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Abstract: Half-sandwich iron(II) dihalido complexes of the type [Fe(η5-Cp’)X2]− (Cp’ = C5H5

or substituted cyclopentadienyl) which are thermally stable at room temperature are extremely
scarce, being limited to congeners containing the bulky C5H2-1,2,4-tBu3 ligand. We extended this
to homologues [Fe(η5-Cp*)X2]− (X = Cl, Br, I) containing the particularly popular C5Me5 (Cp*)
ligand. Corresponding ionic compounds ER4[Fe(η5-Cp*)X2] are easily accessible from FeX2, MCp*
(M = Li, K) and a suitable halide source R4EX (E = N, P) in THF. Despite their high sensitivity towards
air and moisture, the new compounds NnPr4[Fe(η5-Cp*)X2] (X = Cl, Br), NnPr4[Fe(η5-Cp*)BrCl],
and PPh4[Fe(η5-Cp*)X2] (X = Cl, Br, I) were structurally characterised using single-crystal X-ray
diffraction. NnPr4[Fe(η5-Cp*)Cl2] reacts readily with CO to afford [Fe(η5-Cp*)Cl(CO)2], indicating
the synthetic potential of ER4[Fe(η5-Cp*)X2] in FeCp* half-sandwich chemistry.

Keywords: crystal structures; cyclopentadienyl complexes; half-sandwich complexes; halides; iron

1. Introduction

Half-sandwich iron(II) complexes of the type [Fe(η5-Cp’)X] (Cp’ = C5H5 or substi-
tuted cyclopentadienyl; X = Cl, Br, I) are useful as highly reactive cyclopentadienyliron(II)
transfer reagents, which, due to their thermal lability, are usually generated in situ at low
temperatures for immediate use [1]. Seminal work was published in 1985 by Kölle, who
described the generation of [Fe(η5-Cp*)Br] (Cp* = C5Me5) from LiCp* and [FeBr2(DME)]
in THF at −80 ◦C [2]. The corresponding chlorido complex [Fe(η5-Cp*)Cl], which suffers
from the same thermal lability, is particularly popular as a Cp*Fe+ source [3–10]. The
analogous complex containing the pentamethylcyclopentadienyl-related and O-donor-
functionalised ligand C5Me4[(CH)2(OCH2CH2)3OMe], whose oligoether chain is suitable
for intramolecular chelation, was reported to be thermally stable in THF solution up to
room temperature, although this complex could not be isolated [11]. In contrast to the
pronounced thermal lability of [Fe(η5-Cp*)Cl], its N,N,N’,N’-tetramethylethylenediamine
(TMEDA) chelate [Fe(η5-Cp*)Cl(TMEDA)] is perfectly stable at room temperature [12], and
the same holds true for the closely related complexes [Fe(η5-C5Me4Et)Cl(TMEDA)] [13]
and [Fe(η5-Cp*)Br(TMEDA)] [14]. Note that corresponding P,P-coordinated complexes
are generally more robust (but still not air-stable) and can be isolated even when con-
taining an unsubstituted cyclopentadienyl (Cp) ligand, typical examples being the 1,2-
bis(diphenylphosphanyl)ethane (DPPE) chelates [Fe(η5-Cp)X(DPPE)] (X = Cl, Br, I), which
were reported more than five decades ago [15,16]. Similar to the aforementioned TMEDA-
containing N,N-chelates, C,N-chelates [Fe(η5-Cp*)X(NHCN)] (X = Cl, I) containing N-
heterocyclic carbenes functionalised with an N-donor moiety (NHCN) have also been
described [17–19], and unchelated analogues [Fe(η5-Cp*)Cl(NHC)] proved sufficiently
stable for isolation with the standard NHC IMes and the bulkier 1,3-diisopropyl-4,5-
dimethylimidazolin-ylidene [20–22]. Stabilisation using external donors is not necessary for
isolation when extremely bulky Cp’ ligands [23–25] are applied, leading to “self-stabilised”
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halido-bridged dimers [{Fe(η5-Cp’)(µ-X)}2], according to single-crystal X-ray diffraction
(XRD) (Cp’ = C5iPr5, X = Br; Cp’ = C5HiPr4, X = Br, I; Cp’ = C5H2-1,2,4-tBu3, X = Br, I;
Cp’ = C5(p-C6H4Et)5, X = Br) [26–29]. Manners and Walter independently found that
[{Fe(η5-C5H2-1,2,4-tBu3)(µ-I)}2] undergoes heterolytic cleavage in toluene, affording [Fe(η5-
C5H2-1,2,4-tBu3)(C7H8)]+ and [Fe(η5-C5H2-1,2,4-tBu3)I2]− [30,31]. In the same vein, deag-
gregation of [{Fe(η5-C5H2-1,2,4-tBu3)(µ-I)}2] was achieved through reaction with NR4I
(R = Et, nBu), giving rise to the formation of NR4[Fe(η5-C5H2-1,2,4-tBu3)I2] [30,31]. The
only other closely related compound is [Fe(η5-C5H2-1,2,4-tBu3)(µ-Br)2Na(DME)2], which
Sitzmann obtained through serendipity and in trace amounts only in the preparation of
[{Fe(η5-C5H2-1,2,4-tBu3)(µ-Br)}2] from [FeBr2(DME)] and the corresponding sodium cy-
clopentadienide in DME [32]. This dinuclear complex might be viewed as a contact ion pair
[Na(DME)2][Fe(η5-C5H2-1,2,4-tBu3)Br2], thus exhibiting, cum grano salis, the [Fe(η5-C5H2-
1,2,4-tBu3)Br2]− anion. In view of the mature state of half-sandwich iron(II) chemistry [1],
the paucity of compounds containing simple anions of the type [Fe(η5-Cp’)X2]− is quite
surprising. Together with the enormous popularity of the Cp* ligand [25], this prompted
us to address the synthesis of compounds containing [Fe(η5-Cp*)X2]− (X = Cl, Br, I).

2. Results and Discussion

The synthesis of our target compounds (Scheme 1) was inspired by the work of
Manners and of Walter mentioned above [30,31].
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Scheme 1. Synthesis of the target compounds (X = Cl, Br, I; M = Li, K; ER4 = NnPr4, PPh4). 

The addition of NnPr4Cl (1 equiv.) to [Fe(η5-Cp*)Cl], generated in situ from LiCp* 
and FeCl2 in THF at low temperatures, afforded a green solution. LiCl precipitated 
through the addition of toluene and was subsequently removed through filtration. Storing 
of the filtrate at −40 °C afforded NnPr4[Fe(η5-Cp*)Cl2] as very air-sensitive green crystals 
with a 60% yield. The use of NnPr4Br instead of NnPr4Cl furnished NnPr4[Fe(η5-Cp*)BrCl] 
with a 39% yield. When KCp* was used instead of LiCp*, the yields were slightly lower 
(by ≤8%). Both compounds were structurally characterised using XRD. Their molecular 
structures are shown in Figures 1 and 2, and the pertinent metric parameters are collected 
in Table 1. Not surprisingly, the [Fe(η5-Cp*)BrCl]− anion exhibits a disorder of the halogen 
atoms. 

 

Scheme 1. Synthesis of the target compounds (X = Cl, Br, I; M = Li, K; ER4 = NnPr4, PPh4).

The addition of NnPr4Cl (1 equiv.) to [Fe(η5-Cp*)Cl], generated in situ from LiCp* and
FeCl2 in THF at low temperatures, afforded a green solution. LiCl precipitated through
the addition of toluene and was subsequently removed through filtration. Storing of the
filtrate at −40 ◦C afforded NnPr4[Fe(η5-Cp*)Cl2] as very air-sensitive green crystals with a
60% yield. The use of NnPr4Br instead of NnPr4Cl furnished NnPr4[Fe(η5-Cp*)BrCl] with a
39% yield. When KCp* was used instead of LiCp*, the yields were slightly lower (by ≤8%).
Both compounds were structurally characterised using XRD. Their molecular structures
are shown in Figures 1 and 2, and the pertinent metric parameters are collected in Table 1.
Not surprisingly, the [Fe(η5-Cp*)BrCl]− anion exhibits a disorder of the halogen atoms.
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Figure 1. Molecular structure of NnPr4[Fe(η5-Cp*)Cl2] in the crystal (ORTEP with 50% probability
ellipsoids). The anion exhibits CH···Cl contacts compatible with weak hydrogen bonds (indicated
with dotted lines) to two tetra-n-propylammonium cations, which are both shown.
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Figure 2. Molecular structure of NnPr4[Fe(η5-Cp*)BrCl] in the crystal (ORTEP with 50% probability
ellipsoids). The atom sites with the higher occupancy (58%) of the disordered halogen atoms are
shown. The anion is engaged in CH···X contacts (X = Cl, Br) with neighbouring cations (not shown).

Table 1. Selected metric parameters (distances in Å, angles in deg) of the compounds in this study
and, for comparison, of previously reported closely related compounds.

Fe–Cp*centroid Fe–X X–Fe–X

NnPr4[Fe(η5-Cp*)Cl2] 1.975 2.2953(8)
2.2814(8) 106.27(3)

NnPr4[Fe(η5-Cp*)BrCl] 1 1.970 2.27(2) 2

2.357(9) 3 109.0(6)

NnPr4[Fe(η5-Cp*)Br2] 4,5

1.958 2.432(5)
2.406(5) 103.8(2)

1.961 2.404(5)
2.446(5) 103.8(2)

1.999 2.415(5)
2.431(5) 104.8(2)

1.995 2.405(5)
2.415(5) 103.6(2)

PPh4[Fe(η5-Cp*)Cl2] 1.988 2.288(2)
2.284(2) 107.07(7)

PPh4[Fe(η5-Cp*)Br2] 1.972 2.4278(8) 107.86(5)
PPh4[Fe(η5-Cp*)I2] 1.958 2.6201(5) 106.56(3)

NnBu4[Fe(η5-C5H2-1,2,4-tBu3)I2] 6 1.989 2.7003(6)
2.6144(6) 102.20(2)

[Na(DME)2][Fe(η5-C5H2-1,2,4-tBu3)Br2] 7 1.967 2.4633(7)
2.4316(7) 102.36(2)

1 Disorder of the halogen atoms; the atom sites with the higher occupancy (58%) were chosen. 2 X = Cl. 3 X = Br.
4 Four cations and anions are each present in the asymmetric unit. 5 Caution: the structure solution lacks quality
because the arrangement and disorder of the tetra-n-propylammonium cations imposes non-crystallographic
symmetry. 6 Ref. [31]. 7 Ref. [32].

Our attempts to prepare NnPr4[Fe(η5-Cp*)Br2] in an analogous way from Kölle’s com-
pound [Fe(η5-Cp*)Br] and NnPr4Br furnished the product with a 33% yield but invariably
afforded crystals whose structural investigation using XRD was fraught with problems
due to severe cation disorder. Our best result is shown in Figure S1 in the Supporting Infor-
mation. Although bond lengths and angles are given only for the heavy atoms in Table 1,
these data should be treated with particular caution in the case of NnPr4[Fe(η5-Cp*)Br2],
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where they are not taken into consideration for our discussion. The problems encountered
with the tetra-n-propylammonium cation prompted us to use the tetraphenylphosphonium
cation instead. The preparation of PPh4[Fe(η5-Cp*)X2] (X = Cl, Br, I) through the addition
of PPh4X (1 equiv.) to [Fe(η5-Cp*)X] (prepared in situ from FeX2 and KCp*) turned out to
be straightforward, although the isolated yields were unsatisfactorily poor (21% at most),
probably due to the much lower solubility of PPh4X in comparison to NnPr4X. A trend
towards even lower yields was observed when LiCp* was used instead of KCp*, which is
very likely due to the concurrence of two unfavourable factors, namely the comparatively
poor solubility of the tetraphenylphosphonium salts and the comparatively high solubility
of the lithium salts in organic solvents of low polarity. In contrast to this, and as already
noted above, LiCp* was found to be slightly more effective than KCp* in the synthesis of
NnPr4[Fe(η5-Cp*)X2]. The product was obtained as crystals suitable for XRD in each case,
and no disorder problems were encountered, as anticipated. The molecular structures of
PPh4[Fe(η5-Cp*)X2] are shown in Figure 3 (X = Cl), Figure 4 (X = Br) and Figure 5 (X = I).
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Inorganics 2023, 11, 437 5 of 11Inorganics 2023, 11, x FOR PEER REVIEW 5 of 11 
 

 

 
Figure 4. Molecular structure of PPh4[Fe(η5-Cp*)Br2] in the crystal (ORTEP with 50% probability 
ellipsoids). The CH···π interaction between cation and anion is indicated with a dotted line. The 
anion is engaged in CH···Br contacts with neighbouring cations (not shown). 

 
Figure 5. Molecular structure of PPh4[Fe(η5-Cp*)I2] in thecrystal (ORTEP with 50% probability ellip-
soids). The CH···π interaction between cation and anion is indicated with a dotted line. The anion is 
engaged in CH···I contacts with neighbouring cations (not shown). 

Figure 4. Molecular structure of PPh4[Fe(η5-Cp*)Br2] in the crystal (ORTEP with 50% probability
ellipsoids). The CH···π interaction between cation and anion is indicated with a dotted line. The
anion is engaged in CH···Br contacts with neighbouring cations (not shown).

Inorganics 2023, 11, x FOR PEER REVIEW 5 of 11 
 

 

 
Figure 4. Molecular structure of PPh4[Fe(η5-Cp*)Br2] in the crystal (ORTEP with 50% probability 
ellipsoids). The CH···π interaction between cation and anion is indicated with a dotted line. The 
anion is engaged in CH···Br contacts with neighbouring cations (not shown). 

 
Figure 5. Molecular structure of PPh4[Fe(η5-Cp*)I2] in thecrystal (ORTEP with 50% probability ellip-
soids). The CH···π interaction between cation and anion is indicated with a dotted line. The anion is 
engaged in CH···I contacts with neighbouring cations (not shown). 

Figure 5. Molecular structure of PPh4[Fe(η5-Cp*)I2] in thecrystal (ORTEP with 50% probability
ellipsoids). The CH···π interaction between cation and anion is indicated with a dotted line. The
anion is engaged in CH···I contacts with neighbouring cations (not shown).



Inorganics 2023, 11, 437 6 of 11

The compounds listed in Table 1 exhibit very similar iron–cyclopentadienyl ring
centroid distances between 1.96 and 1.99 Å, which is much larger than the correspond-
ing distances in the ferrocenes [Fe(η5-Cp*)2] (1.65 Å) [33] and [Fe(η5-C5H2-1,2,4-tBu3)2]
(1.72 Å), [34] and marginally larger than those in the open-shell half-sandwich iron(II)
complexes [Fe(η5-Cp*){N(SiMe3)2}] (1.90 Å) [35], [Fe(η5-C5iPr5){N(SiMe3)2}] (1.92 Å) [14],
and [{Fe(η5-C5H2-1,2,4-tBu3)(µ-X)}2] (1.92 and 1.93 Å for X = Br and I, respectively) [27,28].
The differences in the Fe–X bond lengths observed for X = Cl, Br, and I are in accord with
the different radii of the halogen atoms. A particularly good agreement is achieved with
Pauling’s tetrahedral covalent radii, which reflect a convolution of covalent and dative
bonding, the values being 0.99, 1.11, and 1.28 Å for Cl, Br, and I, respectively [36]. Not
surprisingly, the X–Fe–X angles of the Cp* complexes are wider (by ca. 5◦) than those of the
congeners containing the bulkier C5H2-1,2,4-tBu3 ligand, whose comparatively less sym-
metric nature may be the reason for the significant difference in the two Fe–I bond lengths
(∆d 0.09 Å) in the anion of NnBu4[Fe(η5-C5H2-1,2,4-tBu3)I2]. The tetraalkylammonium
cations are engaged in CH···X contacts compatible with weak hydrogen bonds (indicated
as dotted lines in Figure 1; not shown for the disordered species in Figures 2 and 3) [37,38].
The contacts of the two halogen atoms are almost equidistant in each case (CH···Cl 2.67
and 2.73 Å for NnPr4[Fe(η5-Cp*)Cl2], and CH···I 3.10 and 3.14 Å for NnBu4[Fe(η5-C5H2-
1,2,4-tBu3)I2]). The PPh4

+ cations interact with the [Fe(η5-Cp*)X2]− anions through phenyl
CH···X contacts (2.76–2.95, 2.96 and 3.09–3.15 Å for X = Cl, Br and I, respectively; not shown
in Figures 3–5). In addition, the para-H atom of a phenyl ring points towards the centre
of the Cp* ligand (phenyl CH···C 2.53–2.74 Å, phenyl CH···Cp* ring centroid 2.28–2.38 Å,
shown as dotted lines in Figures 3–5), indicating a CH···π interaction [39,40] similar to that
in the T-shaped benzene dimer [41–46] for which a CH···C6H6 ring centroid distance of
2.25 Å was computed recently [47].

The electronic structure of the anion of NnBu4[Fe(η5-C5H2-1,2,4-tBu3)I2] was scruti-
nised using SQUID magnetometry, EPR spectroscopy, and ab initio Complete Active Space
Self Consistent Field-Spin Orbit calculations, which revealed a high-spin d6 iron(II) centre
with a strongly anisotropic S = 2 ground state [31]. This in-depth study by Manners makes
an analogous investigation of our closely related compounds dispensable. The paramag-
netic nature of their [Fe(η5-Cp*)X2]− anions is clearly evident from the NMR spectra. The
Cp* ligand gives rise to a 1H NMR signal at δ ≈ 200 ppm. This may be compared with
the data reported for the substituted cyclopentadienyl ligands of [{Fe(η5-C5iPr5)(µ-Br)}2]
in C6D6 [δ(1H) = 95.7 (CHMe2), 11.3 (CHMe2), and −117.3 ppm (CHMe2)] [26] and of
NnBu4[Fe(η5-C5H2-1,2,4-tBu3)I2] in THF-d8 [δ(1H) = −20.3 and −31.4 ppm (2 × tBu)] [31].

Kölle demonstrated the successful generation of the highly reactive compound [Fe(η5-
Cp*)Br] through a trapping reaction with carbon monoxide at −80 ◦C, which furnished
the diamagnetic carbonyl complex [Fe(η5-Cp*)Br(CO)2] in a 59% yield [2]. In the same
vein, Walter obtained [Fe(η5-C5H2-1,2,4-tBu3)I(CO)2] through carbonylation of the “self-
stabilised” halido-bridged dimer [{Fe(η5-C5H2-1,2,4-tBu3)(µ-I)}2] with CO at room temper-
ature in an 80% yield [28]. We have studied the carbonylation of our target compounds
exemplarily with NnPr4[Fe(η5-Cp*)Cl2] and observed an essentially quantitative reaction
with CO under the same mild conditions, affording the well-known carbonyl complex
[Fe(η5-Cp*)Cl(CO)2] [48,49]. The crystal structure of this compound reported in 1988 was
determined at room temperature [49], which prompted us to redetermine the structure at
100 K (see the Supporting Information).

3. Materials and Methods

Experimental Details. All reactions were performed in an inert atmosphere (argon or
dinitrogen) using standard Schlenk techniques or a conventional glovebox. Solvents were
dried with a commercial Solvent Purification System (M. Braun, Garching, Germany, MB
SPS 7), degassed and stored over 3 Å molecular sieves under inert atmosphere. Starting
materials were procured from standard commercial sources and used as received. LiCp*
and KCp* were synthesised through deprotonation of pentamethylcyclopentadiene in
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n-hexane with n-butyllithium and potassium metal, respectively, and isolated through
filtration or centrifugation. NMR spectra were recorded with Varian MR-400 and Varian
NMRS-500 spectrometers operating at 400 and 500 MHz, respectively, for 1H. Elemental
analyses were carried out with a HEKAtech Euro EA-CHNS elemental analyser at the
Institute of Chemistry, University of Kassel, Germany.

NnPr4[Fe(η5-Cp*)Cl2]: A Schlenk tube charged with LiCp* (176 mg, 1.24 mmol)
and FeCl2 (156 mg, 1.23 mmol) was cooled to −60 ◦C. THF (3 mL) cooled to the same
temperature was added. The stirred mixture was allowed to warm up to −20 ◦C. NnPr4Cl
(275 mg, 1.24 mmol) was added. The stirred mixture was allowed to warm up to ambient
temperature and was subsequently filtered through a Celite pad. Toluene (ca. 3 mL) was
slowly added to the green filtrate until formation of an essentially colourless precipitate
was observed. Insoluble material was removed via filtration through a Celite pad. Storing
of the filtrate at −40 ◦C afforded the product as green crystals, which were separated from
the yellow mother liquor, washed with n-hexane (5 mL), and dried under vacuum. Yield,
327 mg (60%). Elemental analysis for C22H43NCl2Fe (448.34 g/mol): calculated (%): C
58.94, H 9.67, N 3.12. Found (%): 58.18, H 9.37, N 3.21. 1H NMR (400 MHz, THF-d8): δ 194.4
(15H, s, ν 1

2
= 380 Hz, Cp*), 16.8 (8H, s, ν 1

2
= 270 Hz, (CH2)2CH3), 9.9 (8H, s, ν 1

2
= 220 Hz,

(CH2)2CH3), 1.3 (12H, s, ν 1
2

= 270 Hz, (CH2)2CH3).

NnPr4[Fe(η5-Cp*)BrCl]: This compound was obtained through a procedure analo-
gous to that described above for NnPr4[Fe(η5-Cp*)Cl2] using LiCp* (130 mg, 0.91 mmol),
FeCl2 (116 mg, 0.92 mmol), and NnPr4Br (245 mg, 0.92 mmol) in THF (3 mL). Yield, 175 mg
(39%). Elemental analysis for C22H43NBrClFe (492.79 g/mol): calculated (%): C 53.62, H
8.80, N 2.84. Found (%): C 54.24, H 8.81, N 2.48. 1H NMR (400 MHz, THF-d8): δ 206.5
(15H, s, ν 1

2
= 2860 Hz, Cp*), 25.8 (8H, s, ν 1

2
= 500 Hz, (CH2)2CH3), 15.1 (8H, s, ν 1

2
= 350 Hz,

(CH2)2CH3), 2.7 (12H, s, ν 1
2

= 650 Hz, (CH2)2CH3).

NnPr4[Fe(η5-Cp*)Br2]: This compound was obtained through a procedure analogous
to that described above for NnPr4[Fe(η5-Cp*)Cl2] using LiCp* (65 mg, 0.46 mmol), FeBr2
(99 mg, 0.46 mmol) and NnPr4Br (122 mg, 0.46 mmol) in THF (1.5 mL). Yield, 81 mg (33%).
An analytical sample was obtained through recrystallization from benzene. Elemental
analysis for C22H43NBr2Fe· 12 C6H6 (576.29 g/mol): calculated (%): C 52.10, H 8.05, N
2.43. Found (%): C 52.18, H 8.24, N 1.76. 1H NMR (400 MHz, THF-d8): δ 203.5 (15H, s,
ν 1

2
= 560 Hz, Cp*), 16.7 (8H, s, ν 1

2
= 310 Hz, (CH2)2CH3), 10.7 (8H, s, ν 1

2
= 240 Hz,

(CH2)2CH3), 2.23 (12H, s, ν 1
2

= 190 Hz, (CH2)2CH3).

PPh4[Fe(η5-Cp*)Cl2]: A Schlenk tube charged with KCp* (40 mg, 0.23 mmol) and
FeCl2 (29 mg, 0.23 mmol) was cooled to −60 ◦C. THF (0.5 mL) cooled to the same tem-
perature was added. The stirred mixture was allowed to warm up to −20 ◦C. PPh4Cl
(86 mg, 0.23 mmol) was added. The stirred mixture was allowed to warm up to ambient
temperature and was subsequently filtered through a Celite pad. The yellow filtrate was
carefully layered with n-hexane, resulting in the slow formation of yellow crystals, which
were separated from the mother liquor, washed with n-hexane (2 mL), and dried under
vacuum. Yield, 8 mg (6%). In view of the unsatisfactorily low yield, elemental analysis
was not performed for this compound. 1H NMR (500 MHz, THF-d8): δ 188.2 (15H, s,
ν 1

2
= 310 Hz, Cp*), 13.2 (8H, ν 1

2
= 100 Hz, Ph), 10.7 (8H, ν 1

2
= 100 Hz, Ph), 10.2 (4H,

ν 1
2

= 80 Hz, Ph).

PPh4[Fe(η5-Cp*)Br2]: This compound was obtained through a procedure analogous
to that described above for PPh4[Fe(η5-Cp*)Cl2] using KCp* (40 mg, 0.23 mmol), FeBr2
(50 mg, 0.23 mmol), and PPh4Br (96 mg, 0.23 mmol) in THF (0.5 mL). Yield, 12 mg (8%).
In view of the unsatisfactorily low yield, elemental analysis was not performed for this
compound. 1H NMR (500 MHz, THF-d8): δ 193.7 (15H, s, ν 1

2
= 650 Hz, Cp*), 11.3 (8H,

ν 1
2

= 160 Hz, Ph), 9.2 (8H, ν 1
2

= 190 Hz, Ph), 8.6 (4H, ν 1
2

= 190 Hz, Ph).

PPh4[Fe(η5-Cp*)I2]: This compound was obtained through a procedure analogous to
that described above for PPh4[Fe(η5-Cp*)Cl2] using KCp* (40 mg, 0.23 mmol), FeI2 (71 mg,
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0.23 mmol), and PPh4I (107 mg, 0.23 mmol) in THF (0.5 mL). Yield, 38 mg (21%). In view of
the unsatisfactorily low yield, elemental analysis was not performed for this compound.
1H NMR (500 MHz, THF-d8): δ 209.9 (15H, s, ν 1

2
= 530 Hz, Cp*), 10.1 (8H, ν 1

2
= 60 Hz, Ph),

9.1 (8H, ν 1
2

= 60 Hz, Ph), 8.7 (4H, ν 1
2

= 60 Hz, Ph).

[Fe(η5-Cp*)Cl(CO)2]: A solution of NnPr4[Fe(η5-Cp*)Cl2] (40 mg, 0.09 mmol) in THF
(2 mL) was subjected to an atmospheric pressure of CO, which led to an immediate colour
change from green to red. The solution was stirred for 10 min. Volatile components were
removed under vacuum. Benzene (0.7 mL) was added to the residue. Insoluble material
was removed via filtration through a Celite pad. Slow evaporation of the filtrate afforded
the product as red crystals. Yield, 23 mg (92%). Spectroscopic data were found to be in
good agreement with published values [48,49].

X-ray Crystallography: For all data collections, a single crystal was mounted on a
micro-mount, and all geometric and intensity data were taken from this sample through
ω-scans at 100(2) K. Data collections were carried out either on a Stoe StadiVari diffrac-
tometer equipped with a 4-circle goniometer and a DECTRIS Pilatus 200K detector (for
NnPr4[Fe(η5-Cp*)Cl2], NnPr4[Fe(η5-Cp*)Br2], and PPh4[Fe(η5-Cp*)Cl2]) or on a Stoe IPDS2
diffractometer equipped with a 2-circle goniometer and an area detector (for NnPr4[Fe(η5-
Cp*)BrCl], PPh4[Fe(η5-Cp*)Br2], PPh4[Fe(η5-Cp*)I2], and [Fe(η5-Cp*)Cl(CO)2]). The data
sets were corrected for absorption (through multi scan), Lorentz, and polarisation effects.
The structures were solved using direct methods (SHELXT 2014/7) [50] and refined using
alternating cycles of least-squares refinements against F2 (SHELXL2014/7) [50]. H atoms
were included in the models in calculated positions with the 1.2-fold isotropic displacement
parameter of their bonding partner. Experimental details for each diffraction experiment
are given in Table S1 (Supplementary Materials). CCDC 2300615–2300621 contain supple-
mentary crystallographic data for this paper. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre, www.ccdc.cam.uk/structures (accessed on
11 October 2023).

4. Conclusions

Thermally stable half-sandwich iron(II) dihalido complexes of the type [Fe(η5-Cp’)X2]−

reported in the literature have so far been limited to a small number of salts containing
the anion [Fe(η5-C5H2-1,2,4-tBu3)I2]−. We extended this to homologues [Fe(η5-Cp*)X2]−

(X = Cl, Br, I) containing the widely used Cp* ligand. Corresponding ionic compounds
ER4[Fe(η5-Cp*)X2] are easily accessible from FeX2, MCp* (M = Li, K) and a suitable halide
source R4EX (E = N, P). Not surprisingly, they are very air-sensitive not only in solution
but also in the solid state and consequently should be handled under rigorously inert
conditions. While yields of up to 60% could be achieved with ER4 = NnPr4, unsatisfactorily
low yields were obtained with ER4 = PPh4, which, however, turned out to be superior
to NnPr4 in terms of the quality of crystals needed for XRD. The high-yield synthesis of
[Fe(η5-Cp*)Cl(CO)2] from NnPr4[Fe(η5-Cp*)Cl2] and CO under mild conditions exemplarily
demonstrates that such anions are amenable to halido ligand substitution reactions and may
thus provide facile access to a range of pentamethylcyclopentadienyliron half-sandwich
complexes.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/inorganics11110437/s1: Table S1: X-ray crystallographic details;
Figure S1: Molecular structure of NnPr4[Fe(η5-Cp*)Br2] in the crystal; Figure S2: 1H NMR spectrum
of NnPr4[Fe(η5-Cp*)Cl2]; Figure S3: 1H NMR spectrum of NnPr4[Fe(η5-Cp*)BrCl]; Figure S4: 1H
NMR spectrum of NnPr4[Fe(η5-Cp*)Br2]; Figure S5: 1H NMR spectrum of PPh4[Fe(η5-Cp*)Cl2];
Figure S6: 1H NMR spectrum of PPh4[Fe(η5-Cp*)Br2]; Figure S7: 1H NMR spectrum of PPh4[Fe(η5-
Cp*)I2]; Figure S8: 1H NMR spectrum of [Fe(η5-Cp*)Cl(CO)2]; Figure S9: 13C NMR spectrum of
[Fe(η5-Cp*)Cl(CO)2].

www.ccdc.cam.uk/structures
https://www.mdpi.com/article/10.3390/inorganics11110437/s1
https://www.mdpi.com/article/10.3390/inorganics11110437/s1
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