Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = cyanobacterial biofilm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2105 KiB  
Article
Phototrophs in Unique Habitats of Thermomineral Springs in Central Serbia
by Ana Milićević, Slađana Popović, Vanja Milovanović, Vesna Karadžić, Željko Savković, Vukašin Bjelica, Jelena Krizmanić, Gordana Subakov-Simić and Olga Jakovljević
Life 2025, 15(2), 169; https://doi.org/10.3390/life15020169 - 24 Jan 2025
Viewed by 892
Abstract
Thermomineral springs are unique aquatic habitats characterized by high temperatures or mineral-rich water and often host specialized microbial communities. In Serbia, these springs represent an important but under-researched ecological resource whose diverse physicochemical properties are shaped by their geological context. In this study, [...] Read more.
Thermomineral springs are unique aquatic habitats characterized by high temperatures or mineral-rich water and often host specialized microbial communities. In Serbia, these springs represent an important but under-researched ecological resource whose diverse physicochemical properties are shaped by their geological context. In this study, the physical and chemical properties of Serbian thermomineral springs and their relationship with phototrophic communities in different substrates are investigated. Phototrophic biofilms were categorized into fully submerged and splash zone biofilms, with the former showing higher primary production. Cyanobacteria, Chlorophyta, and Bacillariophyta were recorded, with Bacillariophyta being the predominant division in terms of diversity, followed by Cyanobacteria. Among Cyanobacteria, coccoid forms like Aphanocapsa, Chroococcus, Gloeocapsa and Synechococcus dominated splash zones, while trichal forms such as Leptolyngbya, Oscillatoria and Pseudanabaena were abundant in submerged biofilms, forming thick mats. Unique cyanobacterial taxa, including Desertifilum, Elainella, Geitlerinema, Nodosilinea and Wilmottia, were identified through molecular analysis, underscoring the springs’ potential as habitats for specialized phototrophs. Diatom communities, dominated by Nitzschia and Navicula, exhibited site-specific species influenced by microenvironmental parameters. Statistical analysis revealed ammonia, total nitrogen, and organic carbon as key factors shaping community composition. This study enhances the understanding of these ecosystems, emphasizing their conservation importance and potential for biotechnological applications. Full article
(This article belongs to the Section Diversity and Ecology)
Show Figures

Figure 1

16 pages, 1882 KiB  
Article
Effect of Hydrogen Peroxide on Cyanobacterial Biofilms
by Maria João Romeu, João Morais, Vítor Vasconcelos and Filipe Mergulhão
Antibiotics 2023, 12(9), 1450; https://doi.org/10.3390/antibiotics12091450 - 16 Sep 2023
Cited by 2 | Viewed by 3024
Abstract
Although a range of disinfecting formulations is commercially available, hydrogen peroxide is one of the safest chemical agents used for disinfection in aquatic environments. However, its effect on cyanobacterial biofilms is poorly investigated. In this work, biofilm formation by two filamentous cyanobacterial strains [...] Read more.
Although a range of disinfecting formulations is commercially available, hydrogen peroxide is one of the safest chemical agents used for disinfection in aquatic environments. However, its effect on cyanobacterial biofilms is poorly investigated. In this work, biofilm formation by two filamentous cyanobacterial strains was evaluated over seven weeks on two surfaces commonly used in marine environments: glass and silicone-based paint (Sil-Ref) under controlled hydrodynamic conditions. After seven weeks, the biofilms were treated with a solution of hydrogen peroxide (H2O2) to assess if disinfection could affect long-term biofilm development. The cyanobacterial biofilms appeared to be tolerant to H2O2 treatment, and two weeks after treatment, the biofilms that developed on glass by one of the strains presented higher biomass amounts than the untreated biofilms. This result emphasizes the need to correctly evaluate the efficiency of disinfection in cyanobacterial biofilms, including assessing the possible consequences of inefficient disinfection on the regrowth of these biofilms. Full article
Show Figures

Figure 1

18 pages, 4023 KiB  
Article
Cyclopropane-Containing Specialized Metabolites from the Marine Cyanobacterium cf. Lyngbya sp.
by Nurul Farhana Salleh, Jiale Wang, Binu Kundukad, Emmanuel T. Oluwabusola, Delia Xin Yin Goh, Ma Yadanar Phyo, Jasmine Jie Lin Tong, Staffan Kjelleberg and Lik Tong Tan
Molecules 2023, 28(9), 3965; https://doi.org/10.3390/molecules28093965 - 8 May 2023
Cited by 8 | Viewed by 3745
Abstract
Marine cyanobacteria are known to produce structurally diverse bioactive specialized metabolites during bloom occurrence. These ecologically active allelochemicals confer chemical defense for the microalgae from competing microbes and herbivores. From a collection of a marine cyanobacterium, cf. Lyngbya sp., a small quantity of [...] Read more.
Marine cyanobacteria are known to produce structurally diverse bioactive specialized metabolites during bloom occurrence. These ecologically active allelochemicals confer chemical defense for the microalgae from competing microbes and herbivores. From a collection of a marine cyanobacterium, cf. Lyngbya sp., a small quantity of a new cyclopropane-containing molecule, benderadiene (2), and lyngbyoic acid (1) were purified and characterized using spectroscopic methods. Using live reporter quorum-sensing (QS) inhibitory assays, based on P. aeruginosa PAO1 lasB-gfp and rhlA-gfp strains, both compounds were found to inhibit QS-regulated gene expression in a dose-dependent manner. In addition to lyngbyoic acid being more active in the PAO1 lasB-gfp biosensor strain (IC50 of 20.4 µM), it displayed anti-biofilm activity when incubated with wild-type P. aeruginosa. The discovery of lyngbyoic acid in relatively high amounts provided insights into its ecological significance as a defensive allelochemical in targeting competing microbes through interference with their QS systems and starting material to produce other related analogs. Similar strategies could be adopted by other marine cyanobacterial strains where the high production of other lipid acids has been reported. Preliminary evidence is provided from the virtual molecular docking of these cyanobacterial free acids at the ligand-binding site of the P. aeruginosa LasR transcriptional protein. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

16 pages, 1282 KiB  
Article
Phormidium ambiguum and Leptolyngbya ohadii Exopolysaccharides under Low Water Availability
by Isabela C. Moia, Sara B. Pereira, Paola Domizio, Roberto De Philippis and Alessandra Adessi
Polymers 2023, 15(8), 1889; https://doi.org/10.3390/polym15081889 - 14 Apr 2023
Cited by 9 | Viewed by 2611
Abstract
Cyanobacteria can cope with various environmental stressors, due to the excretion of exopolysaccharides (EPS). However, little is known about how the composition of these polymers may change according to water availability. This work aimed at characterizing the EPS of Phormidium ambiguum (Oscillatoriales; Oscillatoriaceae) [...] Read more.
Cyanobacteria can cope with various environmental stressors, due to the excretion of exopolysaccharides (EPS). However, little is known about how the composition of these polymers may change according to water availability. This work aimed at characterizing the EPS of Phormidium ambiguum (Oscillatoriales; Oscillatoriaceae) and Leptolyngbya ohadii (Pseudanabaenales; Leptolyngbyaceae), when grown as biocrusts and biofilms, subject to water deprivation. The following EPS fractions were quantified and characterized: soluble (loosely bound, LB) and condensed (tightly bound, TB) for biocrusts, released (RPS), and sheathed in P. ambiguum and glycocalyx (G-EPS) in L. ohadii for biofilms. For both cyanobacteria upon water deprivation, glucose was the main monosaccharide present and the amount of TB-EPS resulted was significantly higher, confirming its importance in these soil-based formations. Different profiles of monosaccharides composing the EPSs were observed, as for example the higher concentration of deoxysugars observed in biocrusts compared to biofilms, demonstrating the plasticity of the cells to modify EPS composition as a response to different stresses. For both cyanobacteria, both in biofilms and biocrusts, water deprivation induced the production of simpler carbohydrates, with an increased dominance index of the composing monosaccharides. The results obtained are useful in understanding how these very relevant cyanobacterial species are sensitively modifying the EPS secreted when subject to water deprivation and could lead to consider them as suitable inoculants in degraded soils. Full article
Show Figures

Figure 1

30 pages, 5024 KiB  
Article
Water Quality, Toxicity and Diversity of Planktonic and Benthic Cyanobacteria in Pristine Ancient Lake Khubsugul (Hövsgöl), Mongolia
by Olga I. Belykh, Ekaterina G. Sorokovikova, Irina V. Tomberg, Galina A. Fedorova, Anton V. Kuzmin, Andrey Yu. Krasnopeev, Maria Yu. Suslova, Sergey A. Potapov, Tatiana I. Belykh, Jadambaa Norovsuren, Agnia D. Galachyants and Irina V. Tikhonova
Toxins 2023, 15(3), 213; https://doi.org/10.3390/toxins15030213 - 10 Mar 2023
Cited by 8 | Viewed by 3918
Abstract
For the first time, microcystin-producing cyanobacteria have been detected in Khubsugul, which is ancient, pristine and one of the world’s largest lakes. The microcystin synthetase genes belonged to the genera Nostoc, Microcystis and possibly Snowella spp. No microcystins were found in the [...] Read more.
For the first time, microcystin-producing cyanobacteria have been detected in Khubsugul, which is ancient, pristine and one of the world’s largest lakes. The microcystin synthetase genes belonged to the genera Nostoc, Microcystis and possibly Snowella spp. No microcystins were found in the water of the lake. Using the HPLC-HRMS/TOF, five microcystin congeners were identified in biofilms from stony substrates sampled in the coastal zone. The concentration of microcystins in biofilms was low: 41.95 µg g−1 d. wt. by ELISA and 55.8 µg g−1 d. wt. using HPLC. The taxonomic composition of planktonic and benthic cyanobacterial communities was determined by means of microscopy and high-throughput sequencing of 16S rDNA amplicons. Nostocales cyanobacteria dominated benthos of Lake Khubsugul and Synechococcales—plankton. The abundance of cyanobacteria was low both in plankton and benthos; there was no mass development of cyanobacteria. Hydrochemical and microbiological analyses showed that the water in the lake was clean; the number of faecal microorganisms was significantly below the acceptable guideline values. Hydrochemical and hydrophysical parameters, and the concentration of chlorophyll a, were low and within the range of values recorded in the 1970s to 1990s, and corresponded to the oligotrophic state of the lake. There were no signs of anthropogenic eutrophication of the lake and no conditions for the cyanobacterial blooms. Full article
(This article belongs to the Special Issue Cyanobacterial Toxins: Toxins Production and Risk Assessment)
Show Figures

Figure 1

21 pages, 2128 KiB  
Review
Legacy of “New Normal” Plastics and “New Nitrogen” in the Cyanotoxin Footprint in Mangrove Ecosystems
by Dilantha Gunawardana, Sashika Abeysiri and Pathmalal Manage
Phycology 2023, 3(1), 106-126; https://doi.org/10.3390/phycology3010007 - 7 Feb 2023
Cited by 3 | Viewed by 2701
Abstract
In a paradigm shift in plastic wastes due to the COVID-19 pandemic, wetlands such as mangroves are threatened by a new form of pollution, plastics, on top of the eutrophication of estuarine waters due to nitrogen and phosphorus wastes/effluents that lead to cyanobacterial [...] Read more.
In a paradigm shift in plastic wastes due to the COVID-19 pandemic, wetlands such as mangroves are threatened by a new form of pollution, plastics, on top of the eutrophication of estuarine waters due to nitrogen and phosphorus wastes/effluents that lead to cyanobacterial proliferation. Both plastic and nutrient pollution lead to prosperity of cyanotoxin-producing cyanobacteria that flourish in both and disperse leading to the detriment of fauna and flora in the mangrove ecosystem due to resulting toxicities. Although cyanotoxins are still a relatively poorly studied phenomenon in mangroves, their presence does create a focus of attention due to biofilm formation and the resultant flotation and sinking properties that are linked to cyanobacterial mats on plastic debris. Sri Lanka, being the first country in the world to conserve all its mangrove wetlands, does have a responsibility to prevent the invasion of plastics to this protected ecosystem, and binding with the Ramsar Convention, precluding plastic waste and their concomitant footprint, is a task at hand to the relative authorities. The path ahead mandates that we study the properties of plastics for cyanobacterial proliferation, biofilm formation, the fates of such plastics (flotation, dispersal and sinking), the cyanotoxin production changes that are attributed—or linked—to plastic pollution and the resultant impacts on mangrove ecosystems. Cyanotoxins are long-lived, and it is paramount that we find the necessary mechanisms to eliminate or curtail their production in mangrove ecosystems while establishing surveillance and monitoring of both the producers and the harmful agents. Cyanobacteria although vehicles for nitrogen fixation and replenishing of nutrients to an N-depleted ecosystem such as the mangroves, could lead to enhancements in cyanotoxins production. However, this phenomenon remains ambiguous and poorly studied in applied phycology in relation to mangroves. “New normal” plastics are lodged mostly on the surfaces of bark, prop roots, and pneumatophores, which are the localities where the highest level of new nitrogen is fixed, and this may lead to the proliferation of N-fixing, cyanotoxin-producing cyanobacteria, which may have repercussions on both flora and fauna of mangroves. Therefore, it is crucial that we monitor plastic pollution and find mechanisms for sanitizing plastics-imprinted mangroves to lessen the harmful footprint resulting from plastic overload. Full article
Show Figures

Graphical abstract

18 pages, 5213 KiB  
Article
Tychonema sp. BBK16 Characterisation: Lifestyle, Phylogeny and Related Phages
by Peter Evseev, Irina Tikhonova, Andrei Krasnopeev, Ekaterina Sorokovikova, Anna Gladkikh, Oleg Timoshkin, Konstantin Miroshnikov and Olga Belykh
Viruses 2023, 15(2), 442; https://doi.org/10.3390/v15020442 - 5 Feb 2023
Cited by 6 | Viewed by 2575
Abstract
Cyanobacterial expansion is harmful to the environment, the ecology of Lake Baikal and the economy of nearby regions and can be dangerous to people and animals. Since 2011, the process of colonisation of the lake with potentially toxic cyanobacteria belonging to the genus [...] Read more.
Cyanobacterial expansion is harmful to the environment, the ecology of Lake Baikal and the economy of nearby regions and can be dangerous to people and animals. Since 2011, the process of colonisation of the lake with potentially toxic cyanobacteria belonging to the genus Tychonema has continued. An understanding of the mechanism of successful expansion of Tychonema requires scrutiny of biological and genomic features. Tychonema sp. BBK16 was isolated from the coastal zone of Lake Baikal. The morphology of BBK16 biofilm was studied with light, scanning electron and confocal microscopy. The biofilm is based on filaments of cyanobacteria, which are intertwined like felt; there are also dense fascicles of rope-like twisted filaments that impart heterogeneity to the surface of the biofilm. Genome sequencing, intergenomic comparisons and phylogenetic analyses indicated that Tychonema sp. BBK16 represent a new species related to planktic cyanobacterium Tychonema bourrellyi, isolated from Alpine lentic freshwater. Genome investigation revealed the genes possibly responsible for the mixotrophic lifestyle. The presence of CRISPR-Cas and restriction modification defence mechanisms allowed to suggest the existence of phages infecting Tychonema sp. BBK16. Analysis of CRISPR spacers and prophage-derived regions allowed to suggest related cyanophages. Genomic analysis supported the assumption that mobile elements and horizontal transfer participate in shaping the Tychonema sp. BBK16 genome. The findings of the current research suggest that the aptitude of Tychonema sp. BBK16 for biofilm formation and, possibly, its mixotrophic lifestyle provide adaptation advantages that lead to the successful expansion of this cyanobacterium in the Baikal’s conditions of freshwater lake environments. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

15 pages, 3074 KiB  
Article
Metagenome-Based Exploration of Bacterial Communities Associated with Cyanobacteria Strains Isolated from Thermal Muds
by Sébastien Halary, Sébastien Duperron, Justine Demay, Charlotte Duval, Sahima Hamlaoui, Bérénice Piquet, Anita Reinhardt, Cécile Bernard and Benjamin Marie
Microorganisms 2022, 10(12), 2337; https://doi.org/10.3390/microorganisms10122337 - 25 Nov 2022
Cited by 10 | Viewed by 3062
Abstract
Cyanobacteria constitute a pioneer colonizer of specific environments for whom settlement in new biotopes precedes the establishment of composite microbial consortia. Some heterotrophic bacteria constitute cyanobacterial partners that are considered as their cyanosphere, being potentially involved in mutualistic relationships through the exchange and [...] Read more.
Cyanobacteria constitute a pioneer colonizer of specific environments for whom settlement in new biotopes precedes the establishment of composite microbial consortia. Some heterotrophic bacteria constitute cyanobacterial partners that are considered as their cyanosphere, being potentially involved in mutualistic relationships through the exchange and recycling of key nutrients and the sharing of common goods. Several non-axenic cyanobacterial strains have been recently isolated, along with their associated cyanospheres, from the thermal mud of Balaruc-les-Bains (France) and the biofilms of the retention basin where they develop. The community structure and relationships among the members of the isolated cyanobacterial strains were characterized using a metagenomic approach combined with taxonomic and microscopic descriptions of the microbial consortia. The results provided insights into the potential role and metabolic capabilities of the microorganisms of thermal mud-associated cyanobacterial biofilms. Thus, the physical proximity, host-specificity, and genetic potential functions advocate for their complementarity between cyanobacteria and their associated microbiota. Besides these findings, our results also highlighted the great influence of the reference protein database chosen for performing functional annotation of the metagenomes from organisms of the cyanosphere and the difficulty of selecting one unique database that appropriately covers both autotroph and heterotroph metabolic specificities. Full article
(This article belongs to the Topic Microorganisms in Aquatic Environments)
Show Figures

Figure 1

17 pages, 3556 KiB  
Article
How do Graphene Composite Surfaces Affect the Development and Structure of Marine Cyanobacterial Biofilms?
by Maria J. Romeu, Luciana C. Gomes, Francisca Sousa-Cardoso, João Morais, Vítor Vasconcelos, Kathryn A. Whitehead, Manuel F. R. Pereira, Olívia S. G. P. Soares and Filipe J. Mergulhão
Coatings 2022, 12(11), 1775; https://doi.org/10.3390/coatings12111775 - 20 Nov 2022
Cited by 5 | Viewed by 3771
Abstract
The progress of nanotechnology has prompted the development of novel marine antifouling coatings. In this study, the influence of a pristine graphene nanoplatelet (GNP)-modified surface in cyanobacterial biofilm formation was evaluated over a long-term assay using an in vitro platform which mimics the [...] Read more.
The progress of nanotechnology has prompted the development of novel marine antifouling coatings. In this study, the influence of a pristine graphene nanoplatelet (GNP)-modified surface in cyanobacterial biofilm formation was evaluated over a long-term assay using an in vitro platform which mimics the hydrodynamic conditions that prevail in real marine environments. Surface characterization by Optical Profilometry and Scanning Electron Microscopy has shown that the main difference between GNP incorporated into a commercially used epoxy resin (GNP composite) and both control surfaces (glass and epoxy resin) was related to roughness and topography, where the GNP composite had a roughness value about 1000 times higher than control surfaces. The results showed that, after 7 weeks, the GNP composite reduced the biofilm wet weight (by 44%), biofilm thickness (by 54%), biovolume (by 82%), and surface coverage (by 64%) of cyanobacterial biofilms compared to the epoxy resin. Likewise, the GNP-modified surface delayed cyanobacterial biofilm development, modulated biofilm structure to a less porous arrangement over time, and showed a higher antifouling effect at the biofilm maturation stage. Overall, this nanocomposite seems to have the potential to be used as a long-term antifouling material in marine applications. Moreover, this multifactorial study was crucial to understanding the interactions between surface properties and cyanobacterial biofilm development and architecture over time. Full article
(This article belongs to the Special Issue Polymer Thin Films: From Fundamentals to Applications)
Show Figures

Graphical abstract

18 pages, 6993 KiB  
Article
The Use of 3D Optical Coherence Tomography to Analyze the Architecture of Cyanobacterial Biofilms Formed on a Carbon Nanotube Composite
by Maria J. Romeu, Marta Lima, Luciana C. Gomes, Ed. D. de Jong, João Morais, Vítor Vasconcelos, Manuel F. R. Pereira, Olívia S. G. P. Soares, Jelmer Sjollema and Filipe J. Mergulhão
Polymers 2022, 14(20), 4410; https://doi.org/10.3390/polym14204410 - 19 Oct 2022
Cited by 12 | Viewed by 3469
Abstract
The development of environmentally friendly antifouling strategies for marine applications is of paramount importance, and the fabrication of innovative nanocomposite coatings is a promising approach. Moreover, since Optical Coherence Tomography (OCT) is a powerful imaging technique in biofilm science, the improvement of its [...] Read more.
The development of environmentally friendly antifouling strategies for marine applications is of paramount importance, and the fabrication of innovative nanocomposite coatings is a promising approach. Moreover, since Optical Coherence Tomography (OCT) is a powerful imaging technique in biofilm science, the improvement of its analytical power is required to better evaluate the biofilm structure under different scenarios. In this study, the effect of carbon nanotube (CNT)-modified surfaces in cyanobacterial biofilm development was assessed over a long-term assay under controlled hydrodynamic conditions. Their impact on the cyanobacterial biofilm architecture was evaluated by novel parameters obtained from three-dimensional (3D) OCT analysis, such as the contour coefficient, total biofilm volume, biovolume, volume of non-connected pores, and the average size of non-connected pores. The results showed that CNTs incorporated into a commercially used epoxy resin (CNT composite) had a higher antifouling effect at the biofilm maturation stage compared to pristine epoxy resin. Along with a delay in biofilm development, a decrease in biofilm wet weight, thickness, and biovolume was also achieved with the CNT composite compared to epoxy resin and glass (control surfaces). Additionally, biofilms developed on the CNT composite were smoother and presented a lower porosity and a strictly packed structure when compared with those formed on the control surfaces. The novel biofilm parameters obtained from 3D OCT imaging are extremely important when evaluating the biofilm architecture and behavior under different scenarios beyond marine applications. Full article
(This article belongs to the Special Issue Polymers in Antimicrobial and Antifouling Materials)
Show Figures

Figure 1

2 pages, 193 KiB  
Abstract
Cyanobacteria as a Source of New Antifouling Sustainable Solutions
by Sandra Pereira, Leonor Ferreira, Catarina Gonçalves, Vitor Vasconcelos, Mariana Reis and Joana R. Almeida
Biol. Life Sci. Forum 2022, 14(1), 37; https://doi.org/10.3390/blsf2022014037 - 26 Jul 2022
Viewed by 1194
Abstract
The usage of paints and coatings with toxic components for the mitigation of marine biofouling in submerged surfaces continues to cause economic, environmental and human health-related problems worldwide. Natural products have the potential to provide solutions for antifouling applications that are effective and [...] Read more.
The usage of paints and coatings with toxic components for the mitigation of marine biofouling in submerged surfaces continues to cause economic, environmental and human health-related problems worldwide. Natural products have the potential to provide solutions for antifouling applications that are effective and ecologically compatible. The diversity of the secondary metabolites that are produced by cyanobacteria make these organisms a promising source of bioactive compounds, especially when antifouling activity has already been documented. The purpose of this study was to explore the metabolic diversity of a range of cyanobacterial strains from the Blue Biotechnology and Ecotoxicology Culture Collection (LEGE-CC) in search of eco-friendly bioactive compounds for antifouling purposes. A library of fractions, derived from methanolic extracts, belonging to different cyanobacterial strains, was tested towards a prominent macrofouling organism settlement (Mytilus galloprovincialis larvae). Promising fractions were submitted to a bioassay guided sub-fractioning that led to the isolation of two compounds. Their structure elucidation was determined by 1D and 2D nuclear magnetic resonance and by mass spectrometry. Anti-settlement effectiveness was assessed through an EC50 bioassay with mussel larvae, as well as antifouling bioactivity towards the growth of five marine biofilm-forming bacteria. The results showed bioactivity against the mussel larvae settlement and low toxicity, but no bacterial growth inhibition was found for the nucleosides (<10% of inhibition). Moreover, general ecotoxicity to the marine environment was evaluated, and the compounds also presented no toxicity against Artemia salina, proving them to be ecologically compatible. These promising results confirm the inherent potential of cyanobacteria to provide more sustainable antifouling ingredients to be incorporated in marine coatings. Full article
16 pages, 3955 KiB  
Article
Cyanobacterial Root Associations of Leafless Epiphytic Orchids
by Elena A. Tsavkelova, Irina D. Glukhareva, Elena A. Volynchikova, Maria A. Egorova, Maria R. Leontieva, Dina V. Malakhova, Galina L. Kolomeitseva and Alexander I. Netrusov
Microorganisms 2022, 10(5), 1006; https://doi.org/10.3390/microorganisms10051006 - 11 May 2022
Cited by 8 | Viewed by 4021
Abstract
The leafless orchids are rare epiphytic plants with extremely reduced leaves, and their aerial roots adopted for photosynthesis. The beneficial plant–microbial interactions contribute significantly to host nutrition, fitness, and growth. However, there are no data available on the bacterial associations, inhabiting leafless orchids. [...] Read more.
The leafless orchids are rare epiphytic plants with extremely reduced leaves, and their aerial roots adopted for photosynthesis. The beneficial plant–microbial interactions contribute significantly to host nutrition, fitness, and growth. However, there are no data available on the bacterial associations, inhabiting leafless orchids. Here, we describe the diversity of cyanobacteria, which colonize the roots of greenhouse Microcoelia moreauae and Chiloschista parishii. The biodiversity and structure of the cyanobacterial community were analyzed using a complex approach, comprising traditional cultivable techniques, denaturing gradient gel electrophoresis (DGGE), and phylogenetic analysis, as well as the light and scanning electron microscopy (SEM). A wide diversity of associated bacteria colonize the root surface, forming massive biofilms on the aerial roots. The dominant populations of filamentous nitrogen-fixing cyanobacteria belonged to the orders Oscillatoriales, Synechococcales, and Nostocales. The composition of the cyanobacterial community varied, depending on the nitrogen supply. Two major groups prevailed under nitrogen-limiting conditions, belonging to Leptolyngbya sp. and Komarekiella sp. The latter was characterized by DGGE profiling and sequencing, as well as by its distinctive features of morphological plasticity. The leading role of these phototrophophic and diazotrophic cyanobacteria is discussed in terms of the epiphytic lifestyle of the leafless orchids. Full article
(This article belongs to the Special Issue The Hidden World within Plants)
Show Figures

Figure 1

21 pages, 5637 KiB  
Review
The Beneficial Effects of Cyanobacterial Co-Culture on Plant Growth
by Jonas Kollmen and Dorina Strieth
Life 2022, 12(2), 223; https://doi.org/10.3390/life12020223 - 31 Jan 2022
Cited by 66 | Viewed by 9369
Abstract
Cyanobacteria are ubiquitous phototrophic prokaryotes that find a wide range of applications in industry due to their broad product spectrum. In this context, the application of cyanobacteria as biofertilizers and thus as an alternative to artificial fertilizers has emerged in recent decades. The [...] Read more.
Cyanobacteria are ubiquitous phototrophic prokaryotes that find a wide range of applications in industry due to their broad product spectrum. In this context, the application of cyanobacteria as biofertilizers and thus as an alternative to artificial fertilizers has emerged in recent decades. The benefit is mostly based on the ability of cyanobacteria to fix elemental nitrogen and make it available to the plants in a usable form. However, the positive effects of co-cultivating plants with cyanobacteria are not limited to the provision of nitrogen. Cyanobacteria produce numerous secondary metabolites that can be useful for plants, for example, they can have growth-promoting effects or increase resistance to plant diseases. The effects of biotic and abiotic stress can as well be reduced by many secondary metabolites. Furthermore, the biofilms formed by the cyanobacteria can lead to improved soil conditions, such as increased water retention capacity. To exchange the substances mentioned, cyanobacteria form symbioses with plants, whereby the strength of the symbiosis depends on both partners, and not every plant can form symbiosis with every cyanobacterium. Not only the plants in symbiosis benefit from the cyanobacteria, but also vice versa. This review summarizes the beneficial effects of cyanobacterial co-cultivation on plants, highlighting the substances exchanged and the strength of cyanobacterial symbioses with plants. A detailed explanation of the mechanism of nitrogen fixation in cyanobacterial heterocysts is given. Finally, a summary of possible applications of co-cultivation in the (agrar-)industry is given. Full article
Show Figures

Figure 1

14 pages, 3278 KiB  
Article
Influence Mechanism of Cyanobacterial Extracellular Polymeric Substances on the Water Quality in Dynamic Water Supply System
by Feng Sun, Peng Yu, Chenhui Xu, Hongfei Yu, Fengyi Wang, Yang Zhou and Haibing Cong
Sustainability 2021, 13(24), 13913; https://doi.org/10.3390/su132413913 - 16 Dec 2021
Viewed by 1931
Abstract
As a kind of high-organic-content contamination source, extracellular polymeric substances (EPS) secreted by cyanobacteria have become an important factor restricting the safety of supply water. In the dynamic batch mode water supply system, cyanobacterial EPS accelerated the decay rate of residual chlorine, resulting [...] Read more.
As a kind of high-organic-content contamination source, extracellular polymeric substances (EPS) secreted by cyanobacteria have become an important factor restricting the safety of supply water. In the dynamic batch mode water supply system, cyanobacterial EPS accelerated the decay rate of residual chlorine, resulting in a 21–26 times increase of the total viable bacteria count within 72 h. The water turbidity exceeded upper limit of the standards for drinking water quality within 4 h, with an increase of 306–332% within 72 h. The biological stability was reduced with BDOC and AOC increased by 41.4–43.8% and 331–396%, respectively. The main cause is that cyanobacterial EPS act as nutrients and metabolic energy for microorganisms, promoting their metabolic activity and secretion of extracellular organic components. This leads to the metabolic accumulation of tryptophan, fulvic acids and humic acids in the pipeline, thus further promoting the regeneration of bacteria. Compared with the influence of biofilm on pipe wall caused by long-term use of water supply network, the contribution of cyanobacterial EPS to the water contamination of pipe network is increased several times. Therefore, even in the presence of residual chlorine, the secondary contamination caused by cyanobacterial EPS in the water supply system could not be neglected. Full article
Show Figures

Figure 1

20 pages, 5527 KiB  
Article
Anticandidal Potential of Two Cyanobacteria-Synthesized Silver Nanoparticles: Effects on Growth, Cell Morphology, and Key Virulence Attributes of Candida albicans
by Reham Samir Hamida, Mohamed Abdelaal Ali, Doaa A. Goda and Alya Redhwan
Pharmaceutics 2021, 13(10), 1688; https://doi.org/10.3390/pharmaceutics13101688 - 15 Oct 2021
Cited by 9 | Viewed by 3120
Abstract
Candida albicans is an opportunistic human fungal pathogen responsible for 90–100% of mucosal and nosocomial infections worldwide. The emergence of drug-resistant strains has resulted in adverse consequences for human health, including numerous deaths. Consequently, there is an urgent need to identify and develop [...] Read more.
Candida albicans is an opportunistic human fungal pathogen responsible for 90–100% of mucosal and nosocomial infections worldwide. The emergence of drug-resistant strains has resulted in adverse consequences for human health, including numerous deaths. Consequently, there is an urgent need to identify and develop new antimicrobial drugs to counter these effects. Antimicrobial nanoagents have shown potent inhibitory activity against a number of pathogens through targeting their defense systems, such as biofilm formation. Here, we investigated the anticandidal activity of silver nanoparticles biosynthesized by the cyanobacterial strains Desertifilum sp. IPPAS B-1220 and Nostoc Bahar_M (D-SNPs and N-SNPs, respectively), along with that of silver nitrate (AgNO3), and examined the mechanisms underlying their lethal effects. For this, we performed agar well diffusion and enzyme activity assays (lactate dehydrogenase, adenosine triphosphatase, glutathione peroxidase, and catalase) and undertook morphological examinations using transmission electron microscopy. The effects of the three treatments on Hwp1 and CDR1 gene expression and protein patterns were assessed using qRT-PCR and SDS–PAGE assays, respectively. All of the three treatments inhibited C. albicans growth; disrupted membrane integrity, metabolic function, and antioxidant activity; induced ultrastructural changes in the cell envelope; and disrupted cytoplasmic and nuclear contents. Of the three agents, D-SNPs showed the greatest biocidal activity against C. albicans. Additionally, the D-SNP treatment significantly reduced the gene expression of Hwp1 and CDR1, suggestive of negative effects on biofilm formation ability and resistance potential of C. albicans, and promoted protein degradation. The mechanism involved in the biocidal effects of both D-SNPs and N-SNPs against C. albicans could be attributed to their ability to interfere with fungal cell structures and/or stimulate oxidative stress, enabling them to be used as a robust antimycotic agent. Full article
Show Figures

Graphical abstract

Back to TopTop