Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = cyclic direct simple shear test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5733 KiB  
Article
Characteristics of the Damping Ratio of Undisturbed Offshore Silty Clay in Eastern Guangdong, China
by Peng Guo, Youhu Zhang and Qian Bi
Appl. Sci. 2025, 15(9), 4954; https://doi.org/10.3390/app15094954 - 29 Apr 2025
Viewed by 390
Abstract
Soil–pile interaction damping plays a crucial role in reducing wind turbine loads and fatigue damage in monopile foundations, thus aiding in the optimized design of offshore wind structures and lowering construction and installation costs. Investigating the damping properties at the element level is [...] Read more.
Soil–pile interaction damping plays a crucial role in reducing wind turbine loads and fatigue damage in monopile foundations, thus aiding in the optimized design of offshore wind structures and lowering construction and installation costs. Investigating the damping properties at the element level is essential for studying monopole–soil damping. Given the widespread distribution of silty clay in China’s seas, it is vital to conduct targeted studies on its damping characteristics. The damping ratio across the entire strain range is measured using a combination of resonant column and cyclic simple shear tests, with the results compared to predictions from widely used empirical models. The results indicate that the damping ratio–strain curve for silty clay remains “S”-shaped, with similar properties observed between overconsolidated and normally consolidated silty clay. While empirical models accurately predict the damping ratio at low strain levels, they tend to overestimate it at medium-to-high strain levels. This discrepancy should be considered when using empirical models in the absence of experimental data for engineering applications. The results in this study are significant for offshore wind earthquake engineering and structural optimization. Full article
(This article belongs to the Special Issue Seepage Problems in Geotechnical Engineering)
Show Figures

Figure 1

22 pages, 13171 KiB  
Article
Dissipation of Energy and Generation of Pore Pressure in Load-Controlled and Displacement-Controlled Cyclic Tests
by Carmine P. Polito, Zhuoyue Zhang and Henry H. M. Moldenhauer
Geotechnics 2024, 4(4), 1026-1047; https://doi.org/10.3390/geotechnics4040052 - 9 Oct 2024
Viewed by 1049
Abstract
The amount of energy dissipated in the soil during cyclic loading controls the amount of pore pressure generated under that loading. Because of this, the normalized dissipated energy per unit volume is the basis for both pore pressure generation models and energy-based liquefaction [...] Read more.
The amount of energy dissipated in the soil during cyclic loading controls the amount of pore pressure generated under that loading. Because of this, the normalized dissipated energy per unit volume is the basis for both pore pressure generation models and energy-based liquefaction analyses. The pattern of energy dissipation in the soil in load-controlled cyclic triaxial and load-controlled cyclic direct simple shear tests and displacement-controlled cyclic triaxial and displacement-controlled cyclic direct simple shear tests is quite different. As a result, the pattern of pore pressure generation associated with load-controlled tests is markedly different from that in displacement-controlled tests. Pore pressure generation patterns for each of the four test types were proposed based upon the manner in which the load was applied during the test and the soil’s response to that loading. The results of four tests, two load controlled and two displacement controlled, were then used to verify these patterns. Pore pressure generation rates in load-controlled and displacement-controlled tests are different when plotted against their cycle ratios. Conversely, the tests produce nearly identical patterns when plotted against energy dissipation ratio. This occurs because of the relationship between energy dissipation ratio and pore pressure generation is independent of the loading pattern. Full article
Show Figures

Figure 1

18 pages, 6051 KiB  
Article
The Effect of Non-Plastic Fines Content on Pore Pressure Generation Rates in Cyclic Triaxial and Cyclic Direct Simple Shear Tests
by Carmine P. Polito, James R. Martin and Erin L. D. Sibley
Eng 2024, 5(4), 2410-2427; https://doi.org/10.3390/eng5040126 - 26 Sep 2024
Cited by 1 | Viewed by 888
Abstract
When loose, saturated sands and non-plastic silts are subjected to undrained cyclic loading, they will generate positive pore pressures. This increase in pore pressures leads to a decrease in effective stress with a corresponding decrease in shear strength and increase in liquefaction susceptibility. [...] Read more.
When loose, saturated sands and non-plastic silts are subjected to undrained cyclic loading, they will generate positive pore pressures. This increase in pore pressures leads to a decrease in effective stress with a corresponding decrease in shear strength and increase in liquefaction susceptibility. For combinations of sand and non-plastic silt, the threshold fines content can be defined as the non-plastic silt fines content at which the soil changes from sand-like behavior to silt-like behavior. Soils below the threshold fines content behave like sands and soils above the threshold fines content behave like silts. During cyclic triaxial and cyclic direct simple shear tests performed on specimens of sand and silt prepared to the same relative density but different fines contents, two rates of pore pressure generation were observed. When compared at five cycles of loading, soils with silt contents above the threshold fines content were found to produce pore pressure ratios as much as 50% higher than those observed for soils with silt contents below the threshold fines content. When evaluated in terms of cycles, cycle ratio, and dissipated energy ratio, the rate of pore pressure generation was found to be more rapid for soils above the threshold fines content than for soils below the threshold fines content. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

16 pages, 5958 KiB  
Article
Numerical Simulation of Vertical Cyclic Responses of a Bucket in Over-Consolidated Clay
by Jun Jiang, Chengxi Luo and Dong Wang
J. Mar. Sci. Eng. 2024, 12(8), 1319; https://doi.org/10.3390/jmse12081319 - 4 Aug 2024
Cited by 1 | Viewed by 1186
Abstract
Multi-bucket foundations have become an alternative for large offshore wind turbines, with the expansion of offshore wind energy into deeper waters. The vertical cyclic loading–displacement responses of the individual bucket of the tripod foundation are relevant to the deflection of multi-bucket foundations and [...] Read more.
Multi-bucket foundations have become an alternative for large offshore wind turbines, with the expansion of offshore wind energy into deeper waters. The vertical cyclic loading–displacement responses of the individual bucket of the tripod foundation are relevant to the deflection of multi-bucket foundations and crucial for serviceability design. Finite element analyses are used to investigate the responses of a bucket subjected to symmetric vertical cyclic loading in over-consolidated clay. The Undrained Cyclic Accumulation Model (UDCAM) is adopted to characterize the stress–strain properties of clay, the parameters of which are calibrated through monotonic and cyclic direct simple shear tests. The performance of the finite element (FE) model combined with UDCAM in simulating vertical displacement amplitudes is evaluated by comparison with existing centrifuge tests. Moreover, the impact of the bucket’s aspect ratio on vertical displacement amplitude is investigated through a parametric study. A predictive equation is proposed to estimate the vertical displacement amplitudes of bucket foundations with various aspect ratios, based on the cyclic displacement amplitude of a bucket with an aspect ratio of unity. Full article
(This article belongs to the Special Issue Advances in Marine Geological and Geotechnical Hazards)
Show Figures

Figure 1

19 pages, 7311 KiB  
Article
Derivation of Contour Plots for the Characterization of the Behaviour of Sand under Undrained Loading
by Jann-Eike Saathoff and Martin Achmus
Geotechnics 2024, 4(2), 530-548; https://doi.org/10.3390/geotechnics4020029 - 4 Jun 2024
Cited by 1 | Viewed by 1538
Abstract
The soil response under the inherent cyclic loading conditions when dealing with offshore foundations can be considered by using contour plots. These plots are derived from several cyclic laboratory tests and characterize the general cyclic soil behaviour. In the design process with explicit [...] Read more.
The soil response under the inherent cyclic loading conditions when dealing with offshore foundations can be considered by using contour plots. These plots are derived from several cyclic laboratory tests and characterize the general cyclic soil behaviour. In the design process with explicit numerical methods, such plots are needed in order to assess the soil behaviour under arbitrary loading conditions and hence estimate the cyclic foundation response. In the paper, excess pore pressure contour plots for a poorly graded medium sand are derived from numerous constant volume (CV) cyclic direct simple shear (DSS) tests and a new approach for parametrization of the plots is presented. Subsequently, the data are assessed regarding scaling for other sand soils, i.e., construction of contour plots with only a small number of test results by using the general trends observed. Full article
Show Figures

Figure 1

21 pages, 9518 KiB  
Article
Dissipated Energy and Pore Pressure Generation Patterns in Sands and Non-Plastic Silts Subjected to Cyclic Loadings
by Carmine P. Polito and James R. Martin
Geotechnics 2024, 4(1), 264-284; https://doi.org/10.3390/geotechnics4010014 - 29 Feb 2024
Cited by 3 | Viewed by 1233
Abstract
The factors that influence dissipated energy and pore pressure generation patterns with respect to the cycle ratio and dissipated energy ratio were analyzed using the results of cyclic triaxial and cyclic direct simple shear tests. These analyses revealed several interesting differences in pore [...] Read more.
The factors that influence dissipated energy and pore pressure generation patterns with respect to the cycle ratio and dissipated energy ratio were analyzed using the results of cyclic triaxial and cyclic direct simple shear tests. These analyses revealed several interesting differences in pore pressure generation patterns when related to cycle ratio than to dissipated energy ratio. Soils with different pore pressure generation patterns when plotted against the cycle ratio were found to have nearly identical pore pressure generation patterns when plotted against the dissipated energy ratio. The differences exist as the result of the fundamental differences between cycle ratio and dissipated energy ratio. The fundamental difference is that pore pressure generation is directly linked to the process of energy dissipation; it is not inherently linked to cycles of loading. Therefore, to achieve an understanding of the pore pressure response of a soil that is independent of the specifics of the applied loading, one needs to evaluate it in terms of energy dissipation, not in terms of cycles of loading, especially irregular loadings. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (2nd Edition))
Show Figures

Figure 1

19 pages, 11467 KiB  
Article
Macro–Meso Mechanical Behavior of Loose Sand under Multi-Directional Cyclic Simple Shear Tests
by Xing Dong, Jiaping Li, Yao Li, Zhe Wang and Ruida Han
Appl. Sci. 2023, 13(16), 9169; https://doi.org/10.3390/app13169169 - 11 Aug 2023
Cited by 1 | Viewed by 1695
Abstract
Loose sand samples under different complex shear paths and directions of consolidation shear stress were simulated using bi-directional simple shear DEM models. Liquefaction characteristics and corresponding meso-mechanisms were analyzed, and the following conclusions were drawn. Bi-directional cyclic shear stress accelerated the drop in [...] Read more.
Loose sand samples under different complex shear paths and directions of consolidation shear stress were simulated using bi-directional simple shear DEM models. Liquefaction characteristics and corresponding meso-mechanisms were analyzed, and the following conclusions were drawn. Bi-directional cyclic shear stress accelerated the drop in vertical stress, especially in the first and last cycles. Compared to uni-directional cyclic simple shear tests, the contact force between particles decreased faster in bi-directional cyclic simple shear tests. With an increased θ, the skeleton of the sample became unstable, and more particles were in a floating state, making the sample easier to liquefy. The mechanical coordination number decreased rapidly at the beginning and the end of shearing, and was relatively stable in the middle; it was around 4.2 when samples were liquefied. The magnitude of the anisotropy tensor gradually increased during shearing. Under bi-directional shear paths, the sample’s skeleton structure was subjected to a greater disturbance during the initial shear stage, caused damage to the particle skeleton and faster liquefaction. With an increased θ, the amplitude and peak value of the anisotropy tensor increased. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

19 pages, 12357 KiB  
Article
Pre- and Post-Liquefaction Behaviors of Manufactured Sand Considering the Particle Shape and Stress History Effects
by Zhe Wang, Guanyu Chen, Dazhi Wu, Yao Li and Juntao Hu
J. Mar. Sci. Eng. 2023, 11(4), 739; https://doi.org/10.3390/jmse11040739 - 29 Mar 2023
Cited by 2 | Viewed by 2018
Abstract
As the substitution of natural quartz sand (QS), manufactured sand (MS) is highly demanded in the filling and reclamation of foundations in geotechnical engineering, which may be subjected to cyclic shear stresses induced by wave, seismic, and traffic loadings. One of the noticeable [...] Read more.
As the substitution of natural quartz sand (QS), manufactured sand (MS) is highly demanded in the filling and reclamation of foundations in geotechnical engineering, which may be subjected to cyclic shear stresses induced by wave, seismic, and traffic loadings. One of the noticeable distinctions between MS and QS is their particle shape, which has a significant effect on their shear and liquefaction behaviors under the monotonic and cyclic shear stresses, and needs to be further investigated. In this study, the particle shapes of MS and QS were quantitatively characterized by metallurgical microscope tests and digital image processing. Their pre- and post-liquefaction behaviors were evaluated by a series of direct shear tests, cyclic simple shear tests (CSS), and post-liquefaction monotonic shear tests (PMS). The results show that in the CSS test, samples with irregular particles showed stronger liquefaction and shear resistances, indicating that MS was more stable under cyclic shear loadings. In the PMS tests, it was found that the liquefaction and shear resistances of the samples not only increased with the increasing particle irregularity but also with the increasing shear amplitude in the pre-liquefaction stage. Furthermore, quantitative relationships between the particle shape, shear history, and indexes of shear and liquefaction behaviors of the samples were proposed by regression analysis. The research findings could guide the application of MS in offshore and foundation engineering and provide a reference for the selection of MS and its foundation design. Full article
(This article belongs to the Special Issue Geological Environment and Engineering in Coastal Region)
Show Figures

Figure 1

20 pages, 6911 KiB  
Article
Development and Experimental Assessment of Friction-Type Shear Connectors for FRP Bridge Girders with Composite Concrete Decks
by William G. Davids, Dante Guzzi and Andrew P. Schanck
Materials 2022, 15(9), 3014; https://doi.org/10.3390/ma15093014 - 21 Apr 2022
Cited by 8 | Viewed by 2348
Abstract
This paper details the development and experimental assessment of a friction-type connector, designed to transfer shear flow between the top flange of a fiber-reinforced polymer (FRP) tub girder and a composite concrete deck for bridge applications. In contrast with previously used bearing-type connectors, [...] Read more.
This paper details the development and experimental assessment of a friction-type connector, designed to transfer shear flow between the top flange of a fiber-reinforced polymer (FRP) tub girder and a composite concrete deck for bridge applications. In contrast with previously used bearing-type connectors, this system relies on a deformed FRP surface to transfer shear via direct interlock with the concrete deck. The connector is materially efficient, simple to fabricate, can be used with lower-grade structural or stainless-steel fasteners, and provides a high degree of interface stiffness. Six compression-shear specimens were tested to assess the connector fatigue resistance and ultimate connection strength. Additionally, two short beam specimens were tested in three-point bending, one of which was subjected to fatigue loading. Based on the compression-shear tests and short beam tests, the connection exhibited strength exceeding that predicted by AASHTO for frictional concrete-concrete connections. The connection strengths were significantly greater than the factored demand required by AASHTO for a typical model FRP bridge girder. The cyclic loading of the connection in both compression-shear and beam bending showed that connection stiffness and strength do not significantly degrade, due to the application of 1 × 106 to 6 × 106 cycles of traffic-induced factored fatigue load. Full article
(This article belongs to the Special Issue Research on Mechanical Properties of Construction Materials)
Show Figures

Figure 1

24 pages, 5665 KiB  
Article
On the Dilatancy of Fine-Grained Soils
by Merita Tafili, Carlos Grandas Tavera, Theodoros Triantafyllidis and Torsten Wichtmann
Geotechnics 2021, 1(1), 192-215; https://doi.org/10.3390/geotechnics1010010 - 31 Aug 2021
Cited by 12 | Viewed by 6283
Abstract
A new evaluation method for the dilatancy of fine-grained soils based on monotonic and cyclic undrained triaxial tests has been established using two elasticity approaches: isotropic and transverse isotropic hypoelasticity. The evaluation of two clays, Kaolin and Lower Rhine Clay, with the new [...] Read more.
A new evaluation method for the dilatancy of fine-grained soils based on monotonic and cyclic undrained triaxial tests has been established using two elasticity approaches: isotropic and transverse isotropic hypoelasticity. The evaluation of two clays, Kaolin and Lower Rhine Clay, with the new method also shows that the dilatancy of fine-grained soils is dependent on the stress ratio, the void ratio, and the straining direction along with the intrinsic material parameters. Similar to sand, we can observe a Phase Transformation Line beyond which further shearing induces a volume increase. A generalization of the Taylor dilatancy rule from direct shear to multiaxial space is established, and an extension accounting for the behaviour of soft soils is proposed. We formulate a simple hypoplastic constitutive relation with a modified flow rule that reproduces the observed dilatant as well as contractant behaviour. Some simulations of monotonic as well as cyclic tests prove the accurate performance of the proposed dilatancy relation. Full article
Show Figures

Figure 1

12 pages, 4687 KiB  
Article
Dynamic Properties of Granulated Rubber Using Different Laboratory Tests
by Ahmed Moussa, Hany El Naggar and Abouzar Sadrekarimi
Buildings 2021, 11(5), 186; https://doi.org/10.3390/buildings11050186 - 28 Apr 2021
Cited by 4 | Viewed by 2941
Abstract
Due to the socio-environmental hazards arising from the stockpiling of disposed scrap tires, the necessity to utilize such material in civil construction and other applications is deemed mandatory. The lightweight of rubber and its high damping capacity are excellent properties of a geomaterial [...] Read more.
Due to the socio-environmental hazards arising from the stockpiling of disposed scrap tires, the necessity to utilize such material in civil construction and other applications is deemed mandatory. The lightweight of rubber and its high damping capacity are excellent properties of a geomaterial that could be used successfully in seismic isolation and vibration damping applications in civil construction. Scrap tires could be shredded into specific sizes, and their category and application depend on their particle size range. Thus, understanding the dynamic properties and behavior of shredded scrap tires under cyclic loading is of paramount importance. In this study, the dynamic characteristics of granulated rubbers (<12 mm) are investigated using cyclic triaxial and cyclic direct simple shear tests. The effect of using different testing techniques, i.e., cyclic triaxial test (CTT) and cyclic simple shear test (CSST), on the dynamic properties of granulated rubber material is further addressed. Undrained cyclic triaxial and constant-volume direct simple shear tests are conducted on granulated rubber samples under vertical consolidation stresses of 25, 50, 100 and 200 kPa at a frequency of 0.5 Hz. The shear strain amplitude is varied from 0.01% to 10%. Furthermore, the variations of shear modulus and damping ratio with shear strain amplitude are presented. In addition, the obtained dynamic properties from this study are compared with existing experimental data from the literature. It was found that the ranges of shear moduli of granulated rubber from the CTT and CSST are 278 to 2647 kPa and 85 to 2270 kPa, respectively. Moreover, the damping ratios obtained from CTT were higher than those from CSST at shear strains of less than 1%. The damping ratio of granulated rubber was also found to be independent of the vertical consolidation stress. Full article
(This article belongs to the Collection Utilization of Waste Materials in Building Engineering)
Show Figures

Figure 1

19 pages, 6276 KiB  
Article
Dynamic Analysis of a Spring-Asphalt Three-Dimensional Isolation System Based on Cyclic Simple Shear and Shaking Table Tests
by Shouping Shang and Zhen Wang
Appl. Sci. 2020, 10(18), 6530; https://doi.org/10.3390/app10186530 - 18 Sep 2020
Cited by 3 | Viewed by 2325
Abstract
Damping is one of the important issues related to isolated structures, including the newly proposed low-cost spring-asphalt isolation system. In this study, the damping properties of the system in terms of displacement dependence, frequency dependence and temperature dependence were studied by a cyclic [...] Read more.
Damping is one of the important issues related to isolated structures, including the newly proposed low-cost spring-asphalt isolation system. In this study, the damping properties of the system in terms of displacement dependence, frequency dependence and temperature dependence were studied by a cyclic simple shear experiment. Then, the direct least-square method was used to identify the damping properties from the experimental data. Furthermore, to validate the effectiveness of the damping device, a modal analysis was conducted based on multi-dimensional shaking table tests. The results indicate that (1) the hysteretic curves are similar to an ellipse, which means that the asphalt shows characteristics of viscoelastic materials; (2) the damping properties are positively related to the loading frequency and inversely related to the temperature and displacement; and (3) asphalt can provide adequate damping and reduce the displacements of the superstructure by nearly half. On the basis of the experimental test results, an analysis of the modal information with multi-dimensional input is also presented. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

26 pages, 13166 KiB  
Article
Assessment of Pohang Earthquake-Induced Liquefaction at Youngil-Man Port Using the UBCSAND2 Model
by Nhat-Phi Doan, Sung-Sik Park and Dong-Eun Lee
Appl. Sci. 2020, 10(16), 5424; https://doi.org/10.3390/app10165424 - 5 Aug 2020
Cited by 11 | Viewed by 4377
Abstract
The practical constitutive model UBCSAND2, which combines two-mobilized planes—a maximum shear stress plane and a horizontal plane within a framework of classical plasticity approach—is used to incorporate shear-induced effects in both loading and unloading as well as principal stress rotation effects. UBCSAND2 was [...] Read more.
The practical constitutive model UBCSAND2, which combines two-mobilized planes—a maximum shear stress plane and a horizontal plane within a framework of classical plasticity approach—is used to incorporate shear-induced effects in both loading and unloading as well as principal stress rotation effects. UBCSAND2 was calibrated by capturing cyclic direct simple shear (CDSS) test results of Pohang sand, which was collected from liquefied paddy fields due to the 2017 Pohang earthquake (Mw = 5.4) in South Korea. The model procedure focuses on simple shear condition because it best simulates field conditions under earthquake loading. The calibrated UBCSAND2 model is then used to assess the liquefaction-induced damages that occurred at the quay wall and backfill layer in Youngil-man port near the epicenter of the Pohang earthquake. The numerical results show that liquefaction mostly occurred in silty sand layers, in which the excess pore pressure ratio reached almost one. The estimated displacements of the quay wall and the predicted settlement of reclaimed area obtained from the analysis were in good agreement with those obtained from field measurements. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

15 pages, 3975 KiB  
Article
Effect of Cyclic Loading Frequency on Liquefaction Prediction of Sand
by Zhenzhen Nong, Sung-Sik Park, Sueng-Won Jeong and Dong-Eun Lee
Appl. Sci. 2020, 10(13), 4502; https://doi.org/10.3390/app10134502 - 29 Jun 2020
Cited by 49 | Viewed by 6406
Abstract
The frequency of ground motions during earthquakes is typically in the order of a few hertz. As the earthquake-induced liquefaction of soils is widely assessed by performing laboratory tests, it is necessary to consider various loading frequencies generated by real earthquakes. The effect [...] Read more.
The frequency of ground motions during earthquakes is typically in the order of a few hertz. As the earthquake-induced liquefaction of soils is widely assessed by performing laboratory tests, it is necessary to consider various loading frequencies generated by real earthquakes. The effect of loading frequency has been studied by cyclic triaxial tests; however, it has rarely been investigated by cyclic direct simple shear tests, which are more similar to the cyclic loading conditions associated with earthquakes. In this study, a series of cyclic direct simple shear tests were performed on clean sand with a relative density (Dr) of 40% (loose sand) and 80% (dense sand), obtained from Nakdong River. The parameters considered are the initial vertical effective stresses (σv0′ = 50, 100, and 200 kPa) and the loading frequencies (f = 0.05, 0.1, 0.5, and 1 Hz) to evaluate the effect of the loading frequency on the liquefaction prediction of clean sand. The results showed that the liquefaction resistance of the sand increases with the increase in the loading frequency, regardless of the initial vertical effective stress and relative density. When the loading frequency increased from 0.1 to 0.5 or 1 Hz, the maximum increase in the cyclic resistances were 15%, and 19% for loose and dense sand, respectively. For a given loading frequency, the liquefaction resistance of the sand decreased when the initial vertical effective stress increased. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

19 pages, 5968 KiB  
Article
An Experimental Study on the Shear Hysteresis and Energy Dissipation of the Steel Frame with a Trapezoidal-Corrugated Steel Plate
by Sudeok Shon, Mina Yoo and Seungjae Lee
Materials 2017, 10(3), 261; https://doi.org/10.3390/ma10030261 - 6 Mar 2017
Cited by 33 | Viewed by 5195
Abstract
The steel frame reinforced with steel shear wall is a lateral load resisting system and has higher strength and shear performance than the concrete shear wall system. Especially, using corrugated steel plates in these shear wall systems improves out-of-plane stiffness and flexibility in [...] Read more.
The steel frame reinforced with steel shear wall is a lateral load resisting system and has higher strength and shear performance than the concrete shear wall system. Especially, using corrugated steel plates in these shear wall systems improves out-of-plane stiffness and flexibility in the deformation along the corrugation. In this paper, a cyclic loading test of this steel frame reinforced with trapezoidal-corrugated steel plate was performed to evaluate the structural performance. The hysteresis behavior and the energy dissipation capacity of the steel frame were also compared according to the corrugated direction of the plate. For the test, one simple frame model without the wall and two frame models reinforced with the plate are considered and designed. The test results showed that the model reinforced with the corrugated steel plate had a greater accumulated energy dissipation capacity than the experimental result of the non-reinforced model. Furthermore, the energy dissipation curves of two reinforced frame models, which have different corrugated directions, produced similar results. Full article
Show Figures

Figure 1

Back to TopTop