Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = cyclophilin D (CyPD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2859 KB  
Article
Propofol-Induced Mitochondrial Dysfunction Is Independent of Mitochondrial Permeability Transition
by Aya Kawachi, Shoichiro Shibata, Eskil Elmér and Hiroyuki Uchino
Biomedicines 2025, 13(12), 3125; https://doi.org/10.3390/biomedicines13123125 - 18 Dec 2025
Viewed by 205
Abstract
Background/Objectives: In recent years, it has been suggested that sedatives may cause brain damage. One possible mechanism is interference with oxidative phosphorylation of brain mitochondria, but much remains unknown. In this study, we focused on dexmedetomidine, midazolam, and propofol, essential sedatives in [...] Read more.
Background/Objectives: In recent years, it has been suggested that sedatives may cause brain damage. One possible mechanism is interference with oxidative phosphorylation of brain mitochondria, but much remains unknown. In this study, we focused on dexmedetomidine, midazolam, and propofol, essential sedatives in anesthesia and intensive care, and aimed to understand the effects of these drugs on mouse brain mitochondria. Methods: We measured changes in mitochondrial respiratory capacity and swelling rate upon exposure to these sedatives in a wide concentration range. For the sedative that demonstrated impaired mitochondrial function we explored the possible involvement of mitochondrial permeability transition pore opening using brain mitochondria from cyclophilin D knockout (CypD KO) mice and detected cytochrome c (cyt c) release by Western blot. Results: Of the three sedatives, only high concentrations of propofol exhibited reduced respiratory capacity and mitochondrial swelling, toxicity which was not prevented by CypD KO. Furthermore, propofol did not induce cyt c release. Conclusions: These results suggest that propofol-induced brain mitochondrial dysfunction is a mechanism independent of mPTP opening. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Graphical abstract

16 pages, 4458 KB  
Article
Time-Resolved Metabolomics Reveals Mitochondrial Protection in Septic Liver Injury
by Naoki Suzuki, Shoichiro Shibata, Masahiro Sugimoto, Eskil Elmer and Hiroyuki Uchino
Metabolites 2025, 15(9), 600; https://doi.org/10.3390/metabo15090600 - 9 Sep 2025
Viewed by 1033
Abstract
Background/Objectives: Sepsis is a life-threatening condition characterized by organ dysfunction due to a dysregulated host response to infection. Mitochondrial dysfunction is considered a key contributor to the pathogenesis of sepsis, but its molecular mechanisms remain unclear. Methods: In this study, we [...] Read more.
Background/Objectives: Sepsis is a life-threatening condition characterized by organ dysfunction due to a dysregulated host response to infection. Mitochondrial dysfunction is considered a key contributor to the pathogenesis of sepsis, but its molecular mechanisms remain unclear. Methods: In this study, we used a cecal ligation and puncture (CLP) model to induce sepsis in wild-type (WT) and cyclophilin D knockout (CypD KO) mice. Liver tissues were collected at 0, 6, and 18 h post-CLP and analyzed using liquid chromatography–tandem mass spectrometry (LC-MS/MS). Results: Metabolomic profiling revealed that lactate levels significantly increased in the WT mice but remained stable in the KO mice. While AMP levels were preserved in the KO mice, these mice had significantly higher glutathione disulfide (GSSG) and spermidine concentrations than the WT mice at 18 h (p < 0.05). The levels of malondialdehyde (MDA), a marker of oxidative stress, were also significantly lower in the KO mice at 18 h (p < 0.05). These findings suggest that CypD deficiency preserves mitochondrial function, enhances resistance to oxidative stress, and mitigates septic liver injury. Conclusions: Our results highlight the potential of targeting mitochondrial permeability transition as a therapeutic strategy for sepsis. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Graphical abstract

17 pages, 3584 KB  
Article
Exploration of the Role of Cyclophilins in Established Hepatitis B and C Infections
by Jennifer Molle, Sarah Duponchel, Jennifer Rieusset, Michel Ovize, Alexander V. Ivanov, Fabien Zoulim and Birke Bartosch
Viruses 2025, 17(1), 11; https://doi.org/10.3390/v17010011 - 25 Dec 2024
Cited by 1 | Viewed by 1456
Abstract
Cyclophilin (Cyp) inhibitors are of clinical interest in respect to their antiviral activities in the context of many viral infections including chronic hepatitis B and C. Cyps are a group of enzymes with peptidyl-prolyl isomerase activity (PPIase), known to be required for replication [...] Read more.
Cyclophilin (Cyp) inhibitors are of clinical interest in respect to their antiviral activities in the context of many viral infections including chronic hepatitis B and C. Cyps are a group of enzymes with peptidyl-prolyl isomerase activity (PPIase), known to be required for replication of diverse viruses including hepatitis B and C viruses (HBV and HCV). Amongst the Cyp family, the molecular mechanisms underlying the antiviral effects of CypA have been investigated in detail, but potential roles of other Cyps are less well studied in the context of viral hepatitis. Furthermore, most studies investigating the role of Cyps in viral hepatitis did not investigate the potential therapeutic effects of their inhibition in already-established infections but have rather been performed in the context of neo-infections. Here, we investigated the effects of genetically silencing Cyps on persistent HCV and HBV infections. We confirm antiviral effects of CypA and CypD knock down and demonstrate novel roles for CypG and CypH in HCV replication. We show, furthermore, that CypA silencing has a modest but reproducible impact on persistent HBV infections in cultured human hepatocytes. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

15 pages, 7655 KB  
Article
Reactive Oxygen Species Damage Bovine Endometrial Epithelial Cells via the Cytochrome C-mPTP Pathway
by Pengjie Song, Mingkun Sun, Chen Liu, Jianguo Liu, Pengfei Lin, Huatao Chen, Dong Zhou, Keqiong Tang, Aihua Wang and Yaping Jin
Antioxidants 2023, 12(12), 2123; https://doi.org/10.3390/antiox12122123 - 16 Dec 2023
Cited by 10 | Viewed by 2685
Abstract
After parturition, bovine endometrial epithelial cells (BEECs) undergo serious inflammation and imbalance between oxidation and antioxidation, which is widely acknowledged as a primary contributor to the development of endometritis in dairy cows. Nevertheless, the mechanism of oxidative stress-mediated inflammation and damage in bovine [...] Read more.
After parturition, bovine endometrial epithelial cells (BEECs) undergo serious inflammation and imbalance between oxidation and antioxidation, which is widely acknowledged as a primary contributor to the development of endometritis in dairy cows. Nevertheless, the mechanism of oxidative stress-mediated inflammation and damage in bovine endometrial epithelial cells remains inadequately defined, particularly the molecular pathways associated with mitochondria-dependent apoptosis. Hence, the present study was designed to explore the mechanism responsible for mitochondrial dysfunction-induced BEEC damage. In vivo, the expressions of proapoptotic protein caspase 3 and cytochrome C were increased significantly in dairy uteri with endometritis. Similarly, the levels of proapoptotic protein caspase 3, BAX, and cytochrome C were markedly increased in H2O2-treated BEECs. Our findings revealed pronounced BEEC damage in dairy cows with endometritis, accompanied by heightened expression of cyto-C and caspase-3 both in vivo and in vitro. The reduction in apoptosis-related protein of BEECs due to oxidant injury was notably mitigated following N-acetyl-L-cysteine (NAC) treatment. Furthermore, mitochondrial vacuolation was significantly alleviated, and mitochondrial membrane potential returned to normal levels after the removal of ROS. Excessive ROS may be the main cause of mitochondrial dysfunction. Mitochondrial permeability transition pore (mPTP) blockade by cyclophilin D (CypD) knockdown with CSA significantly blocked the flow of cytochrome C (cyto-C) and Ca2+ to the cytoplasm from the mitochondria. Our results indicate that elevated ROS and persistent opening of the mPTP are the main causes of oxidative damage in BEECs. Collectively our results reveal a new mechanism involving ROS-mPTP signaling in oxidative damage to BEECs, which may be a potential avenue for the clinical treatment of bovine endometritis. Full article
(This article belongs to the Special Issue Mitochondria and Reactive Oxygen Species)
Show Figures

Figure 1

20 pages, 2153 KB  
Article
Extract2Chip—Bypassing Protein Purification in Drug Discovery Using Surface Plasmon Resonance
by Ana C. F. Paiva, Ana R. Lemos, Philipp Busse, Madalena T. Martins, Diana O. Silva, Micael C. Freitas, Sandra P. Santos, Filipe Freire, Evelyne J. Barrey, Xavier Manival, Lisa Koetzner, Timo Heinrich, Ansgar Wegener, Ulrich Grädler, Tiago M. Bandeiras, Daniel Schwarz and Pedro M. F. Sousa
Biosensors 2023, 13(10), 913; https://doi.org/10.3390/bios13100913 - 5 Oct 2023
Cited by 2 | Viewed by 5572
Abstract
Modern drug discovery relies on combinatorial screening campaigns to find drug molecules targeting specific disease-associated proteins. The success of such campaigns often relies on functional and structural information of the selected therapeutic target, only achievable once its purification is mastered. With the aim [...] Read more.
Modern drug discovery relies on combinatorial screening campaigns to find drug molecules targeting specific disease-associated proteins. The success of such campaigns often relies on functional and structural information of the selected therapeutic target, only achievable once its purification is mastered. With the aim of bypassing the protein purification process to gain insights on the druggability, ligand binding, and/or characterization of protein–protein interactions, herein, we describe the Extract2Chip method. This approach builds on the immobilization of site-specific biotinylated proteins of interest, directly from cellular extracts, on avidin-coated sensor chips to allow for the characterization of molecular interactions via surface plasmon resonance (SPR). The developed method was initially validated using Cyclophilin D (CypD) and subsequently applied to other drug discovery projects in which the targets of interest were difficult to express, purify, and crystallize. Extract2Chip was successfully applied to the characterization of Yes-associated protein (YAP): Transcriptional enhancer factor TEF (TEAD1) protein–protein interaction inhibitors, in the validation of a ternary complex assembly composed of Dyskerin pseudouridine synthase 1 (DKC1) and RuvBL1/RuvBL2, and in the establishment of a fast-screening platform to select the most suitable NUAK family SNF1-like kinase 2 (NUAK2) surrogate for binding and structural studies. The described method paves the way for a potential revival of the many drug discovery campaigns that have failed to deliver due to the lack of suitable and sufficient protein supply. Full article
(This article belongs to the Special Issue SPR Biosensors and Their Applications)
Show Figures

Figure 1

29 pages, 2676 KB  
Review
Cyclophilin D in Mitochondrial Dysfunction: A Key Player in Neurodegeneration?
by Gabriele Coluccino, Valentina Pia Muraca, Alessandra Corazza and Giovanna Lippe
Biomolecules 2023, 13(8), 1265; https://doi.org/10.3390/biom13081265 - 18 Aug 2023
Cited by 12 | Viewed by 5117
Abstract
Mitochondrial dysfunction plays a pivotal role in numerous complex diseases. Understanding the molecular mechanisms by which the “powerhouse of the cell” turns into the “factory of death” is an exciting yet challenging task that can unveil new therapeutic targets. The mitochondrial matrix protein [...] Read more.
Mitochondrial dysfunction plays a pivotal role in numerous complex diseases. Understanding the molecular mechanisms by which the “powerhouse of the cell” turns into the “factory of death” is an exciting yet challenging task that can unveil new therapeutic targets. The mitochondrial matrix protein CyPD is a peptidylprolyl cis-trans isomerase involved in the regulation of the permeability transition pore (mPTP). The mPTP is a multi-conductance channel in the inner mitochondrial membrane whose dysregulated opening can ultimately lead to cell death and whose involvement in pathology has been extensively documented over the past few decades. Moreover, several mPTP-independent CyPD interactions have been identified, indicating that CyPD could be involved in the fine regulation of several biochemical pathways. To further enrich the picture, CyPD undergoes several post-translational modifications that regulate both its activity and interaction with its clients. Here, we will dissect what is currently known about CyPD and critically review the most recent literature about its involvement in neurodegenerative disorders, focusing on Alzheimer’s Disease and Parkinson’s Disease, supporting the notion that CyPD could serve as a promising therapeutic target for the treatment of such conditions. Notably, significant efforts have been made to develop CyPD-specific inhibitors, which hold promise for the treatment of such complex disorders. Full article
(This article belongs to the Special Issue Mitochondria and Central Nervous System Disorders II)
Show Figures

Figure 1

16 pages, 4764 KB  
Article
Microplitis bicoloratus Bracovirus Promotes Cyclophilin D-Acetylation at Lysine 125 That Correlates with Apoptosis during Insect Immunosuppression
by Dan Yu, Pan Zhang, Cuixian Xu, Yan Hu, Yaping Liang and Ming Li
Viruses 2023, 15(7), 1491; https://doi.org/10.3390/v15071491 - 30 Jun 2023
Cited by 1 | Viewed by 1969
Abstract
Cyclophilin D (CypD) is regulated during the innate immune response of insects. However, the mechanism by which CypD is activated under innate immunosuppression is not understood. Microplitis bicoloratus bracovirus (MbBV), a symbiotic virus in the parasitoid wasp, Microplitis bicoloratus, suppresses innate immunity [...] Read more.
Cyclophilin D (CypD) is regulated during the innate immune response of insects. However, the mechanism by which CypD is activated under innate immunosuppression is not understood. Microplitis bicoloratus bracovirus (MbBV), a symbiotic virus in the parasitoid wasp, Microplitis bicoloratus, suppresses innate immunity in parasitized Spodoptera litura. Here, we demonstrate that MbBV promotes the CypD acetylation of S. litura, resulting in an immunosuppressive phenotype characterized by increased apoptosis of hemocytes and MbBV-infected cells. Under MbBV infection, the inhibition of CypD acetylation significantly rescued the apoptotic cells induced by MbBV, and the point-mutant fusion proteins of CypDK125R-V5 were deacetylated. The CypD-V5 fusion proteins were acetylated in MbBV-infected cells. Deacetylation of CypDK125R-V5 can also suppress the MbBV-induced increase in apoptosis. These results indicate that CypD is involved in the MbBV-suppressed innate immune response via the CypD-acetylation pathway and S. litura CypD is acetylated on K125. Full article
(This article belongs to the Special Issue Role of Mitochondria in Viral Pathogenesis)
Show Figures

Figure 1

14 pages, 1770 KB  
Article
Small-Molecule Cyclophilin Inhibitors Potently Reduce Platelet Procoagulant Activity
by Jens Van Bael, Aline Vandenbulcke, Abdelhakim Ahmed-Belkacem, Jean-François Guichou, Jean-Michel Pawlotsky, Jelle Samyn, Arjan D. Barendrecht, Coen Maas, Simon F. De Meyer, Karen Vanhoorelbeke and Claudia Tersteeg
Int. J. Mol. Sci. 2023, 24(8), 7163; https://doi.org/10.3390/ijms24087163 - 12 Apr 2023
Cited by 2 | Viewed by 2868
Abstract
Procoagulant platelets are associated with an increased risk for thrombosis. Procoagulant platelet formation is mediated via Cyclophilin D (CypD) mediated opening of the mitochondrial permeability transition pore. Inhibiting CypD activity could therefore be an interesting approach to limiting thrombosis. In this study, we [...] Read more.
Procoagulant platelets are associated with an increased risk for thrombosis. Procoagulant platelet formation is mediated via Cyclophilin D (CypD) mediated opening of the mitochondrial permeability transition pore. Inhibiting CypD activity could therefore be an interesting approach to limiting thrombosis. In this study, we investigated the potential of two novel, non-immunosuppressive, non-peptidic small-molecule cyclophilin inhibitors (SMCypIs) to limit thrombosis in vitro, in comparison with the cyclophilin inhibitor and immunosuppressant Cyclosporin A (CsA). Both cyclophilin inhibitors significantly decreased procoagulant platelet formation upon dual-agonist stimulation, shown by a decreased phosphatidylserine (PS) exposure, as well as a reduction in the loss of mitochondrial membrane potential. Furthermore, the SMCypIs potently reduced procoagulant platelet-dependent clotting time, as well as fibrin formation under flow, comparable to CsA. No effect was observed on agonist-induced platelet activation measured by P-selectin expression, as well as CypA-mediated integrin αIIbβ3 activation. Importantly, whereas CsA increased Adenosine 5′-diphosphate (ADP)-induced platelet aggregation, this was unaffected in the presence of the SMCypIs. We here demonstrate specific cyclophilin inhibition does not affect normal platelet function, while a clear reduction in procoagulant platelets is observed. Reducing platelet procoagulant activity by inhibiting cyclophilins with SMCypIs forms a promising strategy to limit thrombosis. Full article
(This article belongs to the Special Issue Advances in Platelet Biology and Functions)
Show Figures

Figure 1

16 pages, 5580 KB  
Article
Sevoflurane Induces a Cyclophilin D-Dependent Decrease of Neural Progenitor Cells Migration
by Pan Lu, Feng Liang, Yuanlin Dong, Zhongcong Xie and Yiying Zhang
Int. J. Mol. Sci. 2023, 24(7), 6746; https://doi.org/10.3390/ijms24076746 - 4 Apr 2023
Cited by 8 | Viewed by 2824
Abstract
Clinical studies have suggested that repeated exposure to anesthesia and surgery at a young age may increase the risk of cognitive impairment. Our previous research has shown that sevoflurane can affect neurogenesis and cognitive function in young animals by altering cyclophilin D (CypD) [...] Read more.
Clinical studies have suggested that repeated exposure to anesthesia and surgery at a young age may increase the risk of cognitive impairment. Our previous research has shown that sevoflurane can affect neurogenesis and cognitive function in young animals by altering cyclophilin D (CypD) levels and mitochondrial function. Neural progenitor cells (NPCs) migration is associated with cognitive function in developing brains. However, it is unclear whether sevoflurane can regulate NPCs migration via changes in CypD. To address this question, we treated NPCs harvested from wild-type (WT) and CypD knockout (KO) mice and young WT and CypD KO mice with sevoflurane. We used immunofluorescence staining, wound healing assay, transwell assay, mass spectrometry, and Western blot to assess the effects of sevoflurane on CypD, reactive oxygen species (ROS), doublecortin levels, and NPCs migration. We showed that sevoflurane increased levels of CypD and ROS, decreased levels of doublecortin, and reduced migration of NPCs harvested from WT mice in vitro and in WT young mice. KO of CypD attenuated these effects, suggesting that a sevoflurane-induced decrease in NPCs migration is dependent on CypD. Our findings have established a system for future studies aimed at exploring the impacts of sevoflurane anesthesia on the impairment of NPCs migration. Full article
(This article belongs to the Special Issue Stem Cell Biology & Regenerative Medicine)
Show Figures

Figure 1

13 pages, 3002 KB  
Article
The Improvement of Functional State of Brain Mitochondria with Astaxanthin in Rats after Heart Failure
by Yulia Baburina, Roman Krestinin, Dmitry Fedorov, Irina Odinokova, Ekaterina Pershina, Linda Sotnikova and Olga Krestinina
Int. J. Mol. Sci. 2023, 24(1), 31; https://doi.org/10.3390/ijms24010031 - 20 Dec 2022
Cited by 7 | Viewed by 3066
Abstract
The relationship between neurological damage and cardiovascular disease is often observed. This type of damage is both a cause and an effect of cardiovascular disease. Mitochondria are the key organelles of the cell and are primarily subject to oxidative stress. Mitochondrial dysfunctions are [...] Read more.
The relationship between neurological damage and cardiovascular disease is often observed. This type of damage is both a cause and an effect of cardiovascular disease. Mitochondria are the key organelles of the cell and are primarily subject to oxidative stress. Mitochondrial dysfunctions are involved in the etiology of various diseases. A decrease in the efficiency of the heart muscle can lead to impaired blood flow and decreased oxygen supply to the brain. Astaxanthin (AST), a marine-derived xanthophyll carotenoid, has multiple functions and its effects have been shown in both experimental and clinical studies. We investigated the effects of AST on the functional state of brain mitochondria in rats after heart failure. Isoproterenol (ISO) was used to cause heart failure. In the present study, we found that ISO impaired the functional state of rat brain mitochondria (RBM), while the administration of AST resulted in an improvement in mitochondrial efficiency. The respiratory control index (RCI) in RBM decreased with the use of ISO, while AST administration led to an increase in this parameter. Ca2+ retention capacity (CRC) decreased in RBM isolated from rat brain after ISO injection, and AST enhanced CRC in RBM after heart failure. The study of changes in the content of regulatory proteins such as adenine nucleotide translocase 1 and 2 (ANT1/2), voltage dependent anion channel (VDAC), and cyclophilin D (CyP-D) of mitochondrial permeability transition pore (mPTP) showed that ISO reduced their level, while AST restored the content of these proteins almost to the control value. In general, AST improves the functional state of mitochondria and can be considered as a prophylactic drug in various therapeutic approaches. Full article
(This article belongs to the Special Issue Mitochondria-Targeted Approaches in Health and Disease 3.0)
Show Figures

Figure 1

9 pages, 2259 KB  
Article
(-)-Epigallocatechin-3-gallate Directly Binds Cyclophilin D: A Potential Mechanism for Mitochondrial Protection
by Annan Wu, Jie Zhang, Quanhong Li, Xiaojun Liao, Chunyu Wang and Jing Zhao
Molecules 2022, 27(24), 8661; https://doi.org/10.3390/molecules27248661 - 7 Dec 2022
Cited by 2 | Viewed by 2151
Abstract
(1) Background: (-)-Epigallocatechin-3-gallate (EGCG) has been reported to improve mitochondrial function in cell models, while the underlying mechanism is not clear. Cyclophilin D (CypD) is a key protein that regulates mitochondrial permeability transition pore (mPTP) opening. (2) Methods: In this study, we found [...] Read more.
(1) Background: (-)-Epigallocatechin-3-gallate (EGCG) has been reported to improve mitochondrial function in cell models, while the underlying mechanism is not clear. Cyclophilin D (CypD) is a key protein that regulates mitochondrial permeability transition pore (mPTP) opening. (2) Methods: In this study, we found that EGCG directly binds to CypD and this interaction was investigated by surface plasmon resonance (SPR), nuclear magnetic resonance (NMR) and molecular dynamic (MD) simulation. (3) Results: SPR showed an affinity of 2.7 × 10−5 M. The binding sites of EGCG on CypD were mapped to three regions by 2D NMR titration, which are Region 1 (E23-V29), Region 2 (T89-G104) and Region 3 (G124-I133). Molecular docking showed binding interface consistent with 2D NMR titration. MD simulations revealed that at least two conformations of EGCG-CypD complex exist, one with E23, D27, L90 and V93 as the most contributed residues and E23, L5 and I133 for the other. The major driven force for EGCG-CypD binding are Van der Waals and electrostatic interactions. (4) Conclusions: These results provide the structural basis for EGCG-CypD interaction, which might be a potential mechanism of how EGCG protects mitochondrial functions. Full article
(This article belongs to the Special Issue Biomolecules Interactions with Small Molecules)
Show Figures

Figure 1

20 pages, 2959 KB  
Article
Restoration of Mitochondrial Function Is Essential in the Endothelium-Dependent Vasodilation Induced by Acacetin in Hypertensive Rats
by Yuan Li, Qingya Dang, Zhiyi Li, Chuting Han, Yan Yang, Miaoling Li and Pengyun Li
Int. J. Mol. Sci. 2022, 23(19), 11350; https://doi.org/10.3390/ijms231911350 - 26 Sep 2022
Cited by 15 | Viewed by 3017
Abstract
Mitochondrial dysfunction in the endothelium contributes to the progression of hypertension and plays an obligatory role in modulating vascular tone. Acacetin is a natural flavonoid compound that has been shown to possess multiple beneficial effects, including vasodilatation. However, whether acacetin could improve endothelial [...] Read more.
Mitochondrial dysfunction in the endothelium contributes to the progression of hypertension and plays an obligatory role in modulating vascular tone. Acacetin is a natural flavonoid compound that has been shown to possess multiple beneficial effects, including vasodilatation. However, whether acacetin could improve endothelial function in hypertension by protecting against mitochondria-dependent apoptosis remains to be determined. The mean arterial pressure (MAP) in Wistar Kyoto (WKY) rats, spontaneously hypertensive rats (SHR) administered with acacetin intraperitoneally for 2 h or intragastrically for six weeks were examined. The endothelial injury was evaluated by immunofluorescent staining and a transmission electron microscope (TEM). Vascular tension measurement was performed to assess the protective effect of acacetin on mesenteric arteries. Endothelial injury in the pathogenesis of SHR was modeled in HUVECs treated with Angiotensin II (Ang II). Mitochondria-dependent apoptosis, the opening of Mitochondrial Permeability Transition Pore (mPTP) and mitochondrial dynamics proteins were determined by fluorescence activated cell sorting (FACS), immunofluorescence staining and western blot. Acacetin administered intraperitoneally greatly reduced MAP in SHR by mediating a more pronounced endothelium-dependent dilatation in mesenteric arteries, and the vascular dilatation was reduced remarkably by NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NO synthesis. While acacetin administered intragastrically for six weeks had no apparent effect on MAP, it improved the endothelium-dependent dilatation in SHR by activating the AKT/eNOS pathway and protecting against the abnormalities of endothelium and mitochondria. Furthermore, acacetin remarkably inhibited Ang II induced apoptosis by inhibiting the increased expression of Cyclophilin D (CypD), promoted the opening of mPTP, ROS generation, ATP loss and disturbance of dynamin-related protein 1 (DRP1)/optic atrophy1 (OPA1) dynamics in HUVECs. This study suggests that acacetin protected against endothelial dysfunction in hypertension by activating the AKT/eNOS pathway and modulating mitochondrial function by targeting mPTP and DRP1/OPA1-dependent dynamics. Full article
(This article belongs to the Special Issue Advanced Research in Cardiopulmonary Injury)
Show Figures

Figure 1

16 pages, 2246 KB  
Article
Remodeling of Liver and Plasma Lipidomes in Mice Lacking Cyclophilin D
by Balazs Koszegi, Gabor Balogh, Zoltan Berente, Anett Vranesics, Edit Pollak, Laszlo Molnar, Aniko Takatsy, Viktoria Poor, Matyas Wahr, Csenge Antus, Krisztian Eros, Laszlo Vigh, Ferenc Gallyas, Maria Peter and Balazs Veres
Int. J. Mol. Sci. 2022, 23(19), 11274; https://doi.org/10.3390/ijms231911274 - 24 Sep 2022
Viewed by 2533
Abstract
In recent years, several studies aimed to investigate the metabolic effects of non-functioning or absent cyclophilin D (CypD), a crucial regulatory component of mitochondrial permeability transition pores. It has been reported that the lack of CypD affects glucose and lipid metabolism. However, the [...] Read more.
In recent years, several studies aimed to investigate the metabolic effects of non-functioning or absent cyclophilin D (CypD), a crucial regulatory component of mitochondrial permeability transition pores. It has been reported that the lack of CypD affects glucose and lipid metabolism. However, the findings are controversial regarding the metabolic pathways involved, and most reports describe the effect of a high-fat diet on metabolism. We performed a lipidomic analysis of plasma and liver samples of CypD-/- and wild-type (WT) mice to reveal the lipid-specific alterations resulting from the absence of CypD. In the CypD-/- mice compared to the WT animals, we found a significant change in 52% and 47% of the measured 225 and 201 lipid species in liver and plasma samples, respectively. The higher total lipid content detected in these tissues was not accompanied by abdominal fat accumulation assessed by nuclear magnetic resonance imaging. We also documented characteristic changes in the lipid composition of the liver and plasma as a result of CypD ablation with the relative increase in polyunsaturated membrane lipid species. In addition, we did not observe remarkable differences in the lipid distribution of hepatocytes using histochemistry, but we found characteristic changes in the hepatocyte ultrastructure in CypD-/- animals using electron microscopy. Our results highlight the possible long-term effects of CypD inhibition as a novel therapeutic consideration for various diseases. Full article
(This article belongs to the Special Issue Mitochondrial Function and Communication 2.0)
Show Figures

Figure 1

10 pages, 2035 KB  
Article
Disease Outcome and Brain Metabolomics of Cyclophilin-D Knockout Mice in Sepsis
by Takayuki Kobayashi, Hiroyuki Uchino, Eskil Elmér, Yukihiko Ogihara, Hidetoshi Fujita, Shusuke Sekine, Yusuke Ishida, Iwao Saiki, Shoichiro Shibata and Aya Kawachi
Int. J. Mol. Sci. 2022, 23(2), 961; https://doi.org/10.3390/ijms23020961 - 16 Jan 2022
Cited by 19 | Viewed by 3493
Abstract
Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction resulting from a systemic inflammatory response to infection, but the mechanism remains unclear. The mitochondrial permeability transition pore (MPTP) could play a central role in the neuronal dysfunction, induction of apoptosis, and cell death in [...] Read more.
Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction resulting from a systemic inflammatory response to infection, but the mechanism remains unclear. The mitochondrial permeability transition pore (MPTP) could play a central role in the neuronal dysfunction, induction of apoptosis, and cell death in SAE. The mitochondrial isomerase cyclophilin D (CypD) is known to control the sensitivity of MPTP induction. We, therefore, established a cecal ligation and puncture (CLP) model, which is the gold standard in sepsis research, using CypD knockout (CypD KO) mice, and analyzed the disease phenotype and the possible molecular mechanism of SAE through metabolomic analyses of brain tissue. A comparison of adult, male wild-type, and CypD KO mice demonstrated statistically significant differences in body temperature, mortality, and histological changes. In the metabolomic analysis, the main finding was the maintenance of reduced glutathione (GSH) levels and the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio in the KO animals following CLP. In conclusion, we demonstrate that CypD is implicated in the pathogenesis of SAE, possibly related to the inhibition of MPTP induction and, as a consequence, the decreased production of ROS and other free radicals, thereby protecting mitochondrial and cellular function. Full article
(This article belongs to the Special Issue Mitochondria-Targeted Approaches in Health and Disease 2.0)
Show Figures

Figure 1

14 pages, 2803 KB  
Article
Ginsenoside Rg3 Attenuates TNF-α-Induced Damage in Chondrocytes through Regulating SIRT1-Mediated Anti-Apoptotic and Anti-Inflammatory Mechanisms
by Ching-Hou Ma, Wan-Ching Chou, Chin-Hsien Wu, I-Ming Jou, Yuan-Kun Tu, Pei-Ling Hsieh and Kun-Ling Tsai
Antioxidants 2021, 10(12), 1972; https://doi.org/10.3390/antiox10121972 - 10 Dec 2021
Cited by 37 | Viewed by 4976
Abstract
The upregulation of tumor necrosis factor-alpha (TNF-α) is a common event in arthritis, and the subsequent signaling cascade that leads to tissue damage has become the research focus. To explore a potential therapeutic strategy to prevent cartilage degradation, we tested the effect of [...] Read more.
The upregulation of tumor necrosis factor-alpha (TNF-α) is a common event in arthritis, and the subsequent signaling cascade that leads to tissue damage has become the research focus. To explore a potential therapeutic strategy to prevent cartilage degradation, we tested the effect of ginsenoside Rg3, a bioactive component of Panax ginseng, on TNF-α-stimulated chondrocytes.TC28a2 Human Chondrocytes were treated with TNF-α to induce damage of chondrocytes. SIRT1 and PGC-1a expression levels were investigated by Western blotting assay. Mitochondrial SIRT3 and acetylated Cyclophilin D (CypD) were investigated using mitochondrial isolation. The mitochondrial mass number and mitochondrial DNA copy were studied for mitochondrial biogenesis. MitoSOX and JC-1 were used for the investigation of mitochondrial ROS and membrane potential. Apoptotic markers, pro-inflammatory events were also tested to prove the protective effects of Rg3. We showed Rg3 reversed the TNF-α-inhibited SIRT1 expression. Moreover, the activation of the SIRT1/PGC-1α/SIRT3 pathway by Rg3 suppressed the TNF-α-induced acetylation of CypD, resulting in less mitochondrial dysfunction and accumulation of reactive oxygen species (ROS). Additionally, we demonstrated that the reduction of ROS ameliorated the TNF-α-elicited apoptosis. Furthermore, the Rg3-reverted SIRT1/PGC-1α/SIRT3 activation mediated the repression of p38 MAPK, which downregulated the NF-κB translocation in the TNF-α-treated cells. Our results revealed that administration of Rg3 diminished the production of interleukin 8 (IL-8) and matrix metallopeptidase 9 (MMP-9) in chondrocytes via SIRT1/PGC-1α/SIRT3/p38 MAPK/NF-κB signaling in response to TNF-α stimulation. Taken together, we showed that Rg3 may serve as an adjunct therapy for patients with arthritis. Full article
(This article belongs to the Special Issue Antioxidant Potential of Extracts from Foods and Plants)
Show Figures

Figure 1

Back to TopTop