Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = cyclopentadienyl compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1390 KiB  
Article
Laser-Powered Homogeneous Pyrolysis (LPHP) of Lignin Dispersed into Gas Phase
by Mohamad Barekati-Goudarzi, Lavrent Khachatryan, Rubik Asatryan, Dorin Boldor and Bert C. Lynn
Molecules 2025, 30(10), 2215; https://doi.org/10.3390/molecules30102215 - 19 May 2025
Viewed by 380
Abstract
The gas-phase delivery of lignin into the hot zone of cw-CO2 laser-powered homogeneous pyrolysis (LPHP) reactor under “wall-less” conditions led to the breakdown of lignin macromolecules into neutral oligomers and paramagnetic fragments deposited onto the reactor cell walls. The formation of PAHs [...] Read more.
The gas-phase delivery of lignin into the hot zone of cw-CO2 laser-powered homogeneous pyrolysis (LPHP) reactor under “wall-less” conditions led to the breakdown of lignin macromolecules into neutral oligomers and paramagnetic fragments deposited onto the reactor cell walls. The formation of PAHs was observed during the defragmentation of lignin, accelerated with increased laser power. Remarkably, no phenolic compounds were detected among lignin fragments—intermediate radicals and neutral oligomers. It is concluded that the PAH and soot-like conjugated particulates are formed in the hot zone of the LPHP reactor, resembling the high-temperature combustion processes. The key role of the resonantly stabilized radicals in the formation of low-molecular-weight PAHs is outlined. An alternative pathway is proposed for the generation of PAH involving the formation of cyclopentadienyl radical precursors (CPDa) that are adsorbed onto or trapped within lignin macromolecules. Full article
(This article belongs to the Special Issue Advances in Polymer Materials Based on Lignocellulosic Biomass)
Show Figures

Figure 1

11 pages, 21344 KiB  
Article
Fully Conjugated Heteroatomic Non- and Quasi-Alternant Polyradicals
by Sergi Betkhoshvili, Jordi Poater, Ibério de P. R. Moreira and Josep Maria Bofill
Chemistry 2025, 7(2), 45; https://doi.org/10.3390/chemistry7020045 - 18 Mar 2025
Viewed by 695
Abstract
In this work, we present fully π-conjugated diradical(oid)s and tetraradical(oid)s with five-membered non-alternant cyclopentadienyl and quasi-alternant thiophene rings, the latter of which is used as a source of aromatic stabilization. By controlling the topology of the π-systems, we can restrict the [...] Read more.
In this work, we present fully π-conjugated diradical(oid)s and tetraradical(oid)s with five-membered non-alternant cyclopentadienyl and quasi-alternant thiophene rings, the latter of which is used as a source of aromatic stabilization. By controlling the topology of the π-systems, we can restrict the lower-bound number of unpaired electrons. Aromaticity and/or antiaromaticity in the different configurations of the compounds can be used to design conjugated compounds with high open-shell characters. We also designed the diradical(oid) based only on the five-membered rings, without any terminal radical groups. This work exemplifies the application of our theory of rational design of polyradicals to heteroatomic and non/quasi-alternant organic systems. The ability to create polyradicals with different classes of organic compounds establishes the possibility of creating multifunctional organic materials with tunable magnetic properties. Full article
Show Figures

Graphical abstract

13 pages, 1922 KiB  
Article
Ruthenium Decorated Tris-Silylated Germanium Zintl Clusters Featuring an Unexpected Ligand Arrangement
by Nicole S. Willeit, Viktor Hlukhyy and Thomas F. Fässler
Molecules 2025, 30(6), 1247; https://doi.org/10.3390/molecules30061247 - 11 Mar 2025
Viewed by 797
Abstract
The incorporation of transition metal atoms into [Ge9] clusters is a widely studied area of Zintl-cluster chemistry. Recently, it was shown that clusters comprising single transition metal atoms in the cluster surface show catalytic properties. Here, we present a synthetic [...] Read more.
The incorporation of transition metal atoms into [Ge9] clusters is a widely studied area of Zintl-cluster chemistry. Recently, it was shown that clusters comprising single transition metal atoms in the cluster surface show catalytic properties. Here, we present a synthetic approach to four new compounds comprising silylated Ge9 clusters with organometallic ruthenium complexes. [η5-Ge9Hyp3]RuCp* (1), [η1-Ge9(SitBu2H)3]RuCp(PPh3)2 (2), and [Hyp3Ge9][RuCp(PPh3)2(MeCN)] (3b) (Cp = cyclopentadienyl, Cp* = pentamethylcyclopentadienyl, Hyp = Si(SiMe3)3, Ph = C6H5, tBu = tert-butyl) were characterized by means of NMR spectroscopy and single-crystal structure determination. In the case of 2, a new isomer with an approximated C4v symmetric monocapped square antiprism of nine Ge atoms with an unexpected ligand arrangement comprising three ditertbutylsilane ligands attached to the open square was obtained. [Hyp3Ge9][RuCp(PPh3)2] (3a) was characterized via NMR spectroscopy and LIFDI mass spectrometry. Overall, we were able to show that the steric demand of the ligands Cp vs. Cp* and hypersilylchloride vs. ditertbutylsilane strongly influence the arrangement of the atoms and ligands on the cluster. In addition, the solvent also affects the cluster, as it appears that the ruthenium atom in 3a dissociates from the cluster surface upon acetonitrile coordination to form 3b. These results show that choosing the right synthetic tools and ligands makes a big difference in the outcome of the metalation reaction. Full article
Show Figures

Graphical abstract

20 pages, 4000 KiB  
Article
Studies Toward Persilylation of π-Cyclopentadienyl Complexes of Fe and Ru. Molecular Structures of [Fe(C5H5){C5(SiMe2H)5}], [Fe(C5H5){C5Br3(SiMe3)2}] and [Fe(C5H5){C5Br2(SiMe3)3}]
by Stefanie Bernhartzeder, Tobias Blockhaus, Markus Lang and Karlheinz Sünkel
Inorganics 2025, 13(2), 42; https://doi.org/10.3390/inorganics13020042 - 1 Feb 2025
Viewed by 658
Abstract
Increasing the number of SiMe3 substituents on a cyclopentadienyl ring has, in addition to a stabilizing effect of unusual coordination geometries and oxidation states, the effect of increasing the solubility in unpolar solvents and increasing the volatility. Starting from pentabromoferrocene and pentabromo(pentamethyl)ruthenocene, [...] Read more.
Increasing the number of SiMe3 substituents on a cyclopentadienyl ring has, in addition to a stabilizing effect of unusual coordination geometries and oxidation states, the effect of increasing the solubility in unpolar solvents and increasing the volatility. Starting from pentabromoferrocene and pentabromo(pentamethyl)ruthenocene, we could achieve the introduction of up to five silyl (SiMe2H or SiMe3) groups to give [Fe(C5H5){C5(SiMe2R)5}], R = H, Me, and [Ru(C5Me5){C5(SiMe2H)5}]. However, yields were very low, and nearly all intermediate steps afforded mixtures of similar silyl-substituted compounds, which were difficult to separate. The crystal structures of [Fe(C5H5){C5(SiMe2H)5}] (13a), [Fe(C5H5){C5Br3(SiMe3)2}] (4b), and [Fe(C5H5){C5Br2(SiMe3)3}] (8b) were determined. Full article
(This article belongs to the Special Issue State-of-the-Art Inorganic Chemistry in Germany)
Show Figures

Figure 1

13 pages, 6257 KiB  
Article
Synthesis of Electrocatalytic Tungsten Carbide Nanoparticles by High-Pressure and High-Temperature Treatment of Organotungsten Compounds
by Taijiro Tadokoro, Sota Sato, Ichiro Yamane, Hiroki Waizumi, Seiya Yokokura and Toshihiro Shimada
Nanomaterials 2025, 15(3), 170; https://doi.org/10.3390/nano15030170 - 23 Jan 2025
Viewed by 1076
Abstract
Metal–organic framework (MOF)-derived carbon, which contains metal nanoparticles embedded in a carbon matrix, is becoming an important group of catalysts. We report the synthesis of tungsten carbide–carbon nanocomposites using a similar concept, i.e., by pyrolysis of organotungsten compounds under high-temperature and high-pressure conditions. [...] Read more.
Metal–organic framework (MOF)-derived carbon, which contains metal nanoparticles embedded in a carbon matrix, is becoming an important group of catalysts. We report the synthesis of tungsten carbide–carbon nanocomposites using a similar concept, i.e., by pyrolysis of organotungsten compounds under high-temperature and high-pressure conditions. We characterized the product using various analytical techniques and examined its electrocatalytic activity. Two precursors, Bis(cyclopentadienyl)tungsten (IV) dichloride (Cp2WCl2) and Bis(cyclopentadienyl)tungsten (IV) dihydride (Cp2WH2) were pyrolyzed at 4.5 GPa and 600 °C. Tungsten carbide (β-WC1−x) crystals with a size of 2 nm embedded in graphitic carbon were formed from Cp2WH2-derived samples. Electrochemical measurements showed that all samples were active in the oxygen reduction reaction (ORR), with the Cp2WH2-derived sample having the best catalytic performance. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

13 pages, 1566 KiB  
Article
Synthesis and Evaluation of Cytotoxic Activity of RuCp(II) Complexes Bearing (Iso)nicotinic Acid Based Ligands
by Bárbara Marques, Diogo M. Engrácia, João Franco Machado, Jaime A. S. Coelho, Filipa Mendes and Tânia S. Morais
Pharmaceuticals 2025, 18(1), 97; https://doi.org/10.3390/ph18010097 - 14 Jan 2025
Viewed by 1271
Abstract
Background/Objectives: Cancer remains one of the major challenges of our century. Organometallic ruthenium complexes are gaining recognition as a highly promising group of compounds in the development of cancer treatments. Methods: Building on the auspicious results obtained for [Ru(η5-C5H [...] Read more.
Background/Objectives: Cancer remains one of the major challenges of our century. Organometallic ruthenium complexes are gaining recognition as a highly promising group of compounds in the development of cancer treatments. Methods: Building on the auspicious results obtained for [Ru(η5-C5H5)(PPh3)(bipy)][CF3SO3] (TM34), our focus has shifted to examining the effects of incorporating bioactive ligands into the TM34 framework, particularly within the cyclopentadienyl ring. Results: In this study, we report the synthesis and characterization of two new ruthenium(II) complexes with the general formula [Ru(η5-C5H4CCH3=R)(PPh3)(bipy)][CF3SO3], where R represents a nicotinic acid derivative (NNHCO(py-3-yl)) (1) or an isoniazid derivative (NNHCO(py-4-yl)) (2). The complexes were fully characterized using a combination of spectroscopic techniques and computational analysis, revealing the presence of E/Z-hydrazone isomerism. Stability studies confirmed the robustness of both complexes in biological media, with compound 1 maintaining good stability in buffer solutions mimicking physiological (pH 7.4) and tumor-like (pH 6.8) environments. The cytotoxicity of the complexes was evaluated in vitro in several human cancer cell lines, namely melanoma (A375), alveolar adenocarcinoma (A549), epidermoid carcinoma (A431), and breast cancer (MDA-MB 231). Conclusions: Both compounds exhibited moderate to high cytotoxic activity, with complex 1 showing a greater propensity to induce cell death, particularly in the A431 and MDA-MB 231 cell lines. Full article
Show Figures

Graphical abstract

20 pages, 6482 KiB  
Review
Ansa–Ferrocene Derivatives as Potential Therapeutics
by Marcin Cybulski, Olga Michalak, Włodzimierz Buchowicz and Maria Mazur
Molecules 2024, 29(20), 4903; https://doi.org/10.3390/molecules29204903 - 16 Oct 2024
Cited by 8 | Viewed by 1997
Abstract
It has been known since the 1990s that the introduction of a ferrocenyl–type substituent into compounds with proven biological activity can improve their properties. More recently, it was also shown that a carbon bridge connecting the two cyclopentadienyl rings in ferrocene derivatives could [...] Read more.
It has been known since the 1990s that the introduction of a ferrocenyl–type substituent into compounds with proven biological activity can improve their properties. More recently, it was also shown that a carbon bridge connecting the two cyclopentadienyl rings in ferrocene derivatives could enhance the biological properties of the new compounds compared to those without them. However, the synthesis of ferrocenes with this additional linker, known as ansa–ferrocenes, is more difficult due to advanced synthetic protocols and the phenomenon of planar chirality in ring–substituted compounds. As a result, research into the formation of hybrids, conjugates and other ansa–ferrocene derivatives has not been widely conducted. This review discusses the potential biological properties of these units, covering scientific articles published between 1980 and 2024. Full article
Show Figures

Graphical abstract

17 pages, 3948 KiB  
Article
Thionitrosyl Complexes of Rhenium and Technetium with PPh3 and Chelating Ligands—Synthesis and Reactivity
by Domenik Nowak, Adelheid Hagenbach, Till Erik Sawallisch and Ulrich Abram
Inorganics 2024, 12(8), 210; https://doi.org/10.3390/inorganics12080210 - 31 Jul 2024
Cited by 3 | Viewed by 1816
Abstract
In contrast to corresponding nitrosyl compounds, thionitrosyl complexes of rhenium and technetium are rare. Synthetic access to the thionitrosyl core is possible by two main approaches: (i) the treatment of corresponding nitrido complexes with S2Cl2 and (ii) by reaction of [...] Read more.
In contrast to corresponding nitrosyl compounds, thionitrosyl complexes of rhenium and technetium are rare. Synthetic access to the thionitrosyl core is possible by two main approaches: (i) the treatment of corresponding nitrido complexes with S2Cl2 and (ii) by reaction of halide complexes with trithiazyl chloride. The first synthetic route was applied for the synthesis of novel rhenium and technetium thionitrosyls with the metals in their oxidation states “+1” and “+2”. [MVNCl2(PPh3)2], [MVNCl(PPh3)(LOMe)] and [MVINCl2(LOMe)] (M = Re, Tc; {LOMe} = (η5-cyclopentadienyl)tris(dimethyl phosphito-P)cobaltate(III)) complexes have been used as starting materials for the synthesis of [ReII(NS)Cl3(PPh3)2] (1), [ReII(NS)Cl3(PPh3)(OPPh3)] (2), [ReII(NS)Cl(PPh3)(LOMe)]+ (4a), [ReII(NS)Cl2(LOMe)] (5a), [TcII(NS)Cl(PPh3)(LOMe)]+ (4b) and [TcII(NS)Cl2(LOMe)] (5b). The triphenylphosphine complex 1 is partially suitable as a precursor for ongoing ligand exchange reactions and has been used for the synthesis of [ReI(NS)(PPh3)(Et2btu)2] (3a) (HEt2btu = N,N-diethyl-N′-benzoyl thiourea) containing two chelating benzoyl thioureato ligands. The novel compounds have been isolated in crystalline form and studied by X-ray diffraction and spectroscopic methods including IR, NMR and EPR spectroscopy and (where possible) mass spectrometry. A comparison of structurally related rhenium and technetium complexes allows for conclusions about similarities and differences in stability, reaction kinetics and redox behavior between these 4d and 5d transition metals. Full article
(This article belongs to the Special Issue Metal Complexes Diversity: Synthesis, Conformations, and Bioactivity)
Show Figures

Graphical abstract

25 pages, 4149 KiB  
Article
[Tc(NO)(Cp)(PPh3)Cl] and [Tc(NO)(Cp)(PPh3)(NCCH3)](PF6), and Their Reactions with Pyridine and Chalcogen Donors
by Moritz Johannes Ernst, Abdullah Abdulkader, Adelheid Hagenbach, Guilhem Claude, Maximilian Roca Jungfer and Ulrich Abram
Molecules 2024, 29(5), 1114; https://doi.org/10.3390/molecules29051114 - 1 Mar 2024
Cited by 4 | Viewed by 2000
Abstract
Reactions of the technetium(I) nitrosyl complex [Tc(NO)(Cp)(PPh3)Cl] with triphenylphosphine chalcogenides EPPh3 (E = O, S, Se), and Ag(PF6) in a CH2Cl2/MeOH mixture (v/v, 2/1) result in an exchange of the [...] Read more.
Reactions of the technetium(I) nitrosyl complex [Tc(NO)(Cp)(PPh3)Cl] with triphenylphosphine chalcogenides EPPh3 (E = O, S, Se), and Ag(PF6) in a CH2Cl2/MeOH mixture (v/v, 2/1) result in an exchange of the chlorido ligand and the formation of [Tc(NO)(Cp)(PPh3)(EPPh3)](PF6) compounds. The cationic acetonitrile complex [Tc(NO)(Cp)(PPh3)(NCCH3)]+ is formed when the reaction is conducted in NCCH3 without additional ligands. During the isolation of the corresponding PF6 salt a gradual decomposition of the anion was detected in the solvent mixture applied. The yields and the purity of the product increase when the BF4 salt is used instead. The acetonitrile ligand is bound remarkably strongly to technetium and exchange reactions readily proceed only with strong donors, such as pyridine or ligands with ‘soft’ donor atoms, such as the thioether thioxane. Substitutions on the cyclopentadienyl ring do not significantly influence the ligand exchange behavior of the starting material. 99Tc NMR spectroscopy is a valuable tool for the evaluation of reactions of the complexes of the present study. The extremely large chemical shift range of this method allows the ready detection of corresponding ligand exchange reactions. The observed 99Tc chemical shifts depend on the donor properties of the ligands. DFT calculations support the discussions about the experimental results and provide explanations for some of the unusual findings. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

11 pages, 1974 KiB  
Article
Ammonium and Phosphonium Salts Containing Monoanionic Iron(II) Half-Sandwich Complexes [Fe(η5-Cp*)X2] (X = Cl − I)
by Julian Zinke, Clemens Bruhn and Ulrich Siemeling
Inorganics 2023, 11(11), 437; https://doi.org/10.3390/inorganics11110437 - 17 Nov 2023
Cited by 1 | Viewed by 1901
Abstract
Half-sandwich iron(II) dihalido complexes of the type [Fe(η5-Cp’)X2] (Cp’ = C5H5 or substituted cyclopentadienyl) which are thermally stable at room temperature are extremely scarce, being limited to congeners containing the bulky C5H2 [...] Read more.
Half-sandwich iron(II) dihalido complexes of the type [Fe(η5-Cp’)X2] (Cp’ = C5H5 or substituted cyclopentadienyl) which are thermally stable at room temperature are extremely scarce, being limited to congeners containing the bulky C5H2-1,2,4-tBu3 ligand. We extended this to homologues [Fe(η5-Cp*)X2] (X = Cl, Br, I) containing the particularly popular C5Me5 (Cp*) ligand. Corresponding ionic compounds ER4[Fe(η5-Cp*)X2] are easily accessible from FeX2, MCp* (M = Li, K) and a suitable halide source R4EX (E = N, P) in THF. Despite their high sensitivity towards air and moisture, the new compounds NnPr4[Fe(η5-Cp*)X2] (X = Cl, Br), NnPr4[Fe(η5-Cp*)BrCl], and PPh4[Fe(η5-Cp*)X2] (X = Cl, Br, I) were structurally characterised using single-crystal X-ray diffraction. NnPr4[Fe(η5-Cp*)Cl2] reacts readily with CO to afford [Fe(η5-Cp*)Cl(CO)2], indicating the synthetic potential of ER4[Fe(η5-Cp*)X2] in FeCp* half-sandwich chemistry. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Organometallic Chemistry)
Show Figures

Graphical abstract

10 pages, 4841 KiB  
Article
Palladium-Catalyzed Cross-Coupling Reaction of Bis(cyclopentadienyl)diaryltitaniums with Terminal Alkynes
by Yuki Murata, Yuya Nishi, Mio Matsumura and Shuji Yasuike
Reactions 2023, 4(4), 657-666; https://doi.org/10.3390/reactions4040037 - 19 Oct 2023
Viewed by 3146
Abstract
Organotitanium compounds find application in diverse reactions, including carbon–carbon bond formation and oxidation. While titanium (IV) compounds have been used in various applications, the potential of bis(cyclopentadienyl)diaryltitanium in cross-coupling reactions remains unexplored. This study focuses on Sonogashira-type cross-coupling reactions involving terminal alkynes and [...] Read more.
Organotitanium compounds find application in diverse reactions, including carbon–carbon bond formation and oxidation. While titanium (IV) compounds have been used in various applications, the potential of bis(cyclopentadienyl)diaryltitanium in cross-coupling reactions remains unexplored. This study focuses on Sonogashira-type cross-coupling reactions involving terminal alkynes and organotitanium compounds. Diaryltitanocenes were synthesized using titanocene dichloride with lithium intermediates derived from aryl iodide. Under open-flask conditions, reactions of diphenyltitanocenes with ethynylbenzene in the presence of 20 mol% Pd(OAc)2 in DMF produced coupling products in a remarkable 99% yield. Various diaryltitanocenes and alkynes under standard conditions yielded corresponding cross-coupling products with moderate to good yields. Notably, the Sonogashira-type alkynylation proceeds under mild conditions, including open-flask conditions, and without the need for a base. Furthermore, this cross-coupling is atom-economical and involves the active participation of both aryl groups of the diaryltitanocene. Remarkably, this study presents the first example of a Sonogashira-type cross-coupling using titanium compounds as pseudo-halides. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2023)
Show Figures

Figure 1

32 pages, 13058 KiB  
Article
New Ruthenium-Cyclopentadienyl Complexes Affect Colorectal Cancer Hallmarks Showing High Therapeutic Potential
by Ana Rita Brás, Pedro Fernandes, Tiago Moreira, Julia Morales-Sanfrutos, Eduard Sabidó, Alexandra M. M. Antunes, Andreia Valente and Ana Preto
Pharmaceutics 2023, 15(6), 1731; https://doi.org/10.3390/pharmaceutics15061731 - 14 Jun 2023
Cited by 6 | Viewed by 2341
Abstract
Colorectal cancer (CRC) is among the most deadly cancers worldwide. Current therapeutic strategies have low success rates and several side effects. This relevant clinical problem requires the discovery of new and more effective therapeutic alternatives. Ruthenium drugs have arisen as one of the [...] Read more.
Colorectal cancer (CRC) is among the most deadly cancers worldwide. Current therapeutic strategies have low success rates and several side effects. This relevant clinical problem requires the discovery of new and more effective therapeutic alternatives. Ruthenium drugs have arisen as one of the most promising metallodrugs, due to their high selectivity to cancer cells. In this work we studied, for the first time, the anticancer properties and mechanisms of action of four lead Ru-cyclopentadienyl compounds, namely PMC79, PMC78, LCR134 and LCR220, in two CRC-derived cell lines (SW480 and RKO). Biological assays were performed on these CRC cell lines to evaluate cellular distribution, colony formation, cell cycle, proliferation, apoptosis, and motility, as well as cytoskeleton and mitochondrial alterations. Our results show that all the compounds displayed high bioactivity and selectivity, as shown by low half-maximal inhibitory concentrations (IC50) against CRC cells. We observed that all the Ru compounds have different intracellular distributions. In addition, they inhibit to a high extent the proliferation of CRC cells by decreasing clonogenic ability and inducing cell cycle arrest. PMC79, LCR134, and LCR220 also induce apoptosis, increase the levels of reactive oxygen species, lead to mitochondrial dysfunction, induce actin cytoskeleton alterations, and inhibit cellular motility. A proteomic study revealed that these compounds cause modifications in several cellular proteins associated with the phenotypic alterations observed. Overall, we demonstrate that Ru compounds, especially PMC79 and LCR220, display promising anticancer activity in CRC cells with a high potential to be used as new metallodrugs for CRC therapy. Full article
(This article belongs to the Special Issue Novel Anticancer Strategies, 3rd Edition)
Show Figures

Graphical abstract

12 pages, 5641 KiB  
Article
Central-to-Helical-to-Axial Chirality Transfer in Chiroptical Sensing with Ferrocene Chromophore
by Marko Nuskol, Petar Šutalo, Monika Kovačević, Ivan Kodrin and Mojca Čakić Semenčić
Inorganics 2023, 11(6), 225; https://doi.org/10.3390/inorganics11060225 - 24 May 2023
Cited by 2 | Viewed by 1944
Abstract
The effect of attaching the achiral, cyclic 1-aminocyclohexanecarboxylic acid (Ac6c) directly to the aminoferrocene unit (Ac6c−NH−Fc) appears to be a promising route for the development of a new chiroptical sensor based on a ferrocene chromophore. Three new compounds (Boc−AA−Ac6c−NH−Fc; AA = L-Ala, L-Val, [...] Read more.
The effect of attaching the achiral, cyclic 1-aminocyclohexanecarboxylic acid (Ac6c) directly to the aminoferrocene unit (Ac6c−NH−Fc) appears to be a promising route for the development of a new chiroptical sensor based on a ferrocene chromophore. Three new compounds (Boc−AA−Ac6c−NH−Fc; AA = L-Ala, L-Val, L-Phe) were synthesized, spectroscopically characterized (IR, NMR, CD), and conformationally analyzed (DFT). The chiral information was transferred from the L-amino acid to the ferrocene chromophore by the predominant formation of P-helical structures with ten-membered hydrogen-bonded rings (β-turns). The perturbation of the ferrocene chromophore and the appearance of the negative CD signal near 470 nm originates from a relative orientation of the directly linked amide and cyclopentadienyl planes, described by the dihedral angle χ. The sterically demanding Ac6c amino acid makes trans-like configurations more favorable and thus restricts the dihedral angle χ, which then leads to the appearance of the negative peak near 470 nm in the CD curve. Full article
(This article belongs to the Special Issue Research on Ferrocene and Ferrocene-Containing Compounds)
Show Figures

Graphical abstract

14 pages, 2401 KiB  
Article
Ferrocenophanium Stability and Catalysis
by Sai Anvesh Bezawada, Neira Ušto, Chloe Wilke, Michael Barnes-Flaspoler, Rajamoni Jagan and Eike B. Bauer
Molecules 2023, 28(6), 2729; https://doi.org/10.3390/molecules28062729 - 17 Mar 2023
Cited by 1 | Viewed by 3153
Abstract
Ferrocenium catalysis is a vibrant research area, and an increasing number of ferrocenium-catalyzed processes have been reported in the recent years. However, the ferrocenium cation is not very stable in solution, which may potentially hamper catalytic applications. In an effort to stabilize ferrocenium-type [...] Read more.
Ferrocenium catalysis is a vibrant research area, and an increasing number of ferrocenium-catalyzed processes have been reported in the recent years. However, the ferrocenium cation is not very stable in solution, which may potentially hamper catalytic applications. In an effort to stabilize ferrocenium-type architectures by inserting a bridge between the cyclopentadienyl rings, we investigated two ferrocenophanium (or ansa-ferrocenium) cations with respect to their stability and catalytic activity in propargylic substitution reactions. One of the ferrocenophanium complexes was characterized by single crystal X-ray diffraction. Cyclic voltammetry experiments of the ferrocenophane parent compounds were performed in the absence and presence of alcohol nucleophiles, and the stability of the cations in solution was judged based on the reversibility of the electron transfer. The experiments revealed a moderate stabilizing effect of the bridge, albeit the effect is not very pronounced or straightforward. Catalytic propargylic substitution test reactions revealed decreased activity of the ferrocenophanium cations compared to the ferrocenium cation. It appears that the somewhat stabilized ferrocenophanium cations show decreased catalytic activity. Full article
(This article belongs to the Topic Catalysis: Homogeneous and Heterogeneous)
Show Figures

Figure 1

13 pages, 2549 KiB  
Article
Sulphur vs NH Group: Effects on the CO2 Electroreduction Capability of Phenylenediamine-Cp Cobalt Complexes
by Nicola Melis, Francesca Mocci, Annalisa Vacca and Luca Pilia
Molecules 2023, 28(5), 2364; https://doi.org/10.3390/molecules28052364 - 4 Mar 2023
Cited by 2 | Viewed by 2177
Abstract
The cobalt complex (I) with cyclopentadienyl and 2-aminothiophenolate ligands was investigated as a homogeneous catalyst for electrochemical CO2 reduction. By comparing its behavior with an analogous complex with the phenylenediamine (II), the effect of sulfur atom as a [...] Read more.
The cobalt complex (I) with cyclopentadienyl and 2-aminothiophenolate ligands was investigated as a homogeneous catalyst for electrochemical CO2 reduction. By comparing its behavior with an analogous complex with the phenylenediamine (II), the effect of sulfur atom as a substituent has been evaluated. As a result, a positive shift of the reduction potential and the reversibility of the corresponding redox process have been observed, also suggesting a higher stability of the compound with sulfur. Under anhydrous conditions, complex I showed a higher current enhancement in the presence of CO2 (9.41) in comparison with II (4.12). Moreover, the presence of only one -NH group in I explained the difference in the observed increases on the catalytic activity toward CO2 due to the presence of water, with current enhancements of 22.73 and 24.40 for I and II, respectively. DFT calculations confirmed the effect of sulfur on the lowering of the energy of the frontier orbitals of I, highlighted by electrochemical measurements. Furthermore, the condensed Fukui function f values agreed very well with the current enhancement observed in the absence of water. Full article
(This article belongs to the Special Issue Metal Complexes for Optical and Electronics Applications)
Show Figures

Figure 1

Back to TopTop