Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (149)

Search Parameters:
Keywords = cyclic nucleotide signaling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1720 KB  
Article
Family-Wide Dysregulation of Phosphodiesterases Alters cAMP/cGMP Microdomains in Thoracic Aortic Aneurysm
by Dimitrios E. Magouliotis, Serge Sicouri, Vasiliki Androutsopoulou, Massimo Baudo, Francesco Cabrucci, Prokopis-Andreas Zotos, Andrew Xanthopoulos and Basel Ramlawi
J. Cardiovasc. Dev. Dis. 2026, 13(1), 23; https://doi.org/10.3390/jcdd13010023 - 1 Jan 2026
Viewed by 229
Abstract
Background: Thoracic aortic aneurysm (TAA) is driven by complex molecular mechanisms beyond size thresholds, yet the role of cyclic nucleotide metabolism remains unclear. Phosphodiesterases (PDEs), which hydrolyze cAMP and cGMP in compartmentalized microdomains, act as key regulators of vascular integrity and remodeling. Methods: [...] Read more.
Background: Thoracic aortic aneurysm (TAA) is driven by complex molecular mechanisms beyond size thresholds, yet the role of cyclic nucleotide metabolism remains unclear. Phosphodiesterases (PDEs), which hydrolyze cAMP and cGMP in compartmentalized microdomains, act as key regulators of vascular integrity and remodeling. Methods: We performed a hypothesis-driven, transcriptomic analysis of 20 PDE isoforms using the GSE26155 dataset (43 TAA vs. 43 controls). Raw microarray data underwent background correction, log2 transformation, and false-discovery adjustment. Differential expression, logistic regression, receiver-operating characteristic (ROC) curves, calibration testing, correlation analysis, and interactome/enrichment mapping were conducted. Results: Thirteen PDE isoforms were significantly dysregulated in TAA. Upregulated transcripts included PDE10A, PDE2A, PDE4B, PDE7A, and PDE8A, whereas PDE1A/B/C, PDE3B, PDE5A, PDE6C, and PDE8B were downregulated. PDE10A achieved excellent discrimination for TAA (AUC = 0.838), while other isoforms demonstrated fair discriminatory ability. Correlation architecture revealed coordinated regulation between PDE subfamilies, including inverse relationships between PDE2A and PDE8B (r = −0.68). Interactome analysis highlighted dense connections with cyclic nucleotide and purinergic signaling hubs, enriched in vascular tone, NO–cGMP–PKG, and junctional assembly pathways. Integrating these findings with epigenetic and junctional frameworks suggests that PDE dysregulation promotes endothelial barrier fragility and maladaptive smooth-muscle remodeling. Conclusions: Family-wide PDE dysregulation characterizes human TAA, with PDE10A emerging as a central transcriptomic signature. Altered cAMP/cGMP microdomain signaling aligns with junctional failure and epigenetic control, supporting the potential of PDE isoforms as biomarkers and therapeutic targets. These results provide experimental evidence that cyclic nucleotide hydrolysis is re-wired in TAA, supporting PDE10A as a novel biomarker and therapeutic target that bridges molecular dysregulation with clinical risk stratification in thoracic aortic disease. Full article
Show Figures

Graphical abstract

23 pages, 11300 KB  
Article
Comprehensive Analysis of Sorghum CNGC Genes Reveals Their Potential Roles in Abiotic Stress Responses
by Yu Luo, Wenda Jiao, Kun Huang, Xiang Li, Jiaqi Li, Minli Wang, Ruidong Zhang and Xiong Cao
Genes 2025, 16(12), 1405; https://doi.org/10.3390/genes16121405 - 25 Nov 2025
Viewed by 432
Abstract
Background/Objectives: Cyclic nucleotide-gated channel (CNGC) genes play crucial roles in plant growth, development, and stress responses, yet their functions in sorghum remain poorly understood. Methods: This study systematically analyzed sorghum CNGC genes through genome-wide identification, encompassing chromosomal mapping, phylogenetic relationships, gene [...] Read more.
Background/Objectives: Cyclic nucleotide-gated channel (CNGC) genes play crucial roles in plant growth, development, and stress responses, yet their functions in sorghum remain poorly understood. Methods: This study systematically analyzed sorghum CNGC genes through genome-wide identification, encompassing chromosomal mapping, phylogenetic relationships, gene structure, cis-acting elements, miRNA regulation, and GO/KEGG annotation. Results: A total of 23 sorghum CNGC genes were identified and classified into five subclasses (I–IV-b), exhibiting high evolutionary conservation with rice and maize. Promoter and miRNA analyses revealed multi-level regulation involving light, hormones (ABA, JA), and stress response elements. Several SbCNGC genes were predicted to be regulated by multiple miRNAs. Expression profiling and qRT-PCR validation indicated that most SbCNGC genes responded to both high-temperature and low-temperature stress. Expression analysis revealed tissue specificity and stress-induced transcriptional responses. Notably, SbCNGC1 remains consistently upregulated under both cold and heat stress, suggesting a potential key role in Ca2+-mediated signaling. Conclusions: This study systematically characterizes SbCNGC genes for the first time, reveals their potential role in abiotic stress tolerance, and provides a valuable resource for sorghum functional genomics and molecular breeding. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

29 pages, 1870 KB  
Article
Identification of Three New Rugose Small Colony Variants from a Pseudomonas aeruginosa Biofilm
by Benjamin K. Smartnick, Eric A. Carlson, Chase N. Morse, Taylor A. Dodson, Nathan C. Wamer, Avery M. Horne and Erin G. Prestwich
Microorganisms 2025, 13(11), 2550; https://doi.org/10.3390/microorganisms13112550 - 7 Nov 2025
Viewed by 956
Abstract
Pseudomonas aeruginosa is a Gram-negative, pathogenic, bacterium that produces biofilms comprising phenotypically distinct cell subpopulations. When separating and characterizing a single P. aeruginosa PA14 biofilm, three novel rugose small colony variants (RSCVs) (denoted RSCV_1, RSCV_2, and RSCV_3) were discovered. Characteristics of these stationary [...] Read more.
Pseudomonas aeruginosa is a Gram-negative, pathogenic, bacterium that produces biofilms comprising phenotypically distinct cell subpopulations. When separating and characterizing a single P. aeruginosa PA14 biofilm, three novel rugose small colony variants (RSCVs) (denoted RSCV_1, RSCV_2, and RSCV_3) were discovered. Characteristics of these stationary phase RSCVs differed between stationary phase wild-type (WT) PA14, between the PA14 biofilm subpopulations, and between the RSCVs themselves. The observed phenotypic changes in the RSCVs included differences in cellular morphology, exopolysaccharide production, biosynthesis of virulence factors, biofilm formation, and antibiotic tolerance. Stationary phase cell surface-associated molecules on the RSCVs were differently ionized as compared to WT PA14 using matrix-assisted laser desorption ionization (MALDI) mass spectrometry. Many RNA transcripts were differentially expressed between the RSCVs and WT PA14 as well as between RSCV_1 and RSCV_3. DNA sequencing revealed single-nucleotide deletions and single-nucleotide polymorphisms (SNPs) among the RSCVs and between the RSCVs and WT PA14. The levels of the intracellular signaling molecule bis-(3′,5′)-cyclic-dimeric-guanosine monophosphate (cyclic-di-GMP) were higher in the RSCVs compared to WT PA14 and significantly lower in RSCV_3 as compared to both RSCV_1 and RSCV_2. The detected differences in the RSCVs have significant implications for biofilm production, antibiotic tolerance, and virulence. Full article
(This article belongs to the Special Issue Advances in Microbial Biofilm Formation (2nd Edition))
Show Figures

Graphical abstract

12 pages, 2080 KB  
Article
The Molecular Mechanism of PDE1 Regulation
by Jacob Nielsen, Morten Langgård, Josefine Fussing Tengberg and Jan Kehler
Cells 2025, 14(21), 1722; https://doi.org/10.3390/cells14211722 - 1 Nov 2025
Viewed by 640
Abstract
The phosphodiesterase 1 genes PDE1A, PDE1B, and PDE1C encode calcium-regulated cyclic nucleotide phosphodiesterases that mediate the interplay between calcium and cyclic nucleotide signaling in the brain, heart, and vasculature. While an inhibitory domain and a calmodulin-binding domain have been identified in PDE1, the [...] Read more.
The phosphodiesterase 1 genes PDE1A, PDE1B, and PDE1C encode calcium-regulated cyclic nucleotide phosphodiesterases that mediate the interplay between calcium and cyclic nucleotide signaling in the brain, heart, and vasculature. While an inhibitory domain and a calmodulin-binding domain have been identified in PDE1, the mechanism of regulation is not understood. In this study, we investigated the regulatory mechanism through a series of experiments. The experimental data, supported by AlphaFold structure predictions, consistently point to the following model of PDE1 regulation: In the absence of calcium, the inhibitory domain of PDE1 binds to and blocks the catalytic site via molecular interactions that closely resemble those observed in autoinhibited PDE4. Upon calcium/calmodulin binding to PDE1’s calmodulin-binding domain, steric constraints prevent the inhibitory domain from reaching the catalytic site, thereby activating PDE1. Understanding this mode of PDE1 regulation may open new avenues for pharmacological intervention. Moreover, it establishes PDE1 and PDE4 as a second mechanistic class of phosphodiesterase regulation in addition to the GAF-domain-mediated regulation known to control the activity of several other PDEs. Full article
Show Figures

Figure 1

26 pages, 1618 KB  
Review
The Gut Microbiota of Drosophila melanogaster: A Model for Host–Microbe Interactions in Metabolism, Immunity, Behavior, and Disease
by Kyu Hong Cho and Song Ok Kang
Microorganisms 2025, 13(11), 2515; https://doi.org/10.3390/microorganisms13112515 - 31 Oct 2025
Cited by 1 | Viewed by 1703
Abstract
The gut microbiota of Drosophila melanogaster offers a simplified yet powerful system to study conserved mechanisms of host–microbe interactions. Unlike the highly complex mammalian gut microbiota, which includes hundreds of species, the fly gut harbors a small and defined community dominated by Lactobacillus [...] Read more.
The gut microbiota of Drosophila melanogaster offers a simplified yet powerful system to study conserved mechanisms of host–microbe interactions. Unlike the highly complex mammalian gut microbiota, which includes hundreds of species, the fly gut harbors a small and defined community dominated by Lactobacillus and Acetobacter. Despite its low diversity, this microbiota exerts profound effects on host physiology. Commensal bacteria modulate nutrient acquisition, regulate insulin/TOR signaling, and buffer dietary imbalances to support metabolic homeostasis and growth. They also influence neural and behavioral traits, including feeding preferences, mating, and aggression, through microbial metabolites and interactions with host signaling pathways. At the immune level, microbial molecules such as peptidoglycan, acetate, uracil, and cyclic dinucleotides activate conserved pathways including Imd, Toll, DUOX, and STING, balancing antimicrobial defense with tolerance to commensals. Dysbiosis disrupts this equilibrium, accelerating aging, impairing tissue repair, and contributing to tumorigenesis. Research in Drosophila demonstrates how a low-diversity microbiota can shape systemic host biology, offering mechanistic insights relevant to human health and disease. Full article
(This article belongs to the Special Issue Gut Microbiome in Homeostasis and Disease, 3rd Edition)
Show Figures

Figure 1

23 pages, 776 KB  
Review
PDE4-Selective Inhibition in Chronic Obstructive Pulmonary Disease and Pulmonary Fibrosis: Different Agents or Different Targets?
by Graeme B. Bolger
Life 2025, 15(10), 1600; https://doi.org/10.3390/life15101600 - 14 Oct 2025
Viewed by 2337
Abstract
Highly selective inhibitors of the members of the cAMP-selective cyclic nucleotide phosphodiesterases, or PDE4 family, have shown clinically meaningful activity in two different classes of lung disease: roflumilast in obstructive lung disease, specifically chronic obstructive pulmonary disease (COPD), and nerandomilast in restrictive lung [...] Read more.
Highly selective inhibitors of the members of the cAMP-selective cyclic nucleotide phosphodiesterases, or PDE4 family, have shown clinically meaningful activity in two different classes of lung disease: roflumilast in obstructive lung disease, specifically chronic obstructive pulmonary disease (COPD), and nerandomilast in restrictive lung diseases characterized by inflammation/fibrosis of the alveolar interstitium, including idiopathic pulmonary fibrosis (IPF) and progressive pulmonary fibrosis (PPF). The beneficial therapeutic benefit of these agents in both of these disorders suggests that they share a common mechanism that underlies their effects on different pulmonary cells and tissues. This review outlines the biochemical, pharmacologic and cellular effects of PDE4-selective inhibitors, emphasizing their role in signal transduction pathways common to many pulmonary cell types. It then compares and contrasts the myriad cellular effects of these agents and their effects in pre-clinical animal models of these disorders. The emerging data are compatible with PDE4-selective inhibitors having targets of action in a large number of pulmonary cell types, only a subset of which is dysregulated in either COPD or IPF. This suggests that differences between the benefits observed with these individual agents in their various clinical indications reflect differences in disease pathogenesis, rather than proven differences in the enzyme-inhibitory effects of the various PDE4 inhibitors that have been studied to date. Full article
Show Figures

Figure 1

32 pages, 1789 KB  
Review
The Emerging Role of Phosphodiesterase Inhibitors in Fragile X Syndrome and Autism Spectrum Disorder
by Shilu Deepa Thomas, Hend Abdulaziz Mohammed, Mohammad I. K. Hamad, Murat Oz, Yauhen Statsenko and Bassem Sadek
Pharmaceuticals 2025, 18(10), 1507; https://doi.org/10.3390/ph18101507 - 8 Oct 2025
Viewed by 1711
Abstract
Autism spectrum disorder (ASD) and Fragile X syndrome (FXS) are neurodevelopmental disorders marked by deficits in communication and social interaction, often accompanied by anxiety, seizures, and intellectual disability. FXS, the most common monogenic cause of ASD, results from silencing of the FMR1 gene [...] Read more.
Autism spectrum disorder (ASD) and Fragile X syndrome (FXS) are neurodevelopmental disorders marked by deficits in communication and social interaction, often accompanied by anxiety, seizures, and intellectual disability. FXS, the most common monogenic cause of ASD, results from silencing of the FMR1 gene and consequent loss of FMRP, a regulator of synaptic protein synthesis. Disruptions in cyclic nucleotide (cAMP and cGMP) signaling underlie both ASD and FXS contributing to impaired neurodevelopment, synaptic plasticity, learning, and memory. Notably, reduced cAMP levels have been observed in platelets, lymphoblastoid cell lines and neural cells from FXS patients as well as Fmr1 KO and dfmr1 Drosophila models, linking FMRP deficiency to impaired cAMP regulation. Phosphodiesterase (PDE) inhibitors, which prevent the breakdown of cAMP and cGMP, have emerged as promising therapeutic candidates due to their ability to modulate neuronal signaling. Several PDE isoforms—including PDE2A, PDE4D, and PDE10A—have been implicated in ASD, and FXS, as they regulate pathways involved in synaptic plasticity, cognition, and social behavior. Preclinical and clinical studies show that PDE inhibition modulates neuroplasticity, neurogenesis, and neuroinflammation, thereby ameliorating autism-related behaviors. BPN14770 (a PDE4 inhibitor) has shown promising efficacy in FXS patients while cilostazol, pentoxifylline, resveratrol, and luteolin have showed improvements in children with ASD. However, challenges such as isoform-specific targeting, optimal therapeutic window, and timing of intervention remain. Collectively, these findings highlight PDE inhibition as a novel therapeutic avenue with the potential to restore cognitive and socio-behavioral functions in ASD and FXS, for which effective targeted treatments remain unavailable. Full article
Show Figures

Graphical abstract

14 pages, 2507 KB  
Review
An Emerging Paradigm for ABCC5/MRP5 Function in Human Physiology
by Jenai Chinoy, Charlotte Meller and Heidi de Wet
Int. J. Mol. Sci. 2025, 26(18), 9211; https://doi.org/10.3390/ijms26189211 - 20 Sep 2025
Viewed by 1067
Abstract
Since the first paper published by Susan Cole in 1990 detailing multidrug resistance mediated by ABCC1/MRP1, research into the C-subfamily of ATP-binding cassette transporters has continued to uncover a wide range of functionally divergent proteins. However, several orphan transporters remain in the C-subfamily, [...] Read more.
Since the first paper published by Susan Cole in 1990 detailing multidrug resistance mediated by ABCC1/MRP1, research into the C-subfamily of ATP-binding cassette transporters has continued to uncover a wide range of functionally divergent proteins. However, several orphan transporters remain in the C-subfamily, and the physiological function and substrates of ABCC5, ABCC11, and ABCC12 remain elusive. This review explores the emerging understanding of human ABCC5. Unlike other ABC transporters with well-defined drug export functions, ABCC5’s physiological roles remain only partially understood. While it is known for its involvement in multidrug resistance in cancers, recent studies suggest broader implications in development, metabolism, neurobiology, and male fertility. ABCC5 exports various endogenous substrates, including cyclic nucleotides (cAMP and cGMP), glutamate conjugates like NAAG, and possibly haem. Knockout models in mice, zebrafish, and sea urchins reveal ABCC5’s role in gut formation, brain function, eye development, and iron metabolism. In mice, its deletion results in lower adipose tissue mass, enhanced insulin sensitivity, and neurobehavioral changes resembling schizophrenia, highlighting its role in glutamatergic signalling and circadian regulation. Functionally, ABCC5 appears to impact adipocyte differentiation and GLP-1 release, implicating it in type 2 diabetes susceptibility in humans. Structural studies using human ABCC5 revealed a novel autoinhibitory mechanism involving a peptide segment (C46–S64) that blocks substrate binding, offering new potential for selective inhibitor development. However, this review emphasises caution in targeting ABCC5 for cancer therapy due to its underappreciated physiological function(s), particularly in the brain and male reproductive system. Understanding ABCC5’s substrate specificity, regulatory mechanisms, and functional redundancy with its paralog ABCC12 remains critical for successful therapeutic strategies in humans. Full article
(This article belongs to the Special Issue ABC Transporters: Where Are We 45 Years On? (2nd Edition))
Show Figures

Figure 1

12 pages, 2241 KB  
Article
PDE Inhibitors and Autophagy Regulators Modulate CRE-Dependent Luciferase Activity in Neuronal Cells from the Mouse Suprachiasmatic Nucleus
by Erik Maronde and Abdelhaq Rami
Molecules 2025, 30(15), 3229; https://doi.org/10.3390/molecules30153229 - 1 Aug 2025
Viewed by 728
Abstract
Background: Signaling pathways like those depending on cAMP/PKA, calcium/calmodulin/CaMK, MEK-1/MAPK or PI3K/Akt have been described to modulate suprachiasmatic nucleus (SCN) neuronal signaling via influencing transcription factors like CREB. Here, we analyzed the effect of cyclic nucleotide phosphodiesterase inhibitors and structurally similar substances commonly [...] Read more.
Background: Signaling pathways like those depending on cAMP/PKA, calcium/calmodulin/CaMK, MEK-1/MAPK or PI3K/Akt have been described to modulate suprachiasmatic nucleus (SCN) neuronal signaling via influencing transcription factors like CREB. Here, we analyzed the effect of cyclic nucleotide phosphodiesterase inhibitors and structurally similar substances commonly used as autophagy modulators on a cell line stably expressing a cyclic nucleotide element-driven luciferase reporter. Methods: We used an SCN cell line stably transfected with a CRE-luciferase reporter (SCNCRE) to evaluate signaling and vitality responses to various isoform-selective PDE inhibitors and autophagy modulators to evaluate the mechanism of action of the latter. Results: In this study the different impacts of common PDE inhibitors and autophagy modulators on CRE-luciferase activity applied alone and in combination with known CRE-luciferase activating agents showed that (1) PDE3, 4 and 5 are present in SCNCRE cells, with (2) PDE3 being the most active and (3) the autophagy inhibitor 3-Methyladenin (3-MA) displaying PDE inhibitor-like behavior. Conclusions: Experiments provide evidence that, in addition to the extracellular signaling pathways components shown before to be involved in CRE-luciferase activity regulation like cAMP analogs, adenylate cyclase activators and beta-adrenoceptor agonists, cyclic nucleotide metabolism as realized by phosphodiesterase activity, or molecule/agents influencing processes like autophagy or inflammation, modulate transcriptional CRE-dependent activity in these cells. Specifically, we provide evidence that the autophagy inhibitor 3-MA, given that PDEs are expressed, may also act as a PDE inhibitor and inducer of CRE-mediated transcriptional activity. Full article
(This article belongs to the Special Issue Exploring Bioactive Organic Compounds for Drug Discovery, 2nd Edition)
Show Figures

Figure 1

22 pages, 1370 KB  
Review
Roles of Cyclic Nucleotide Phosphodiesterases in Signal Transduction Pathways in the Nematode Caenorhabditis elegans
by Kranti K. Galande and Rick H. Cote
Cells 2025, 14(15), 1174; https://doi.org/10.3390/cells14151174 - 30 Jul 2025
Cited by 1 | Viewed by 2780
Abstract
Cyclic nucleotide signaling pathways play essential roles in the physiology of the nematode Caenorhabditis elegans, influencing processes such as reproduction, environmental sensing, and cellular homeostasis. The intracellular levels of cAMP and cGMP are tightly regulated by their synthesis by adenylyl and guanylyl [...] Read more.
Cyclic nucleotide signaling pathways play essential roles in the physiology of the nematode Caenorhabditis elegans, influencing processes such as reproduction, environmental sensing, and cellular homeostasis. The intracellular levels of cAMP and cGMP are tightly regulated by their synthesis by adenylyl and guanylyl cyclases and their degradation catalyzed by 3′,5′-cyclic nucleotide phosphodiesterases (PDEs). Mammals possess eleven PDE families (PDE1 through PDE11), whereas nematode genomes contain six PDE genes orthologous to six of the mammalian PDE families. Despite their evolutionary conservation, the signaling pathways, regulatory mechanisms, and enzymatic properties of nematode PDEs remain incompletely understood. This review synthesizes current knowledge on the regulation of cyclic nucleotide levels in C. elegans, highlighting how dysregulation of nematode PDEs affects a wide range of physiological and behavioral processes, including sensory transduction, development, and locomotion. Full article
Show Figures

Graphical abstract

17 pages, 3721 KB  
Article
Comparative Genomic Analysis Across Multiple Species to Identify Candidate Genes Associated with Important Traits in Chickens
by Fuyang Zhang, Hengcong Chen, Cheng Chang, Jiamei Zhou and Hui Zhang
Genes 2025, 16(6), 627; https://doi.org/10.3390/genes16060627 - 24 May 2025
Cited by 2 | Viewed by 1625
Abstract
Background: As one of the most important poultry species worldwide, chickens provide substantial amounts of meat, eggs, and other products for human consumption. With continuous improvements in living standards, consumer demand for high-quality animal products is increasing, making it essential to understand the [...] Read more.
Background: As one of the most important poultry species worldwide, chickens provide substantial amounts of meat, eggs, and other products for human consumption. With continuous improvements in living standards, consumer demand for high-quality animal products is increasing, making it essential to understand the genetic basis of key traits such as egg production, meat quality, and disease resistance for targeted genetic improvement. Methods: In this study, a number of the candidate genes associated with important traits in chickens were screened by various comparative genomics analysis methods. To further clarify the relationship between these candidate genes and important traits in chickens, they were functionally annotated through the KOG, GO, and KEGG databases. Results: These candidate genes are mainly concentrated in the functional categories of transcription and signal transduction mechanisms and are involved in biological processes such as cyclic nucleotide biosynthesis and intracellular signaling, which involve signaling pathways such as ECM–receptor interactions and calcium signaling. Conclusions: Based on the annotation results from various databases, a functional search of the candidate genes and related literature reports, the following results were obtained: genes such as TBX22, LCORL, and GH were associated with chicken growth traits; genes such as A-FABP, H-FABP, and PRKAB2 were associated with chicken meat quality; genes such as IGF-1, SLC25A29, and WDR25 were associated with chicken reproductive traits; and genes such as C1QBP, VAV2 and IL12B were associated with chicken disease resistance traits. Overall, the findings of this study provide novel insights and candidate genes for genetic improvements in chickens, laying a foundation for future research and breeding strategies targeting key economic traits. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

20 pages, 4527 KB  
Review
PDE3A as a Therapeutic Target for the Modulation of Compartmentalised Cyclic Nucleotide-Dependent Signalling
by Swaroop Ranjan Pati, Anastasiia Sholokh and Enno Klussmann
Cells 2025, 14(11), 771; https://doi.org/10.3390/cells14110771 - 23 May 2025
Viewed by 1675
Abstract
Phosphodiesterase 3A (PDE3A) hydrolyses cAMP, adjusting cAMP signalling pathways with temporal and spatial accuracy. PDE3A contributes to the control of cAMP in several cellular compartments, including the plasma membrane, the cytosol, or membrane-limited organelles such as the nucleus and the sarcoplasmic reticulum. Through [...] Read more.
Phosphodiesterase 3A (PDE3A) hydrolyses cAMP, adjusting cAMP signalling pathways with temporal and spatial accuracy. PDE3A contributes to the control of cAMP in several cellular compartments, including the plasma membrane, the cytosol, or membrane-limited organelles such as the nucleus and the sarcoplasmic reticulum. Through this ability and its expression in various cell types, it regulates a variety of cellular processes like contractility of muscle cells, gene expression, differentiation and proliferation. Dysregulated cAMP signalling causes or is associated with diseases. The therapeutic potential of PDE3A is, however, limited by the lack of specific modulators. Emerging approaches to targeting PDE3A centre on specifically addressing its catalytic domain or its cellular localisation. This review highlights the growing knowledge of PDE3A’s functions in cellular signalling and therapeutic opportunities, opening the door to more fully utilise its potential for the treatment of disease. Full article
Show Figures

Figure 1

16 pages, 2970 KB  
Article
PDE10A Inhibition Reduces NLRP3 Activation and Pyroptosis in Sepsis and Nerve Injury
by Bradford C. Berk, Camila Lage Chávez and Chia George Hsu
Int. J. Mol. Sci. 2025, 26(10), 4498; https://doi.org/10.3390/ijms26104498 - 8 May 2025
Viewed by 2080
Abstract
Cell death and inflammation are key innate immune responses, but excessive activation can cause tissue damage. The NLRP3 inflammasome is a promising target for reducing inflammation and promoting recovery. Immunometabolism regulates NLRP3 responses in neurological and inflammatory diseases through cyclic nucleotide signaling. Targeting [...] Read more.
Cell death and inflammation are key innate immune responses, but excessive activation can cause tissue damage. The NLRP3 inflammasome is a promising target for reducing inflammation and promoting recovery. Immunometabolism regulates NLRP3 responses in neurological and inflammatory diseases through cyclic nucleotide signaling. Targeting phosphodiesterases (PDEs), which hydrolyze cAMP and cGMP, offer a novel approach to mitigate inflammation. While 14 PDE inhibitors are FDA-approved, PDE10A’s role in NLRP3 inflammasome activation remains unclear. This study investigates the effects of PDE10A inhibition on inflammasome-driven inflammation using two PDE10A inhibitors, MP-10 and TP-10, in macrophage and animal models of sepsis and traumatic nerve injury. Our results show that PDE10A inhibition reduces inflammasome activation by preventing ASC speck formation and by lowering levels of cleaved caspase-1, gasdermin D, and IL-1β, which are key mediators of pyroptosis. In the sepsis model, MP-10 significantly reduced inflammation, decreased plasma IL-1β, alleviated thrombocytopenia, and improved organ damage markers. In the nerve injury model, PDE10A inhibition enhanced motor function recovery and reduced muscle atrophy-related gene expression. These findings suggest that PDE10A inhibition could be a promising therapeutic approach for inflammatory and neuromuscular injuries. Given MP-10’s established safety in human trials, Phase 2 clinical studies for sepsis and nerve injury are highly promising. Full article
(This article belongs to the Special Issue Roles of Inflammasomes in Inflammatory Responses and Human Diseases)
Show Figures

Figure 1

22 pages, 5209 KB  
Review
Diverse Roles of the Multiple Phosphodiesterases in the Regulation of Cyclic Nucleotide Signaling in Dictyostelium
by Pundrik Jaiswal and Alan R. Kimmel
Cells 2025, 14(7), 522; https://doi.org/10.3390/cells14070522 - 1 Apr 2025
Viewed by 1601
Abstract
Dictyostelium is a unique model used to study the complex and interactive cyclic nucleotide signaling pathways that regulate multicellular development. Dictyostelium grow as individual single cells, but in the absence of nutrients, they initiate a multicellular developmental program. Central to this is secreted [...] Read more.
Dictyostelium is a unique model used to study the complex and interactive cyclic nucleotide signaling pathways that regulate multicellular development. Dictyostelium grow as individual single cells, but in the absence of nutrients, they initiate a multicellular developmental program. Central to this is secreted cAMP, a primary GPCR-response signal. Activated cAMP receptors at the cell surface direct a number of downstream signaling pathways, including synthesis of the intracellular second messengers cAMP and cGMP. These, in turn, activate a series of downstream targets that direct chemotaxis within extracellular cAMP gradients, multicellular aggregation, and, ultimately, cell-specific gene expression, morphogenesis, and cytodifferentiation. Extracellular cAMP and intracellular cAMP and cGMP exhibit rapid fluctuations in concentrations and are, thus, subject to exquisite regulation by both synthesis and degradation. The Dictyostelium genome encodes seven phosphodiesterases (PDEs) that degrade cyclic nucleotides to nucleotide 5’-monophosphates. Each PDE has a distinct structure, substrate specificity, regulatory input, cellular localization, and developmentally regulated expression pattern. The intra- or extra-cellular localizations and enzymatic specificities for cAMP or cGMP are essential for degradative precision at different developmental stages. We discuss the diverse PDEs, the nucleotide cyclases, and the target proteins for cAMP and cGMP in Dictyostelium. We further outline the major molecular, cellular, and developmental events regulated by cyclic nucleotide signaling, with emphasis on the input of each PDE and consequence of loss-of-function mutations. Finally, we relate the structures and functions of the Dictyostelium PDEs with those of humans and in the context of potential therapeutic understandings. Full article
Show Figures

Figure 1

17 pages, 6507 KB  
Article
Agave macroacantha Transcriptome Reveals Candidate CNGC Genes Responsive to Cold Stress in Agave
by Yubo Li, Xiaoli Hu, Dietram Samson Mkapa, Li Xie, Pingan Guo, Shibei Tan, Weiyi Zhang, Helong Chen, Xing Huang and Kexian Yi
Plants 2025, 14(4), 513; https://doi.org/10.3390/plants14040513 - 7 Feb 2025
Viewed by 1265
Abstract
Agave, with its unique appearance and ability to produce hard fibers, holds high economic value. However, low temperatures during winter can restrict its growth and even damage the leaves, causing a loss of ornamental appeal or affecting the fiber quality. Conversely, the plant [...] Read more.
Agave, with its unique appearance and ability to produce hard fibers, holds high economic value. However, low temperatures during winter can restrict its growth and even damage the leaves, causing a loss of ornamental appeal or affecting the fiber quality. Conversely, the plant cyclic nucleotide-gated channel (CNGC) family plays an important role in the growth and development of plants and the response to stress. Studying the CNGC family genes is of great importance for analyzing the mechanism by which agave responds to cold stress. This research conducted a transcriptomic analysis of the ornamental plant Agave macroacantha. Through assembly via Illumina sequencing, 119,911 transcripts were obtained, including 78,083 unigenes. In total, 6, 10, 11, and 13 CNGC genes were successfully identified from A. macroacantha, Agave. H11648, Agave. deserti, and Agave. tequilana, respectively. These CNGC genes could be divided into four groups (I, II, III, and IV), and group IV could be divided into two subgroups (IV-A and IV-B). The relative expression levels were quantified by qRT-PCR assays, which revealed that AhCNGC4.1 was significantly upregulated after cold treatment and Ca(NO3)2 treatment, suggesting its importance in cold stress and calcium signaling. Additionally, the Y2H assay has preliminarily identified interacting proteins of AhCNGC4.1, including AhCML19 and AhCBSX3. This study has established a completely new transcriptome dataset of A. macroacantha for the first time, enriching the bioinformatics of agave’s transcriptome. The identified CNGC genes are of great significance for understanding the evolution of agave species. The cloned CNGC genes, expression pattern analysis, and protein interaction results laid a foundation for future research related to the molecular functions of agave CNGC genes in cold tolerance. Full article
(This article belongs to the Special Issue Molecular Regulation of Plant Stress Responses)
Show Figures

Figure 1

Back to TopTop