Tychonema sp. BBK16 Characterisation: Lifestyle, Phylogeny and Related Phages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Location
2.2. Cultivation and Biofilm Visual Analysis
2.3. DNA Extraction and Sequencing
2.4. Genome Annotation and Prediction of Gene Functions
2.5. Average Nucleotide Identity Calculations and Phylogenetic Analysis
2.6. Identification of CRISPR Loci and Prophage-Derived Regions
3. Results
3.1. Biofilm Characterisation
3.2. General Genomic Features and Intergenomic Comparisons
3.3. Phylogenetic Analyses
3.4. General Proteome Features
3.5. Mixotrophy-Associated Proteins
3.6. Analysis of CRISPR Loci
3.7. Search for Prophage-Derived Regions
3.8. Transporter Genes in Phage Genomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paerl, H.W.; Otten, T.G.; Kudela, R. Mitigating the Expansion of Harmful Algal Blooms Across the Freshwater-to-Marine Continuum. Environ. Sci. Technol. 2018, 52, 5519–5529. [Google Scholar] [CrossRef] [PubMed]
- Plaas, H.E.; Paerl, H.W. Toxic Cyanobacteria: A Growing Threat to Water and Air Quality. Environ. Sci. Technol. 2021, 55, 44–64. [Google Scholar] [CrossRef] [PubMed]
- Timoshkin, O.A.; Samsonov, D.P.; Yamamuro, M.; Moore, M.V.; Belykh, O.I.; Malnik, V.V.; Sakirko, M.V.; Shirokaya, A.A.; Bondarenko, N.A.; Domysheva, V.M.; et al. Rapid Ecological Change in the Coastal Zone of Lake Baikal (East Siberia): Is the Site of the World’s Greatest Freshwater Biodiversity in Danger? J. Great Lakes Res. 2016, 42, 487–497. [Google Scholar] [CrossRef]
- Boyle, K.E.; Heilmann, S.; van Ditmarsch, D.; Xavier, J.B. Exploiting Social Evolution in Biofilms. Curr. Opin. Microbiol. 2013, 16, 207–212. [Google Scholar] [CrossRef]
- Claessen, D.; Rozen, D.E.; Kuipers, O.P.; Søgaard-Andersen, L.; van Wezel, G.P. Bacterial Solutions to Multicellularity: A Tale of Biofilms, Filaments and Fruiting Bodies. Nat. Rev. Microbiol. 2014, 12, 115–124. [Google Scholar] [CrossRef]
- Walsh, M.M.; Lowe, D.R. Filamentous Microfossils from the 3500-Myr-Old Onverwacht Group, Barberton Mountain Land, South Africa. Nature 1985, 314, 530–532. [Google Scholar] [CrossRef]
- Khanaev, I.V.; Kravtsova, L.S.; Maikova, O.O.; Bukshuk, N.A.; Sakirko, M.V.; Kulakova, N.V.; Butina, T.V.; Nebesnykh, I.A.; Belikov, S.I. Current State of the Sponge Fauna (Porifera: Lubomirskiidae) of Lake Baikal: Sponge Disease and the Problem of Conservation of Diversity. J. Great Lakes Res. 2018, 44, 77–85. [Google Scholar] [CrossRef]
- Bauer, F.; Fastner, J.; Bartha-Dima, B.; Breuer, W.; Falkenau, A.; Mayer, C.; Raeder, U. Mass Occurrence of Anatoxin-a- and Dihydroanatoxin-a-Producing Tychonema Sp. in Mesotrophic Reservoir Mandichosee (River Lech, Germany) as a Cause of Neurotoxicosis in Dogs. Toxins 2020, 12, 726. [Google Scholar] [CrossRef]
- Levasheva, M.V.; Timoshkin, O.A.; Vashukevich, N.V. A Landscape Approach to Ecological Monitoring in the Splash Zone of Bol’shye Koty Bay (Lake Baikal). Bull. Irkutsk State Univ. «Geoarchaeology Ethnol. Anthropol. Ser.» 2012, 3, 53–63. [Google Scholar]
- Sánchez-Baracaldo, P.; Cardona, T. On the Origin of Oxygenic Photosynthesis and Cyanobacteria. New Phytol. 2020, 225, 1440–1446. [Google Scholar] [CrossRef]
- Rippka, R. Photoheterotrophy and Chemoheterotrophy among Unicellular Blue-Green Algae. Archiv. Mikrobiol. 1972, 87, 93–98. [Google Scholar] [CrossRef]
- Muñoz-Marín, M.C.; Gómez-Baena, G.; López-Lozano, A.; Moreno-Cabezuelo, J.A.; Díez, J.; García-Fernández, J.M. Mixotrophy in Marine Picocyanobacteria: Use of Organic Compounds by Prochlorococcus and Synechococcus. ISME J. 2020, 14, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Stoecker, D.K.; Hansen, P.J.; Caron, D.A.; Mitra, A. Mixotrophy in the Marine Plankton. Ann. Rev. Mar. Sci. 2017, 9, 311–335. [Google Scholar] [CrossRef] [PubMed]
- Eiler, A. Evidence for the Ubiquity of Mixotrophic Bacteria in the Upper Ocean: Implications and Consequences. Appl. Environ. Microbiol. 2006, 72, 7431–7437. [Google Scholar] [CrossRef]
- Khodzher, T.V.; Domysheva, V.M.; Sorokovikova, L.M.; Sakirko, M.V.; Tomberg, I.V. Current Chemical Composition of Lake Baikal Water. Inland Waters 2017, 7, 250–258. [Google Scholar] [CrossRef]
- Podlesnaya, G.V.; Krasnopeev, A.Y.; Potapov, S.A.; Tikhonova, I.V.; Shtykova, Y.R.; Suslova, M.Y.; Timoshkin, O.A.; Belykh, O.I. Diversity of Nitrifying Bacteria in Microbial Communities from Water and Epilithic Biofilms of the Lake Baikal Littoral Zone. Limnol. Freshw. Biol. 2020, 1008–1010. [Google Scholar] [CrossRef]
- Dufresne, A.; Salanoubat, M.; Partensky, F.; Artiguenave, F.; Axmann, I.M.; Barbe, V.; Duprat, S.; Galperin, M.Y.; Koonin, E.V.; Le Gall, F.; et al. Genome Sequence of the Cyanobacterium Prochlorococcus Marinus SS120, a Nearly Minimal Oxyphototrophic Genome. Proc. Natl. Acad. Sci. USA 2003, 100, 10020–10025. [Google Scholar] [CrossRef] [PubMed]
- Palenik, B.; Brahamsha, B.; Larimer, F.W.; Land, M.; Hauser, L.; Chain, P.; Lamerdin, J.; Regala, W.; Allen, E.E.; McCarren, J.; et al. The Genome of a Motile Marine Synechococcus. Nature 2003, 424, 1037–1042. [Google Scholar] [CrossRef]
- Rocap, G.; Larimer, F.W.; Lamerdin, J.; Malfatti, S.; Chain, P.; Ahlgren, N.A.; Arellano, A.; Coleman, M.; Hauser, L.; Hess, W.R.; et al. Genome Divergence in Two Prochlorococcus Ecotypes Reflects Oceanic Niche Differentiation. Nature 2003, 424, 1042–1047. [Google Scholar] [CrossRef]
- Casas, V.; Maloy, S. The Role of Phage in the Adaptation of Bacteria to New Environmental Niches. In Molecular Mechanisms of Microbial Evolution; Rampelotto, P.H., Ed.; Grand Challenges in Biology and Biotechnology; Springer International Publishing: Cham, Switzerland, 2018; pp. 267–306. ISBN 978-3-319-69078-0. [Google Scholar]
- Shestakov, S.V.; Karbysheva, E.A. The Role of Viruses in the Evolution of Cyanobacteria. Biol. Bull. Rev. 2015, 5, 527–537. [Google Scholar] [CrossRef]
- Bryan, M.J.; Burroughs, N.J.; Spence, E.M.; Clokie, M.R.J.; Mann, N.H.; Bryan, S.J. Evidence for the Intense Exchange of MazG in Marine Cyanophages by Horizontal Gene Transfer. PLoS ONE 2008, 3, e2048. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Kong, S.; Shi, M.; Fu, L.; Gao, Y.; An, C. Genomic Analysis of Freshwater Cyanophage Pf-WMP3 Infecting Cyanobacterium Phormidium Foveolarum: The Conserved Elements for a Phage. Microb. Ecol. 2008, 56, 671–680. [Google Scholar] [CrossRef]
- Jacquet, S.; Zhong, X.; Parvathi, A.; Ram, A.S.P. First Description of a Cyanophage Infecting the Cyanobacterium Arthrospira Platensis (Spirulina). J. Appl. Phycol. 2013, 25, 195–203. [Google Scholar] [CrossRef]
- Zhang, D.; You, F.; He, Y.; Te, S.H.; Gin, K.Y.-H. Isolation and Characterization of the First Freshwater Cyanophage Infecting Pseudanabaena. J. Virol. 2020, 94, e00682-20. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shi, M.; Kong, S.; Gao, Y.; An, C. Cyanophage Pf-WMP4, a T7-like Phage Infecting the Freshwater Cyanobacterium Phormidium Foveolarum: Complete Genome Sequence and DNA Translocation. Virology 2007, 366, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Gao, E.-B.; Gui, J.-F.; Zhang, Q.-Y. A Novel Cyanophage with a Cyanobacterial Nonbleaching Protein A Gene in the Genome. J. Virol. 2012, 86, 236–245. [Google Scholar] [CrossRef]
- Zhou, Y.; Lin, J.; Li, N.; Hu, Z.; Deng, F. Characterization and Genomic Analysis of a Plaque Purified Strain of Cyanophage PP. Virol. Sin. 2013, 28, 272–279. [Google Scholar] [CrossRef]
- Du, K.; Yang, F.; Zhang, J.-T.; Yu, R.-C.; Deng, Z.; Li, W.-F.; Chen, Y.; Li, Q.; Zhou, C.-Z. Comparative Genomic Analysis of Five Freshwater Cyanophages and Reference-Guided Metagenomic Data Mining. Microbiome 2022, 10, 128. [Google Scholar] [CrossRef]
- Benler, S.; Yutin, N.; Antipov, D.; Rayko, M.; Shmakov, S.; Gussow, A.B.; Pevzner, P.; Koonin, E.V. Thousands of Previously Unknown Phages Discovered in Whole-Community Human Gut Metagenomes. Microbiome 2021, 9, 78. [Google Scholar] [CrossRef]
- Shmakov, S.A.; Wolf, Y.I.; Savitskaya, E.; Severinov, K.V.; Koonin, E.V. Mapping CRISPR Spaceromes Reveals Vast Host-Specific Viromes of Prokaryotes. Commun. Biol. 2020, 3, 1–9. [Google Scholar] [CrossRef]
- Nasko, D.J.; Ferrell, B.D.; Moore, R.M.; Bhavsar, J.D.; Polson, S.W.; Wommack, K.E. CRISPR Spacers Indicate Preferential Matching of Specific Virioplankton Genes. mBio 2019, 10, e02651-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canchaya, C.; Proux, C.; Fournous, G.; Bruttin, A.; Brüssow, H. Prophage Genomics. Microbiol. Mol. Biol. Rev. 2003, 67, 238–276. [Google Scholar] [CrossRef] [PubMed]
- Casjens, S. Prophages and Bacterial Genomics: What Have We Learned so Far? Mol. Microbiol. 2003, 49, 277–300. [Google Scholar] [CrossRef]
- Marques, A.T.; Tanoeiro, L.; Duarte, A.; Gonçalves, L.; Vítor, J.M.B.; Vale, F.F. Genomic Analysis of Prophages from Klebsiella Pneumoniae Clinical Isolates. Microorganisms 2021, 9, 2252. [Google Scholar] [CrossRef]
- Evseev, P.; Lukianova, A.; Tarakanov, R.; Tokmakova, A.; Popova, A.; Kulikov, E.; Shneider, M.; Ignatov, A.; Miroshnikov, K. Prophage-Derived Regions in Curtobacterium Genomes: Good Things, Small Packages. Int. J. Mol. Sci. 2023, 24, 1586. [Google Scholar] [CrossRef]
- Rippka, R. Isolation and Purification of Cyanobacteria. Methods Enzym. 1988, 167, 3–27. [Google Scholar] [CrossRef]
- Wood, E.J. Molecular Cloning. A Laboratory Manual by T Maniatis, E F Fritsch and J Sambrook. Pp 545. Cold Spring Harbor Laboratory, New York. 1982. $48. Biochem. Educ. 1983, 11, 82. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Wu, Y.-W.; Simmons, B.A.; Singer, S.W. MaxBin 2.0: An Automated Binning Algorithm to Recover Genomes from Multiple Metagenomic Datasets. Bioinformatics 2016, 32, 605–607. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Download—NCBI. Available online: https://www.ncbi.nlm.nih.gov/home/download/ (accessed on 3 November 2022).
- Li, W.; O’Neill, K.R.; Haft, D.H.; DiCuccio, M.; Chetvernin, V.; Badretdin, A.; Coulouris, G.; Chitsaz, F.; Derbyshire, M.K.; Durkin, A.S.; et al. RefSeq: Expanding the Prokaryotic Genome Annotation Pipeline Reach with Protein Family Model Curation. Nucleic Acids Res. 2021, 49, D1020–D1028. [Google Scholar] [CrossRef] [PubMed]
- Geneious|Bioinformatics Software for Sequence Data Analysis. Available online: https://www.geneious.com/ (accessed on 11 November 2021).
- Delcher, A.L.; Bratke, K.A.; Powers, E.C.; Salzberg, S.L. Identifying Bacterial Genes and Endosymbiont DNA with Glimmer. Bioinformatics 2007, 23, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Gabler, F.; Nam, S.-Z.; Till, S.; Mirdita, M.; Steinegger, M.; Söding, J.; Lupas, A.N.; Alva, V. Protein Sequence Analysis Using the MPI Bioinformatics Toolkit. Curr. Protoc. Bioinform. 2020, 72, e108. [Google Scholar] [CrossRef] [PubMed]
- Index of /Pub/Databases/Pfam/Tools. Available online: http://ftp.ebi.ac.uk/pub/databases/Pfam/Tools/ (accessed on 15 January 2023).
- Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. EggNOG-Mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef]
- Gascuel, O. BIONJ: An Improved Version of the NJ Algorithm Based on a Simple Model of Sequence Data. Mol. Biol. Evol. 1997, 14, 685–695. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A Fast, Scalable and User-Friendly Tool for Maximum Likelihood Phylogenetic Inference. Bioinformatics 2019, 35, 4453–4455. [Google Scholar] [CrossRef]
- Edler, D.; Klein, J.; Antonelli, A.; Silvestro, D. RaxmlGUI 2.0: A Graphical Interface and Toolkit for Phylogenetic Analyses Using RAxML. Methods Ecol. Evol. 2021, 12, 373–377. [Google Scholar] [CrossRef]
- Darriba, D.; Posada, D.; Kozlov, A.M.; Stamatakis, A.; Morel, B.; Flouri, T. ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein Evolutionary Models. Mol. Biol. Evol. 2020, 37, 291–294. [Google Scholar] [CrossRef]
- Lemoine, F.; Domelevo Entfellner, J.-B.; Wilkinson, E.; Correia, D.; Dávila Felipe, M.; De Oliveira, T.; Gascuel, O. Renewing Felsenstein’s Phylogenetic Bootstrap in the Era of Big Data. Nature 2018, 556, 452–456. [Google Scholar] [CrossRef]
- MinCED-Mining CRISPRs in Environmental Datasets 2022. Available online: https://github.com/ctSkennerton/minced (accessed on 15 January 2023).
- Arndt, D.; Marcu, A.; Liang, Y.; Wishart, D.S. PHAST, PHASTER and PHASTEST: Tools for Finding Prophage in Bacterial Genomes. Brief Bioinform. 2017, 20, 1560–1567. [Google Scholar] [CrossRef]
- Pinto, F.; Tett, A.; Armanini, F.; Asnicar, F.; Boscaini, A.; Pasolli, E.; Zolfo, M.; Donati, C.; Salmaso, N.; Segata, N. Draft Genome Sequence of the Planktic Cyanobacterium Tychonema Bourrellyi, Isolated from Alpine Lentic Freshwater. Genome Announc. 2017, 5, e01294-17. [Google Scholar] [CrossRef] [PubMed]
- Willis, A.; Woodhouse, J.N. Defining Cyanobacterial Species: Diversity and Description Through Genomics. Crit. Rev. Plant Sci. 2020, 39, 101–124. [Google Scholar] [CrossRef]
- Kim, M.; Oh, H.-S.; Park, S.-C.; Chun, J. Towards a Taxonomic Coherence between Average Nucleotide Identity and 16S RRNA Gene Sequence Similarity for Species Demarcation of Prokaryotes. Int. J. Syst. Evol. Microbiol. 2014, 64, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High Throughput ANI Analysis of 90K Prokaryotic Genomes Reveals Clear Species Boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef] [PubMed]
- Barco, R.A.; Garrity, G.M.; Scott, J.J.; Amend, J.P.; Nealson, K.H.; Emerson, D. A Genus Definition for Bacteria and Archaea Based on a Standard Genome Relatedness Index. mBio 2020, 11, e02475-19. [Google Scholar] [CrossRef] [PubMed]
- Bouma-Gregson, K.; Olm, M.R.; Probst, A.J.; Anantharaman, K.; Power, M.E.; Banfield, J.F. Impacts of Microbial Assemblage and Environmental Conditions on the Distribution of Anatoxin-a Producing Cyanobacteria within a River Network. ISME J. 2019, 13, 1618–1634. [Google Scholar] [CrossRef]
- Moore, K.R.; Magnabosco, C.; Momper, L.; Gold, D.A.; Bosak, T.; Fournier, G.P. An Expanded Ribosomal Phylogeny of Cyanobacteria Supports a Deep Placement of Plastids. Front. Microbiol. 2019, 10, 1612. [Google Scholar] [CrossRef]
- Humbert, J.-F.; Barbe, V.; Latifi, A.; Gugger, M.; Calteau, A.; Coursin, T.; Lajus, A.; Castelli, V.; Oztas, S.; Samson, G.; et al. A Tribute to Disorder in the Genome of the Bloom-Forming Freshwater Cyanobacterium Microcystis Aeruginosa. PLoS ONE 2013, 8, e70747. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, X.; Liang, C.; Wu, J.; Bao, Q.; Qin, S. Genome-Wide Analysis of Restriction-Modification System in Unicellular and Filamentous Cyanobacteria. Physiol. Genom. 2006, 24, 181–190. [Google Scholar] [CrossRef]
- Dupuis, M.-È.; Villion, M.; Magadán, A.H.; Moineau, S. CRISPR-Cas and Restriction–Modification Systems Are Compatible and Increase Phage Resistance. Nat. Commun. 2013, 4, 2087. [Google Scholar] [CrossRef] [Green Version]
- Yelton, A.P.; Acinas, S.G.; Sunagawa, S.; Bork, P.; Pedrós-Alió, C.; Chisholm, S.W. Global Genetic Capacity for Mixotrophy in Marine Picocyanobacteria. ISME J. 2016, 10, 2946–2957. [Google Scholar] [CrossRef]
- Gómez-Baena, G.; López-Lozano, A.; Gil-Martínez, J.; Lucena, J.M.; Diez, J.; Candau, P.; García-Fernández, J.M. Glucose Uptake and Its Effect on Gene Expression in Prochlorococcus. PLoS ONE 2008, 3, e3416. [Google Scholar] [CrossRef]
- Muñoz-Marín, M.D.C.; Luque, I.; Zubkov, M.V.; Hill, P.G.; Diez, J.; García-Fernández, J.M. Prochlorococcus Can Use the Pro1404 Transporter to Take up Glucose at Nanomolar Concentrations in the Atlantic Ocean. Proc. Natl. Acad. Sci. USA 2013, 110, 8597–8602. [Google Scholar] [CrossRef]
- Moreno-Cabezuelo, J.Á.; López-Lozano, A.; Díez, J.; García-Fernández, J.M. Differential Expression of the Glucose Transporter Gene GlcH in Response to Glucose and Light in Marine Picocyanobacteria. PeerJ 2019, 6, e6248. [Google Scholar] [CrossRef]
- Zhang, C.C.; Durand, M.C.; Jeanjean, R.; Joset, F. Molecular and Genetical Analysis of the Fructose-Glucose Transport System in the Cyanobacterium Synechocystis PCC6803. Mol. Microbiol. 1989, 3, 1221–1229. [Google Scholar] [CrossRef] [PubMed]
- Picossi, S.; Flores, E.; Ekman, M. Diverse Roles of the GlcP Glucose Permease in Free-Living and Symbiotic Cyanobacteria. Plant Signal. Behav. 2013, 8, e27416. [Google Scholar] [CrossRef] [PubMed]
- Ekman, M.; Picossi, S.; Campbell, E.L.; Meeks, J.C.; Flores, E. A Nostoc Punctiforme Sugar Transporter Necessary to Establish a Cyanobacterium-Plant Symbiosis1[C][W]. Plant Physiol. 2013, 161, 1984–1992. [Google Scholar] [CrossRef] [PubMed]
- Scholz, I.; Lange, S.J.; Hein, S.; Hess, W.R.; Backofen, R. CRISPR-Cas Systems in the Cyanobacterium Synechocystis Sp. PCC6803 Exhibit Distinct Processing Pathways Involving at Least Two Cas6 and a Cmr2 Protein. PLoS ONE 2013, 8, e56470. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Li, J.; Wang, B.; Han, J.; Hao, Y.; Wang, S.; Ma, X.; Yang, S.; Ma, L.; Yi, L.; et al. Endogenous Type I CRISPR-Cas: From Foreign DNA Defense to Prokaryotic Engineering. Front. Bioeng. Biotechnol. 2020, 8, 62. [Google Scholar] [CrossRef]
- Chu, T.-C.; Murray, S.R.; Hsu, S.-F.; Vega, Q.; Lee, L.H. Temperature-Induced Activation of Freshwater Cyanophage AS-1 Prophage. Acta Histochem. 2011, 113, 294–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quiblier, C.; Wood, S.; Echenique-Subiabre, I.; Heath, M.; Villeneuve, A.; Humbert, J.-F. A Review of Current Knowledge on Toxic Benthic Freshwater Cyanobacteria--Ecology, Toxin Production and Risk Management. Water Res. 2013, 47, 5464–5479. [Google Scholar] [CrossRef]
- Veerabadhran, M.; Chakraborty, S.; Mitra, S.; Karmakar, S.; Mukherjee, J. Effects of Flask Configuration on Biofilm Growth and Metabolites of Intertidal Cyanobacteria Isolated from a Mangrove Forest. J. Appl. Microbiol. 2018, 125, 190–202. [Google Scholar] [CrossRef]
- de los Ríos, A.; Ascaso, C.; Wierzchos, J.; Fernández-Valiente, E.; Quesada, A. Microstructural Characterization of Cyanobacterial Mats from the McMurdo Ice Shelf, Antarctica. Appl. Environ. Microbiol. 2004, 70, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Solé, A.; Gaju, N.; Méndez-Álvarez, S.; Esteve, I. Confocal Laser Scanning Microscopy as a Tool to Determine Cyanobacteria Biomass in Microbial Mats. J. Microsc. 2001, 204, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Burnat, M.; Diestra, E.; Esteve, I.; Solé, A. In Situ Determination of the Effects of Lead and Copper on Cyanobacterial Populations in Microcosms. PLoS ONE 2009, 4, e6204. [Google Scholar] [CrossRef]
- Arp, G.; Bissett, A.; Brinkmann, N.; Cousin, S.; Beer, D.D.; Friedl, T.; Mohr, K.I.; Neu, T.R.; Reimer, A.; Shiraishi, F.; et al. Tufa-Forming Biofilms of German Karstwater Streams: Microorganisms, Exopolymers, Hydrochemistry and Calcification. Geol. Soc. 2010, 336, 83. [Google Scholar] [CrossRef]
Organism | NCBI Accession | # Nucleotides | # Sequences | GC-Content, % | # CDS |
---|---|---|---|---|---|
Tychonema bourrellyi FEM_GT703 | NZ_NXIB00000000.2 | 5,081,867 | 271 | 44.7 | 4629 |
Tychonema sp. BBK16 | NZ_JAKJHX000000000.1 | 5,267,730 | 226 | 44.3 | 4708 |
Tychonema sp. LEGE 06208 | NZ_JADEWT000000000.1 | 6,554,502 | 233 | 45.7 | 5667 |
Tychonema sp. LEGE 07196 | NZ_JADEXB000000000.1 | 6,690,183 | 226 | 45.6 | 5658 |
Tychonema sp. LEGE 07199 | NZ_JADEXC000000000.1 | 6,699,634 | 343 | 45.7 | 5688 |
Tychonema sp. LEGE 07203 | NZ_JADEXD000000000.1 | 6,618,298 | 351 | 46.0 | 5800 |
Name | Number of Restriction Modification Enzyme Genes | Number of Transposase Genes |
---|---|---|
Tychonema sp. BBK16 | 62 | 27 |
Tychonema bourrellyi FEM_GT703 | 82 | 38 |
Tychonema sp. LEGE 06208 | 77 | 42 |
Tychonema sp. LEGE 07199 | 81 | 32 |
Microcoleus sp. LEGE 07076 | 110 | 50 |
Kamptonema sp. PCC 6506 | 65 | 34 |
Nostoc sp. PCC 7524 | 61 | 25 |
Phormidium yuhuli AB48 | 54 | 27 |
Rivularia sp. PCC 7116 | 45 | 39 |
Gloeobacter violaceus PCC 7421 | 42 | 18 |
Spacer | Phage | Taxonomy | Accession Number | Identical Sites, % | Pairwise Identity, % | Query Coverage, % |
---|---|---|---|---|---|---|
4 | Cyanophage P-RSM6 | Kyanoviridae; Sokavirus | HQ634193.1 | 95.0 | 95.0 | 48.78 |
8 | Synechococcus phage S-T4 | Tamkungvirus | MH412654.1 | 88.0 | 88.0 | 73.53 |
9 | Synechococcus phage S-SRM01 | Unclassified myovirus | MW015081.1 | 100 | 100 | 57.58 |
19 | Synechococcus phage S-T4 | Tamkungvirus | MH412654.1 | 91.7 | 91.7 | 68.57 |
20 | Synechococcus phage B3 | Unclassified myovirus | MN695334.1 | 100 | 100 | 48.72 |
23 | Synechococcus phage S-RIM2 | Kyanoviridae; Nerrivikvirus | KX349226.1 | 91.3 | 91.3 | 69.70 |
29 | Synechococcus phage S-SM1 | Kyanoviridae; Thetisvirus | GU071094.1 | 100 | 100 | 48.57 |
37 | Synechococcus phage S-H68 | Unclassified myovirus | MK016663.1 | 95.5 | 95.5 | 45.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evseev, P.; Tikhonova, I.; Krasnopeev, A.; Sorokovikova, E.; Gladkikh, A.; Timoshkin, O.; Miroshnikov, K.; Belykh, O. Tychonema sp. BBK16 Characterisation: Lifestyle, Phylogeny and Related Phages. Viruses 2023, 15, 442. https://doi.org/10.3390/v15020442
Evseev P, Tikhonova I, Krasnopeev A, Sorokovikova E, Gladkikh A, Timoshkin O, Miroshnikov K, Belykh O. Tychonema sp. BBK16 Characterisation: Lifestyle, Phylogeny and Related Phages. Viruses. 2023; 15(2):442. https://doi.org/10.3390/v15020442
Chicago/Turabian StyleEvseev, Peter, Irina Tikhonova, Andrei Krasnopeev, Ekaterina Sorokovikova, Anna Gladkikh, Oleg Timoshkin, Konstantin Miroshnikov, and Olga Belykh. 2023. "Tychonema sp. BBK16 Characterisation: Lifestyle, Phylogeny and Related Phages" Viruses 15, no. 2: 442. https://doi.org/10.3390/v15020442
APA StyleEvseev, P., Tikhonova, I., Krasnopeev, A., Sorokovikova, E., Gladkikh, A., Timoshkin, O., Miroshnikov, K., & Belykh, O. (2023). Tychonema sp. BBK16 Characterisation: Lifestyle, Phylogeny and Related Phages. Viruses, 15(2), 442. https://doi.org/10.3390/v15020442