Volume of Metamaterials" Acoustics 7, no. 3: 40. https://doi.org/10.3390/acoustics7030040
APA StyleKorobov, A., Shirgina, N., Kokshaiskii, A., Odina, N., & Volodarskii, A. (2025). Experimental Investigation of Bulk Elastic Wave Propagation in the Volume of Metamaterials. Acoustics, 7(3), 40. https://doi.org/10.3390/acoustics7030040