Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (125)

Search Parameters:
Keywords = cyanobacterial harmful algal blooms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 591 KB  
Review
Microorganism-Based Strategies for the Control of Cyanobacterial Blooms: A Review of Recent Progress
by Wangle Zhang, Shiyuan Meng, Xiaoxu Wu, Hong Shen, Dongqin Wang, Tong Qiu, Weijie Li, Jiping Chen, Ling Li, Bingbing Liang, Mengdi Zhao, Xuwei Deng and Chi Zhou
Toxins 2025, 17(12), 604; https://doi.org/10.3390/toxins17120604 - 17 Dec 2025
Viewed by 296
Abstract
Cyanobacterial blooms, which are increasingly exacerbated by eutrophication and climate change, pose threats to ecosystems and public health. This paper systematically reviews recent advances in microbial intervention strategies for controlling cyanobacterial blooms. Current approaches primarily comprise direct lysis methods, indirect suppression methods, and [...] Read more.
Cyanobacterial blooms, which are increasingly exacerbated by eutrophication and climate change, pose threats to ecosystems and public health. This paper systematically reviews recent advances in microbial intervention strategies for controlling cyanobacterial blooms. Current approaches primarily comprise direct lysis methods, indirect suppression methods, and integrated strategies. Direct algicide methods rapidly lyse cyanobacterial cells and degrade toxins, although their application is constrained by environmental sensitivity and host specificity. Indirect approaches offer sustainable preventive strategies by inhibiting cyanobacterial growth, yet require careful environmental management. Integrated methods combine microbial strategies with other technologies, enhancing both the efficiency and ecological safety of managing cyanobacterial blooms. While microbial strategies demonstrate significant potential, practical implementation faces challenges, including environmental adaptability, ecological safety, and regulatory frameworks. Future research should focus on integrating synthetic biology, intelligent delivery systems, and multi-omics technologies to achieve more effective and environmentally friendly management of cyanobacterial blooms. Full article
Show Figures

Figure 1

16 pages, 2562 KB  
Article
Pollution Governance in the Lake Taihu Basin: Achievements and Challenges
by Binbin Wu, Lachun Wang, Boqiang Qin and Mengyuan Zhu
Sustainability 2025, 17(24), 11192; https://doi.org/10.3390/su172411192 - 14 Dec 2025
Viewed by 421
Abstract
Following the drinking water crisis induced by harmful algal blooms in Lake Taihu in 2007, industrial restructuring and systematic pollution treatment projects were synchronously conducted to control pollutions in Lake Taihu basin. This paper conducts a systematic review of integrated pollution governance in [...] Read more.
Following the drinking water crisis induced by harmful algal blooms in Lake Taihu in 2007, industrial restructuring and systematic pollution treatment projects were synchronously conducted to control pollutions in Lake Taihu basin. This paper conducts a systematic review of integrated pollution governance in the Lake Taihu Basin to conduct an exploration of sustainability in developing areas. Critical assessment of the conceptual frameworks and implementation strategies from the aspects of governance concept, technology application and environmental benefits have been made through multi-year water quality monitoring. The results showed that the total nitrogen (TN) and total phosphorous (TP) loads entering the lake decreased by 45.6% and 36.6% in 2008–2023, and the water quality of Lake Tiahu and all 15 major inflow rivers met or exceeded Grade III standards in 2024, according to the National Standard for Surface Water Quality. The lake ecosystem has showed signs of restoration via a decline in the extent and intensity of toxic cyanobacterial bloom. At same time, the local economics have been developed without halting due to the pollution governance, which demonstrates a feasible pathway for both pollution management and economic development. This synergistic governance with both soft and hard measures implemented in Lake Taihu basin has reference significance for other developing countries toward sustainability around the world. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

17 pages, 2557 KB  
Article
In Situ Water Quality Monitoring for the Assessment of Algae and Harmful Substances in Water Bodies with Consideration of Uncertainties
by Stefanie Penzel, Thomas Mayer, Helko Borsdorf, Mathias Rudolph and Olfa Kanoun
Sensors 2025, 25(22), 7055; https://doi.org/10.3390/s25227055 - 19 Nov 2025
Viewed by 498
Abstract
Harmful algal blooms, particularly those caused by cyanobacteria (blue-green algae) and green algae, pose an increasing risk to aquatic ecosystems and public health. This risk is intensified by climate change and nutrient pollution. This study presents a methodology for in situ monitoring and [...] Read more.
Harmful algal blooms, particularly those caused by cyanobacteria (blue-green algae) and green algae, pose an increasing risk to aquatic ecosystems and public health. This risk is intensified by climate change and nutrient pollution. This study presents a methodology for in situ monitoring and assessment of algal contamination in surface waters, combining UV/Vis and fluorescence spectroscopy with a fuzzy pattern classifier for consideration of uncertainties. The system incorporates detailed data pre-processing to minimise measurement uncertainty and uses full-spectrum feature extraction to enhance classification accuracy. To assess the methodology under both controlled and real-world conditions, a mobile submersible probe was tested alongside a laboratory setup. The results demonstrate a high degree of agreement between the two systems, showing particular sensitivity to biological signals, such as the presence of algae. The assessment method successfully identified cyanobacterial and green algal contamination, and its predictions aligned with external observations, such as official warnings and environmental changes. By explicitly accounting for measurement uncertainty and employing a comprehensive spectral analysis approach, the system offers robust and adaptable monitoring capabilities. These findings highlight the potential for scalable, field-deployable solutions for the early detection of harmful algal blooms. Full article
(This article belongs to the Special Issue Sensors for Water Quality Monitoring and Assessment)
Show Figures

Graphical abstract

19 pages, 2100 KB  
Article
Prodigiosin as an Algicidal Agent: Inhibition of Pigment Accumulation and Photosynthetic Efficiency of Cyanobacteria Involved in Algal Blooms
by Chaobo Zhang, Chengshuai Xu, Zhenxia Zhu, Xiu Zhang, Zhaoan Shao, Zhenhui Yu, Zhangdi Zheng, Yijie Wang, Yadong Wang, Yujie Chen, Wei Xu and Jie Cheng
Microorganisms 2025, 13(11), 2569; https://doi.org/10.3390/microorganisms13112569 - 11 Nov 2025
Viewed by 481
Abstract
Eutrophication facilitates the proliferation of cyanobacteria, ultimately leading to the formation of harmful cyanobacterial blooms. Prodigiosin, known for its algicidal properties, presents significant potential for application in water pollution remediation. This study aims to identify and characterize a novel strain with superior prodigiosin [...] Read more.
Eutrophication facilitates the proliferation of cyanobacteria, ultimately leading to the formation of harmful cyanobacterial blooms. Prodigiosin, known for its algicidal properties, presents significant potential for application in water pollution remediation. This study aims to identify and characterize a novel strain with superior prodigiosin production capabilities and to elucidate the algicidal mechanism of prodigiosin against Microcystis aeruginosa and Anabaena sp. by assessing the photosynthetic responses of algal cells in the presence of prodigiosin. The findings revealed the isolation and identification of a new strain, ZC52, classified as Serratia marcescens. The optimal medium composition was determined to be 20.0 mL·L−1 glycerol, 15.0 g·L−1 beef bone peptone, 15.0 g·L−1 magnesium sulfate heptahydrate, 0.15 g·L−1 corn dry powder, and 0.250% tyrosine, resulting in a 47.40% increase in prodigiosin yield, thereby achieving a production level of 7.644 g·L−1. Moreover, the algicidal activity exhibited a concentration-dependent relationship, with 10.0 mg·L−1 of prodigiosin leading to approximately 53.25% and 30.44% inhibition of chlorophyll a content within 24 h, demonstrating the potential of prodigiosin as an effective algicidal compound. Meanwhile, exposure to 10.0 mg·L−1 of prodigiosin resulted in reductions of 46.88% and 21.02% in the Fv/Fm values of M. aeruginosa and Anabaena sp., respectively. Our results indicated that prodigiosin can inhibit the accumulation of photosynthetic pigments and significantly diminish algal photosynthetic efficiency. This study not only identifies valuable microbial resources for prodigiosin production but also provides a theoretical framework and empirical evidence to support the scientific management of cyanobacterial blooms. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

13 pages, 2559 KB  
Article
Isolation and Characterization of a High-Efficiency Algicidal Bacterium Streptomyces violaceorubidus lzh-14 Against the Harmful Cyanobacteria Microcystis aeruginosa
by Zhe Zhao, Dongying Zhao, Yutong Wu, Yibing Zhao, Jie Qu, Wentao Zheng, Lei Fang, Junhuan Gao, Fei Liu, Jihua Wang and Zhenghua Li
Fermentation 2025, 11(10), 596; https://doi.org/10.3390/fermentation11100596 - 17 Oct 2025
Viewed by 1255
Abstract
Harmful cyanobacterial blooms (HABs), primarily composed of toxic cyanobacteria like Microcystis aeruginosa, pose a significant threat to aquatic ecosystems and human health. Algicidal bacteria had emerged as a promising strategy for HAB control due to their safety and efficacy. In this study, [...] Read more.
Harmful cyanobacterial blooms (HABs), primarily composed of toxic cyanobacteria like Microcystis aeruginosa, pose a significant threat to aquatic ecosystems and human health. Algicidal bacteria had emerged as a promising strategy for HAB control due to their safety and efficacy. In this study, the algicidal bacterium Streptomyces violaceorubidus lzh-14, isolated from Cha Lake in Dezhou, China, exhibited strong algicidal activity against M. aeruginosa. When bacterial culture was added to algal cultures at a final volume ratio of 10% (v/v), the algicidal activity reached 94.5% ± 1.8% after 72 h. Moreover, S. violaceorubidus lzh-14 showed varying degrees of algicidal activity against other tested cyanobacterial species. Microscopic observation revealed that M. aeruginosa cells treated with lzh-14 became deformed and ruptured, resulting in the leakage of cellular contents. The algicidal substance extracted from S. violaceorubidus lzh-14 demonstrated strong stability under varying temperatures and pH conditions. Based on these findings, algicidal powder was preliminarily developed. This study confirms that S. violaceorubidus lzh-14 and its active substance have potential as effective biocontrol agents against HABs. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

20 pages, 490 KB  
Review
Checklist of Potentially Harmful Cyanobacterial Species Isolated from Portuguese Water Bodies
by Daniela R. de Figueiredo
Phycology 2025, 5(3), 47; https://doi.org/10.3390/phycology5030047 - 15 Sep 2025
Viewed by 961
Abstract
HCBs (Harmful Cyanobacterial Blooms) are increasing in freshwaters across the globe, particularly at lower latitudes. In Southern Europe, a decrease in annual precipitation and an increase in drought periods have enhanced the occurrence of HCBs, impacting both freshwater ecosystems and human health. This [...] Read more.
HCBs (Harmful Cyanobacterial Blooms) are increasing in freshwaters across the globe, particularly at lower latitudes. In Southern Europe, a decrease in annual precipitation and an increase in drought periods have enhanced the occurrence of HCBs, impacting both freshwater ecosystems and human health. This review gathers information on isolated cyanobacterial strains with the potential to form cyanobacterial blooms or to be toxic that have been reported over the past half-century in Portugal. Strains of Microcystis aeruginosa are the most represented ones, many of them microcystin producers. Toxic M. aeruginosa strains have been isolated from lakes (Mira, Barrinha de Mira, and Blue), river sections (Tâmega and Guadiana), and reservoirs (Torrão, Vilar, Montargil, Patudos, Caia, Monte da Barca, Corgas, and Magos). Many other strains from potentially toxic species are listed, namely from Aphanizomenon gracile, Aphanizomenon flos-aquae, Sphaerospermopsis aphanizomenoides, Cuspidothrix issatschenkoi, Dolichospermum flos-aquae, Dolichospermum circinalis, Chrysosporum bergii, Raphidiopsis raciborskii or Planktothrix agardhii. Many of the isolated strains were able to produce cyanotoxins such as microcystins, saxitoxins, cylindrospermopsin, or anatoxin. Most isolates belong to the Portuguese culture collections ESSACC (Estela Sousa e Silva Algal Culture Collection); LEGE-CC (Blue Biotechnology and Ecotoxicology Culture Collection); and ACOI (Coimbra Collection of Algae). Despite many strains already having associated molecular data corroborating a correct identification, a large number of strains are still lacking DNA-based information for phylogenetic affiliation. The present checklist is intended to facilitate access to information regarding strains of potentially toxic cyanobacterial species from Portugal in order to contribute to a better understanding of species-specific HCBs at both regional and global scales. Full article
31 pages, 12038 KB  
Article
Co-Occurrence of Toxic Bloom-Forming Cyanobacteria Planktothrix, Cyanophage, and Symbiotic Bacteria in Ohio Water Treatment Waste: Implications for Harmful Algal Bloom Management
by Angela Brooke Davis, Morgan Evans, Katelyn McKindles and Jiyoung Lee
Toxins 2025, 17(9), 450; https://doi.org/10.3390/toxins17090450 - 5 Sep 2025
Viewed by 1242
Abstract
Cyanobacterial blooms are increasingly becoming more intense and frequent, posing a public health threat globally. Drinking water treatment plants that rely on algal bloom-affected waters may create waste (water treatment residuals, WTRs) that concentrates contaminants. Source waters may contain harmful cyanobacteria, cyanophages (bacteriophages [...] Read more.
Cyanobacterial blooms are increasingly becoming more intense and frequent, posing a public health threat globally. Drinking water treatment plants that rely on algal bloom-affected waters may create waste (water treatment residuals, WTRs) that concentrates contaminants. Source waters may contain harmful cyanobacteria, cyanophages (bacteriophages that infect cyanobacteria), and bacteria. Cyanophages are known to affect bloom formation and growth dynamics, so there is a need to understand viral-host dynamics between phage and bacteria in these ecosystems for managing cyanobacteria. This study isolated and characterized lytic cyanophages from WTRs of a HAB-affected lake in Ohio that infect toxic bloom-forming filamentous cyanobacteria Planktothrix agardhii. Phage infections in the Lake Erie cyanobacteria culture were examined visually and via microscopy and fluorometry. Whole genome sequencing and metagenomic analyses were also conducted. Observed changes in Planktothrix included sheared and shriveled filaments, reduced clumping, and buoyancy changes. Photosynthetic pigmentation was unexpectedly more apparent during phage infection. Metagenomic analyses identified nineteen phages and seven other co-existing bacterial genera. Annotated bacterial genomes contained metabolic pathways that may influence phage infection efficiency. Viral genomes were successfully tied to microbial hosts, and annotations identified important viral infection proteins. This study examines cyanobacterial-phage interactions that may have potential for bioremedial applications. Full article
Show Figures

Figure 1

20 pages, 6101 KB  
Article
Inhibitory Effects of Artemisia argyi Extracts on Microcystis aeruginosa: Anti-Algal Mechanisms and Main Allelochemicals
by Jiajia Dong, Peng Li, Yalei Du, Lingling Cao and Zhiqiang Yan
Biology 2025, 14(9), 1141; https://doi.org/10.3390/biology14091141 - 29 Aug 2025
Cited by 2 | Viewed by 866
Abstract
Harmful cyanobacterial blooms (CyanoHABs) threaten freshwater ecosystems and human health. Inhibiting cyanobacteria through plant allelopathy is an effective and environmentally friendly approach for CyanoHAB control. In this study, we evaluated the inhibitory activities of several organic solvent extracts from Artemisia argyi against the [...] Read more.
Harmful cyanobacterial blooms (CyanoHABs) threaten freshwater ecosystems and human health. Inhibiting cyanobacteria through plant allelopathy is an effective and environmentally friendly approach for CyanoHAB control. In this study, we evaluated the inhibitory activities of several organic solvent extracts from Artemisia argyi against the common bloom-forming cyanobacterium Microcystis aeruginosa, explored the anti-algal mechanism of the active fraction, analyzed its secondary metabolites using liquid chromatography–high-resolution mass spectrometry (LC-HRMS), and screened the potential allelochemicals. The results showed that the crude extract of A. argyi leaves (CE) exhibited significant inhibitory effects on M. aeruginosa. Among several solvent fractions of CE, the dichloromethane extract (DE) demonstrated the strongest inhibitory effect, with a 7-day IC50 of 70.43 mg/L. After treatment with DE, the contents of chlorophyll a (Chl a), carotenoids, and phycobiliproteins (PBPs) in M. aeruginosa were significantly reduced. Meanwhile, an excessive accumulation of reactive oxygen species (ROS), reduction of catalase (CAT) activity, increase in malondialdehyde (MDA) content, and shrinkage of the membrane were found in M. aeruginosa cells under DE treatments. There were 81 secondary metabolites annotated in DE by LC-HRMS. Among them, hispidulin, jaceosidin, 5,7,3′-trihydroxy-6,4′,5′-trimethoxyflavone, and eupatilin possessed strong inhibitory activities, with 7-day IC50 values of 26.23, 27.62, 32.02, and 34.98 mg/L, respectively. These results indicated that the A. argyi extracts possess significant allelopathic activities on M. aeruginosa, and DE was identified as the primary active fraction. It inhibits algae growth by suppressing photosynthesis and inducing peroxidation, ultimately leading to cell death. Flavonoids in DE were the main allelochemicals responsible for the inhibition on algae of A. argyi extracts. Full article
Show Figures

Figure 1

13 pages, 1593 KB  
Review
Airborne Algae and Cyanobacteria Originating from Lakes: Formation Mechanisms, Influencing Factors, and Potential Health Risks
by Xiaoming Liu, Tingfu Li, Yuqi Qiu, Changliang Nie, Xiaoling Nie and Xueyun Geng
Microorganisms 2025, 13(7), 1702; https://doi.org/10.3390/microorganisms13071702 - 20 Jul 2025
Viewed by 1428
Abstract
Algal and cyanobacterial blooms are anticipated to increase in frequency, duration, and geographic extent as a result of environmental changes, including climate warming, elevated nutrient concentrations, and increased runoff in both marine and freshwater ecosystems. The eutrophication of aquatic environments represents a substantial [...] Read more.
Algal and cyanobacterial blooms are anticipated to increase in frequency, duration, and geographic extent as a result of environmental changes, including climate warming, elevated nutrient concentrations, and increased runoff in both marine and freshwater ecosystems. The eutrophication of aquatic environments represents a substantial threat to human health. As eutrophication progresses, airborne algae and cyanobacteria, particularly harmful genera originating from aquatic environments, are released into the atmosphere and may pose potential risks to human health. Furthermore, respiratory distress has been documented in individuals exposed to aerosols containing harmful algal bloom (HAB) toxins. This review investigates the generation of aerosolised harmful algal blooms, their responses to environmental factors, and their associated health risks. Evidence suggests that airborne algae, cyanobacteria, and their toxins are widespread. When these are aerosolised into micrometre-sized particles, they become susceptible to atmospheric processing, which may degrade the HAB toxins and produce byproducts with differing potencies compared to the parent compounds. Inhalation of aerosolised HAB toxins, especially when combined with co-morbid factors such as exposure to air pollutants, could present a significant health risk to a considerable proportion of the global population. A more comprehensive understanding of the chemical transformations of these toxins and the composition of harmful algal and cyanobacterial communities can improve public safety. Full article
(This article belongs to the Special Issue Research on Airborne Microbial Communities)
Show Figures

Figure 1

17 pages, 4387 KB  
Article
Algal Community Dynamics in Three Water Intakes of Poyang Lake: Implications for Drinking Water Safety and Management Strategies
by Bo Li, Jing Li, Yuehang Hu, Shaozhe Cheng, Shouchun Li and Xuezhi Zhang
Water 2025, 17(13), 2034; https://doi.org/10.3390/w17132034 - 7 Jul 2025
Cited by 2 | Viewed by 1088
Abstract
This study aimed to investigate phytoplankton dynamics and water quality at three drinking water intakes (Duchang, Hukou, and Xingzi) in Poyang Lake through monthly monitoring from May 2023 to April 2024. The results showed that a total of 168 species of phytoplankton were [...] Read more.
This study aimed to investigate phytoplankton dynamics and water quality at three drinking water intakes (Duchang, Hukou, and Xingzi) in Poyang Lake through monthly monitoring from May 2023 to April 2024. The results showed that a total of 168 species of phytoplankton were identified in nine phyla, and there were significant spatial and temporal differences in the abundance of phytoplankton at the three waterworks intakes, with a spatial trend of annual mean values of Duchang > Xingzi > Hukou and a seasonal trend of summer and autumn > spring and winter. The dominant species of phytoplankton in the waterworks intakes of the three waterworks also showed obvious spatial and temporal differences. Cyanobacteria (particularly Pseudanabaena sp. and Microcystis sp.) dominated the phytoplankton communities during summer and autumn, demonstrating significant water degradation potential. In contrast, Cyclotella sp. prevailed in winter and spring assemblages. Based on water quality assessments at the three intake sites, the Duchang County intake exhibited year-round mild eutrophication with persistent mild cyanobacterial blooms (June–October), while the other two sites maintained no obvious bloom conditions. Further analyzing the toxic/odor-producing algal strains, the numbers of dominant species of Pseudanabaena sp. and Microcystis sp. in June–October in Duchang County both exceeded 1.0 × 107 cells·L−1. It is necessary to focus on their release of ATX-a (ichthyotoxin-a), 2MIB (2-Methylisoborneol), MCs (microcystins), etc., to ensure the safety of the water supply at the intake. Building upon these findings, we propose a generalized algal monitoring framework, encompassing three operational pillars: (1) key monitoring area identification, (2) high-risk period determination, and (3) harmful algal warnings. Each of these is substantiated by our empirical observations in Poyang Lake. Full article
(This article belongs to the Special Issue Freshwater Species: Status, Monitoring and Assessment)
Show Figures

Graphical abstract

18 pages, 2183 KB  
Article
Using an Ultraviolet-Enabled Boat to Reduce Microcystin and Suppress Cyanobacterial Growth in Harmful Algal Bloom-Impacted Surface Waters
by Taylor Rycroft, Brianna Fernando and Michael L. Mayo
Appl. Sci. 2025, 15(12), 6765; https://doi.org/10.3390/app15126765 - 16 Jun 2025
Viewed by 1115
Abstract
Numerous remediation strategies exist for cyanobacterial harmful algal blooms (cyanoHABs); however, most are limited by challenges of scalability and adverse off-target effects on the surrounding ecosystem. Germicidal ultraviolet light (UV-C) has emerged as a promising method for suppressing cyanoHABs in a sustainable, chemical-free [...] Read more.
Numerous remediation strategies exist for cyanobacterial harmful algal blooms (cyanoHABs); however, most are limited by challenges of scalability and adverse off-target effects on the surrounding ecosystem. Germicidal ultraviolet light (UV-C) has emerged as a promising method for suppressing cyanoHABs in a sustainable, chemical-free manner that is both scalable and results in limited off-target ecological effects in the surrounding area. In this study, the US Army Engineer Research and Development Center’s (ERDC)’s CyanoSTUNTM (Cyanobacterial Suppression Through Ultraviolet-Light-C Neutralization) vessel was deployed to a cyanoHAB as part of a field trial to determine whether UV-C could effectively suppress cellular growth, degrade associated cyanotoxins, and inhibit harmful phytoplankton species more readily than beneficial species without the addition of chemicals. The cyanoHAB exhibited an average cyanobacteria abundance of 3.75 × 105 cells/mL (n = 5, SD = 6.76 × 104 cells/mL) and average total microcystin concentration of 3.5 µg/L (n = 5; SD = 0.24 µg/L). Pre- and post-treatment samples were collected and re-grown for 9 days in the laboratory to observe differences in microcystin, chlorophyll a, and phycocyanin concentrations, optical density, cell density, and community composition. The results of the field trial showed that the CyanoSTUN UV-C treatment effectively suppressed the growth of the cyanobacteria community for approximately two days at the three tested UV-C doses. The CyanoSTUN UV-C treatment also demonstrated a sustained, dose-dependent effect on microcystin concentration; the average reduction in microcystin concentration for 15, 30, and 45 mJ/cm2 treatment doses was 31.6% (n = 10, SD = 20.1%; 1.3 µg/L reduced), 45.7% (n = 10, SD = 10.8%; 1.9 µg/L reduced), and 49.9% (n = 10, SD = 8.2%; 1.7 µg/L reduced), respectively, over the 9-day regrowth period. Non-cyanobacteria were too scarce in this CyanoHAB to conclude whether the CyanoSTUN UV-C inhibits harmful phytoplankton species more readily than beneficial species. Further field studies with the CyanoSTUNTM are required to validate performance under more severe cyanoHAB conditions, however the results reported herein from the first field trial with the CyanoSTUNTM suggest that this treatment method may offer water managers confronted with a CyanoHAB the ability to rapidly and safely pause a bloom for multiple days and reduce the risks posed by its associated cyanotoxins without adding chemicals. Full article
Show Figures

Figure 1

14 pages, 263 KB  
Article
Evaluating Bias in Self-Reported Symptoms During a Cyanobacterial Algal Bloom
by John S. Reif, Rebecca Koszalinski, Malcolm M. McFarland, Michael L. Parsons, Rachael Schinbeckler, Judyta Kociolek, Alex Rockenstyre and Adam M. Schaefer
Toxins 2025, 17(6), 287; https://doi.org/10.3390/toxins17060287 - 6 Jun 2025
Viewed by 1185
Abstract
Algal blooms produced by cyanobacteria liberate microcystins and other toxins that create a public health hazard. During the 2018 bloom of Microcystis aeruginosa in Florida, USA, residential and recreational exposures were associated with an increased risk of self-reporting respiratory, gastrointestinal, or ocular symptoms [...] Read more.
Algal blooms produced by cyanobacteria liberate microcystins and other toxins that create a public health hazard. During the 2018 bloom of Microcystis aeruginosa in Florida, USA, residential and recreational exposures were associated with an increased risk of self-reporting respiratory, gastrointestinal, or ocular symptoms for 125 participants. Subsequently, 207 persons were interviewed between 2019 and 2024 in the absence of large-scale algal blooms and were considered non-exposed. Analyses of cyanotoxins and brevetoxins in water and air showed only intermittent, background levels of toxins during the non-bloom period. The purpose of this report was to compare symptom reporting between active bloom and non-bloom periods. The assessment of information bias from self-reported symptoms is an important issue in epidemiologic studies of harmful algal blooms. During the non-bloom period, no statistically significant associations with residential, recreational, or occupational exposures were found for any symptom group. Estimated risks for respiratory, gastrointestinal, and ocular symptoms, headache, and skin rash were significantly higher for persons sampled during the bloom than the non-bloom period with odds ratios (ORs) of 2.3 to 8.3. ORs for specific respiratory symptoms were also significantly elevated. After adjustment for confounders and multiple exposures in multivariable analyses, the differences in symptom reporting between bloom and non-bloom periods remained statistically significant. In summary, the use of self-reported symptoms in this epidemiologic study of exposure to a cyanobacterial algal bloom did not appear to introduce substantial information bias. Full article
(This article belongs to the Special Issue Prospective Studies on Harmful Cyanobacteria and Cyanotoxins)
13 pages, 5084 KB  
Article
Comparative Ecotoxicological Effects of Cyanobacterial Crude Extracts on Native Tropical Cladocerans and Daphnia magna
by Cesar Alejandro Zamora-Barrios, Marcos Efrén Fragoso Rodríguez, S. Nandini and S. S. S. Sarma
Toxins 2025, 17(6), 277; https://doi.org/10.3390/toxins17060277 - 2 Jun 2025
Viewed by 1185
Abstract
Freshwater cyanobacterial harmful algal blooms (FCHABs) alter zooplankton communities, often adversely, through the production of cyanotoxins. While Daphnia magna is frequently used to evaluate the impact of toxicants, it is not commonly found in tropical waters; cladocerans from tropical and subtropical waterbodies should [...] Read more.
Freshwater cyanobacterial harmful algal blooms (FCHABs) alter zooplankton communities, often adversely, through the production of cyanotoxins. While Daphnia magna is frequently used to evaluate the impact of toxicants, it is not commonly found in tropical waters; cladocerans from tropical and subtropical waterbodies should be used in bioassays. Here, we evaluated the impact of crude cyanobacteria extracts on three common, native species (Daphnia laevis, Ceriodaphnia dubia, and Simocephalus vetulus) based on acute and chronic bioassays. We analyzed the toxicity of cyanobacterial consortium collected from Lake Zumpango, Mexico. The FCHAB was dominated by Planktothrix agardhii (1.16 × 106 ind mL−1). A series of freeze/thaw/sonification cycles at 20 kHz was used to extract the toxic metabolites and the concentration of dissolved microcystin-LR equivalents was measured using an ELISA immunological kit. S. vetulus was the most sensitive species, with a median lethal concentration of 0.43 compared to 1.19 µg L−1 of D. magna at 48 h. S. vetulus was also the most sensitive in chronic evaluations, showing a negative rate of population increase (−0.10 d−1) in experiments with 20% crude extract. Full article
(This article belongs to the Special Issue Prospective Studies on Harmful Cyanobacteria and Cyanotoxins)
Show Figures

Figure 1

13 pages, 1827 KB  
Article
Response of the Invasive Cyanobacterium Raphidiopsis raciborskii to Iron and Phosphorus Concentrations in the Habitat: Effects on Growth and Cellular Phosphorus Distribution
by Wenting Shen, Han Yang, Gaibian Ding, Bo Li, Xin Gan, Zijie Yuan, Liqing Wang and Wei Zhang
Diversity 2025, 17(6), 386; https://doi.org/10.3390/d17060386 - 30 May 2025
Viewed by 714
Abstract
Harmful Raphidiopsis raciborskii blooms threaten aquatic ecosystems via toxin production, hypoxia induction, and biodiversity loss. To elucidate the synergistic regulatory mechanisms of Fe3+ and phosphorus (P) in cyanobacterial growth, we used a sterile pure culture system under laboratory conditions. We set different [...] Read more.
Harmful Raphidiopsis raciborskii blooms threaten aquatic ecosystems via toxin production, hypoxia induction, and biodiversity loss. To elucidate the synergistic regulatory mechanisms of Fe3+ and phosphorus (P) in cyanobacterial growth, we used a sterile pure culture system under laboratory conditions. We set different phosphorus sources (organic phosphorus and inorganic phosphorus) and low phosphorus concentration of R. raciborskii culture medium for culture, and set different Fe3+ addition amount to determine the basic growth index of cyanobacteria cells and the phosphorus content of different components. The results revealed that under conditions of sufficient inorganic phosphorus, there was a logarithmic relationship between ferric ammonium citrate (Fe3+) and the specific growth rate of R. raciborskii. Fe3+ > 2 mg/L enhanced IPS enrichment and biomass accumulation. However, in oligotrophic or mesotrophic environments with low inorganic phosphorus concentrations, the effect of Fe3+ on the growth of R. raciborskii contrasted with that observed in high-IP (eutrophic) environments, exhibiting a pattern of ‘low promotion and high inhibition’. Under organic phosphorus conditions, R. raciborskii converted phosphorus by increasing alkaline phosphatase activity (APA), but this metabolic compensation failed to restore physiological functions, resulting in growth suppression and enhanced cellular phosphorus reserves. Our results establish quantitative linkages between Fe3+-P co-limitation thresholds and algal adaptive responses, providing mechanistic insights for controlling bloom dynamics through targeted manipulation of Fe-P bioavailability. Full article
Show Figures

Figure 1

25 pages, 723 KB  
Systematic Review
Systematic Review on CyanoHABs in Central Asia and Post-Soviet Countries (2010–2024)
by Kakima Kastuganova, Galina Nugumanova and Natasha S. Barteneva
Toxins 2025, 17(5), 255; https://doi.org/10.3390/toxins17050255 - 20 May 2025
Viewed by 1872
Abstract
Cyanobacterial harmful blooms (CyanoHABs) in lakes, estuaries, and freshwater reser-voirs represent a significant risk to water authorities worldwide due to their cyanotoxins and economic impacts. The duration, spread, and severity of CyanoHABs have markedly increased over the past decades. The article addresses CyanoHABs, [...] Read more.
Cyanobacterial harmful blooms (CyanoHABs) in lakes, estuaries, and freshwater reser-voirs represent a significant risk to water authorities worldwide due to their cyanotoxins and economic impacts. The duration, spread, and severity of CyanoHABs have markedly increased over the past decades. The article addresses CyanoHABs, cyanotoxins, and monitoring methodologies in post-Soviet and Central Asian countries. This particular region was selected for the systematic review due to its relative lack of representation in global CyanoHABs reporting, particularly in Central Asia. The main aim of this systematic review was to analyze the primary literature available from 2010–2024 to examine the current situation of CyanoHAB detection, monitoring, and management in Central Asia and post-Soviet countries. Following a detailed database search in several selected data-bases (Google Scholar, Pubmed, Web of Science (WOS), Scopus, Elibrary, ENU, and KazNU) along with additional hand searching and citation searching, 121 primary articles reporting 214 local cyanobacterial bloom cases were selected for this review. Aquatic cyanotoxins were reported in water bodies of eight countries, including high concentrations of microcystins that often exceeded reference values established by the World Health Organization (WHO). Advancing monitoring efforts in Baltic countries, Belarus, and the Russian Federation differed from only a few Central Asian reports. However, Central Asian aquatic ecosystems are especially threatened by rising anthropogenic pressures (i.e., water use, intensive agriculture, and pollution), climate change, and the lack of adequate ecological surveillance. We hypothesize that recent Caspian seal mass mortality events have been caused by a combination of infection (viral or bacterial) and exposure to algal neurotoxins resulting from harmful algal blooms of Pseudo-nitzschia. We conclude that there is an urgent need to improve the assessment of cyanobacterial blooms in Central Asia and post-Soviet countries. Full article
Show Figures

Figure 1

Back to TopTop