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Abstract: Cyanobacteria are ubiquitous phototrophic prokaryotes that find a wide range of
applications in industry due to their broad product spectrum. In this context, the application
of cyanobacteria as biofertilizers and thus as an alternative to artificial fertilizers has emerged
in recent decades. The benefit is mostly based on the ability of cyanobacteria to fix elemental
nitrogen and make it available to the plants in a usable form. However, the positive effects of co-
cultivating plants with cyanobacteria are not limited to the provision of nitrogen. Cyanobacteria
produce numerous secondary metabolites that can be useful for plants, for example, they can
have growth-promoting effects or increase resistance to plant diseases. The effects of biotic
and abiotic stress can as well be reduced by many secondary metabolites. Furthermore, the
biofilms formed by the cyanobacteria can lead to improved soil conditions, such as increased
water retention capacity. To exchange the substances mentioned, cyanobacteria form symbioses
with plants, whereby the strength of the symbiosis depends on both partners, and not every
plant can form symbiosis with every cyanobacterium. Not only the plants in symbiosis benefit
from the cyanobacteria, but also vice versa. This review summarizes the beneficial effects of
cyanobacterial co-cultivation on plants, highlighting the substances exchanged and the strength
of cyanobacterial symbioses with plants. A detailed explanation of the mechanism of nitrogen
fixation in cyanobacterial heterocysts is given. Finally, a summary of possible applications of
co-cultivation in the (agrar-)industry is given.
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1. Introduction

In 2019, the United Nations estimated the world population could grow to around
9.7 billion people in 2050 [1]. This faces mankind with a great variety of challenges,
starting with the increasing demand for nutrition. Already today, modern agriculture
depends on the use of nitrogen fertilizers in order to ensure consistently high yields [2].
Traditionally, fertilization is carried out in the form of manure or synthetic fertilizer
commonly produced using the Haber-Bosch process. Overall, the amount of reactive
nitrogen released worldwide by humans has increased about tenfold since the middle
of the 19th century [3]. Nevertheless, about 53% of the reactive nitrogen released
by humans originates from the fertilizer industry [4]. The production and input of
fertilizers into the environment poses a problem due to the release and formation of
environmentally harmful products. These include, for example, the greenhouse gas
NO;. In addition, around 50% of the applied nitrogen-based fertilizer is actually used by
the plants and the remaining 50% causes damage in surface waters through acidification
and eutrophication [5-7]. Due to an oversupply of nitrogen compared to other nutrients,
such as basic cations, the composition of wood and the leaves of plants varies, resulting
in a lower resistance to environmental influences. Further, due to the rapid growth
of nitrogen-loving plants, slow-growing species are outgrown, leading to a loss of
plant diversity [8]. Therefore, ways are being sought to ensure a sustainable supply of
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nitrogen to plants. One potential possibility is offered by nitrogen-fixing organisms
that, in symbiosis with plants, provide only the amount of nitrogen that is actually
needed [9,10].

Cyanobacteria are amongst the oldest organisms on earth, with their first appear-
ance dating back to 3.5 billion years ago [11,12]. They are often classified as microalgae,
though microalgae are eukaryotic plant cells, while cyanobacteria are phototrophic
prokaryotes and are very similar to the subclass of gram-negative prokaryotes due to
the structure of their cell walls [13]. Thereby, cyanobacteria have a thicker peptidogly-
can layer compared to most of gram-negative bacteria [14]. They show considerable
morphological diversity, as they are capable of unicellular or filamentous growth, or
they can form colonies [15]. Their occurrence is ubiquitous, i.e., they can survive in the
most diverse and extreme habitats such as deserts, hot springs, or polar regions [16].
According to their origin, they are divided into aquatic and terrestrial cyanobacte-
ria [17]. Both terrestrial and aquatic cyanobacteria are capable of forming biofilms,
whereby terrestrial cyanobacteria grow surface-associated, air-exposed biofilms. Within
these biofilms, terrestrial cyanobacteria live embedded in a matrix of an extracellular
polymeric substance (EPS). Besides water, the main components of this EPS are polysac-
charides, proteins, lipids, and nucleic acids, although the entire composition has not
yet been determined [18]. Among other things, the formation of the EPS enables the
cyanobacteria to adhere to surfaces. Furthermore, the EPS serves as a protective layer
against desiccation and nutrient deficiency by storing water and nutrients, which is
also a reason for the cyanobacteria’s survival in extreme regions [19]. Other advantages
include protection against antimicrobial agents and aggregation of cells, resulting in
higher cell densities, which in turn results in a higher robustness of the biofilm [20].
Most cyanobacteria are able to grow heterotrophically and phototrophically, as well as
mixotrophically [13]. In phototrophic growth, they perform oxygenic photosynthesis,
i.e., they use light energy to synthesize high-energy organic compounds (carbohydrates)
from low-energy inorganic molecules (CO,). In this process, water is split by releas-
ing electrons and oxygen is produced [21]. Like eukaryotic phototrophic organisms,
cyanobacteria use specialized reaction centers for photosynthesis, namely photosystem
I (PSI) and photosystem II (PSII), which are located in the thylakoid membrane. They
enable light-induced electron transport from H,O to NADP*, whose reduced equivalent
NADPH is needed in the formation of carbohydrates [22]. For this purpose, photons
are first absorbed at the light-collecting complexes of the photosystems. These pho-
tons are in turn transferred to special chlorophyll-a pairs in the reaction centers. The
chlorophyll-a pairs are designated P680 (A = 680 nm) for PSII and P700 (A = 700 nm)
for PSI based on their absorption maxima. In PSII, the oxidation of water to oxygen
occurs, and the released electrons are directly supplied to an electron transport chain
via the cytochrome bgf complex located in the thylakoid membrane toward PSI. The
proton gradient created via the electron transport chain is used by ATP synthetase for
ATP production, which is required in the Calvin cycle for glucose production and CO,
fixation. In PSI, the reduction of NADP* to NADPH is carried out by ferredoxin as an
electron transporter [23].

Like all phototrophic organisms, cyanobacteria possess the photopigment chlorophyll-
a (Chla). In addition, most contain carotenoids (Car) and phycobilins. The latter are
bound to proteins and form with them the so-called phycobiliproteins, which in turn
combine to form large, light-collecting protein complexes called phycobilisomes. The
most important phycobiliproteins are C-phycocyanin (CPC), allophycocyanin (APC), and
phycoerythrin (PE). These additional antenna complexes enable cyanobacteria, in contrast
to plants, to absorb light between 500 and 680 nm [24]. Thereby, cyanobacteria are able
to adjust their pigment and phycobilisome composition depending on environmental
conditions, which is called chromatic adaptation [25]. This enables the cyanobacteria to
grow phototrophically even in low-light regions, such as in deep water zones [26].
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Furthermore, cyanobacteria are also able to grow heterotrophically in complete dark-
ness. Thereby, the cyanobacteria need an external carbon source in the form of carbohy-
drates [27]. Energy production can be achieved through various metabolic pathways, which
include the oxidative pentose phosphate pathway, glycolysis, and the citrate cycle [28]. If
the cyanobacteria are able to assimilate carbon dioxide and metabolize carbohydrates at
the same time, this is known as mixotrophic growth [29].

Due to their wide range of products, cyanobacteria offer a variety of possible applica-
tions. For example, they have been part of the human diet for decades and are used as a
food supplement [30]. Since cyanobacteria produce not only chlorophyll-a, but also other
pigments and light-harvesting complexes in the form of carotenoids and phycobiliproteins,
they are also suitable as a source of natural dyes [31]. Furthermore, they are used in the
production of medical products, as they produce a wide range of antibacterial, antifungal,
or antiviral metabolites [31-34]. Additionally, cyanobacteria have recently come into focus
as a source for alternative fuels [35]. Thus, it is possible to obtain methane or crude oil
from the biomass by pyrolysis [36], or to use the cyanobacteria directly for the production
of hydrogen, for example [37]. Moreover, polyhydroxyalkanoates have been found in
cyanobacteria [38]. These have comparable properties to polyethylene and polypropylene
and represent a biodegradable alternative to thermoplastics [34]. In addition, many other
technically useful products can be obtained from cyanobacteria, such as ethanol, fatty
acids, or organic acids [36,37,39]. Finally, cyanobacteria are a promising alternative to
artificial fertilizers, as they are able to fix nitrogen from the air and make it available to the
plants [40].

This review is intended to provide an overview of the effects of cyanobacteria on plant
growth. First, the potential plant-growth-promoting effects based on cyanobacteria are
presented, then the direct effects of symbiotic growth are described. Thereupon, possible,
as well as already established, applications of co-cultures of plants and cyanobacteria in
the (agrar-)industry are summarized.

2. Nitrogen Fixation

In the course of their evolution, cyanobacteria have been repeatedly exposed to a wide
variety of living conditions, which has led to the fact that they are, nowadays, able to use
different sources of nitrogen [41]. These include, for example, ammonium, nitrate, nitrite,
urea, or nitrogen-containing amino acids such as glutamine, with ammonium being the
preferred source because it is the most reduced inorganic form of nitrogen [41-46]. In the ab-
sence of a nitrogen source in the medium, diazotrophic cyanobacteria are able to fix atomic
nitrogen from the atmosphere and make it biologically available. This is also an important
distinguishing feature of cyanobacteria from eukaryotic microalgae, as only cyanobacteria
are capable of nitrogen fixation [47]. For this purpose, they need the enzyme nitrogenase,
which reduces atomic nitrogen to ammonium under ATP consumption [48,49]. Because
nitrogenase is inactivated by oxygen, oxygenic photosynthesis and nitrogen fixation are
incompatible processes [50]. For this reason, two different mechanisms have evolved to
separate the two processes: (i) temporal separation (day—night rhythm) and (ii) spatial
separation (cell differentiation). For example, the cyanobacterium Cyanothece sp. strain
ATCC 51142 stores glycogen in glycogen granules during the day and fixes nitrogen at
night, which is accumulated in the form of a nitrogen-rich polymer (cyanophycin) [51]. In
comparison, Anabaena sp. PCC 7120 is able to fix nitrogen during the day with the help of
specialized cells, the so-called heterocysts [52]. These cells lack PSII and do not perform
carbon fixation (the Calvin cycle). This means that no photosynthesis takes place through
which nitrogenase cannot be inactivated by oxygen. Heterocysts differ from vegetative
cells by their larger and rounder shapes (see Figure 1), a thickening of the cell wall, and
an accumulation of cyanophycin granules at the border with neighboring cells [53,54].
Differentiation of vegetative cells into heterocysts is induced by the absence of nitrate
and/or ammonium. The time required for the formation of heterocysts depends on the
strain, whereby cyanobacteria of the genus Anabaena or Nostoc usually require between
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12 and 20 h for the formation of mature heterocysts [55]. Approximately every tenth cell
differentiates into a heterocyst [50]. Unlike vegetative cells, cell division of heterocysts is
not possible [56]. Nitrogenase is synthesized within these cells [57]. Due to the thickened
cell wall, oxygen penetration is prevented. Additionally, because PSII is inactive in hetero-
cysts, pigmentation decreases [58]. This can be used to distinguish vegetative cells from
heterocysts. Vegetative cells contain PSII and thus chlorophyll-a, whose fluorescence can
be measured. On the other hand, heterocysts lack PSII and thus chlorophyll-a. Through
overlaying a fluorescence image with a microscopic image, the cells can be distinguished
(see Figure 1).

Figure 1. Light microscope image of Desmonostoc muscorum after 14 day cultivation in BG11j (without
nitrogen) medium (A). Overlay of a fluorescence image with a microscopic image of D. muscorum (B).
The red fluorescing cells contain chlorophyll-a and thus an intact photosystem II. The heterocysts
do not fluoresce because they lack photosystem II. Some heterocysts are marked by a white arrow.
Cultivation conditions: temperature = 30 °C, continuous illumination with 100 pmol,potons m2s71,
120 rpm, and 50 mL BG11y medium in a 300 mL shaking flask.

Just like oxygen, nitrogen cannot diffuse directly into a heterocyst via the cell wall and
therefore passes from a vegetative cell into a heterocyst via thin cytoplasmic channels (micro-
plasmodesmata) (see Figure 2). There, nitrogen is reduced to ammonia or ammonium
by the enzyme nitrogenase. While the ATP—necessary to cover the energy demand—is
synthesized in the heterocyst by PSI, which remains active, the reducing agent for nitrogen
fixation must be provided by neighboring cells [59]. This takes place in the form of twofold
sugars, such as sucrose, which are produced in the vegetative cells in which PSII remains
active. Sucrose enters the heterocyst via the micro-plasmodesmata, where NADPH is
formed as a reducing agent via the pentose phosphate pathway [60]. The reduced nitrogen
is transferred to glutamate by the enzyme glutamine synthetase, and thus glutamine is
formed, which enters the vegetative cells via the micro-plasmodesmata. Here, the enzyme
glutamate synthase is present, which in turn catalyzes the reaction of glutamine with
a-ketoglutarate to form two equivalents of glutamate. Glutamate can now re-enter the
heterocyst for further synthesis of glutamine or be fed to further metabolic pathways [61].
However, the fixed nitrogen is subsequently not only used by the cyanobacteria to cover
their own needs, but can also be released into the medium in the form of ammonium, for
example [48].
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Figure 2. Schematic illustration of nitrogen fixation in heterocysts and metabolic exchange with neigh-
boring vegetative cells. Fdx,.yq = reduced ferredoxin, Gluc6P = glucose-6-phosphate, 6Pgluc = gluconate-
6-phosphate, Rib5P = ribulose-5-phosphate, GOGAT = glutamate synthase, PSI = photosystem I, and
PSII = photosystem II.

3. Cyanobacterial Metabolites

Plants, however, can benefit from the supply of fixed nitrogen through co-culture with
cyanobacteria. For instance, plant-growth-promoting effects have already been demon-
strated for various extracts from cyanobacteria [62]. Cyanobacteria are able to synthesize
a variety of bioactive molecules with, for example, antimicrobial or growth-promoting
properties. These secondary metabolites are often difficult to synthesize chemically due
to their complex structure [63]. A classification of the secondary metabolites is possible in
different ways: (i) according to their structural classes (see Table 1) and (ii) based on their
mode of action on plants or their environment. The latter will also be used in this review,
whereby only the beneficial effects of cyanobacterial secondary metabolites are discussed,
but it should also be noted that negative effects exist. In this context, the production of
cyanotoxins should be mentioned, which have toxic effects on humans and animals and
can become a danger, especially with the occurrence of cyanobacterial blooms [64].

3.1. Promoting Plant Growth and Growth Condition

The market for growth-promoting substances is currently one of the fastest grow-
ing sectors in relation to agriculture, with expected annual growth of approximately 10%
until 2027 [97]. Cyanobacteria secrete a variety of potentially growth-promoting sec-
ondary metabolites, which, among others, includes auxins. Shariatmadari et al. [98] and
Hashtroudi et al. [99] investigated the effects of the water extracts of various cyanobacterial
strains on the growth of pumpkin, cucumber, and tomato plants. They were able to show
that the extracts contained the auxins indole acetic acid (IAA) and indole butyric acid (IBA).
In the application of the extracts, increased values for root length, height, and the wet and
dry mass of the plants were observed. Similar results were obtained by Haroun et al. [100]
showing that filtrates of the cyanobacteria Cylindrospermum muscicola and Anabaena oryzae
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can increase the growth (through increased chlorophyll-a and -b content, photosynthetic
activity, and nitrogen and carbon content in leaves) of the plant Lupinus termis. In addition
to auxins, the cyanobacterial filtrates contained gibberellic acid and cytokinins, which
have growth-regulating functions in plants as well (see Section 3). Haroun et al. were
able to show that the content of these secondary metabolites increases within the plants
through the application of the cyanobacterial filtrates. The content of growth-promoting
secondary metabolites depends on the cyanobacterial strain, as shown by Osman et al. [101].
Nostoc entophytum contained higher levels of auxins (IAA) and cytokinin, while Oscillatoria
angustissima had higher levels of gibberellic acid. The different composition also leads to
different effects on the growth of pea plants. While fertilization with N. enfophytum led to
higher contents of chlorophyll-a, carotenoids, nitrogen, protein, and exopolysaccharide
content compared to O. angustissima, higher contents of carbohydrates and phosphate were
achieved vice versa.

Table 1. Cyanobacterial metabolites and their effects on plants.

Class Metabolites Cyanobacteria Effects on Plants Reference
) . seed germination and
Anabaena sp., Anabaenopsis sp., growth regulation
Calothrix sp., Cﬁlqrog l‘oeopsis e  increased resistance to biotic
sp-, Chroococcidiopsis sp., and abiotic stress
auxins, absicic acid, cytokinins, Cy lzndros;'zermum, Gloeothece, hd expression of genes and
Phytohormones Haplosiphon, Nostoc sp., synthesis of enzymes [65-68]

Phenolic compounds

Terpenoids

Carotenoids

Peptides

gibberilins, ethylene Oscillatoria sp., Phormidium sp.,

Plectonema, Rhodospirillum sp., o
Scytonema sp., Synechocystis sp.,
Westiellopsis prolifica .

nutrient uptake
chlorophyll-a, carotenoid,
and fatty acid content
promoting cell division

. defense mechanisms
. color/aroma of flowers and

fruit
Anabaena sp., Arthrospirasp.,, ~ ®  seed germination and
flavonoids, phenolic acids, cell Calothrix, Chroococcidiopsis, growth/development 69-73
wall phenolics Leptolyngbya, Nostoc sp., stress reduction [69-73]
Oscillatoria, Phormidium d flavonoids as unique UV
filters
e  signal molecules
. increased immunity against
disease/toxicity
. defense mechanisms
. li essential role in the
ﬁ—;sf?‘e};faer?cei; eﬁ?ﬁﬁgﬁ;ol, Anabae;za ap., Synechocystis sp., Eﬁgr‘:izllognzi light into [74,75]
farnesene, bisabolene ynechococcus sp- &
¢ . assembly and function of
photosynthetic reaction
centers
e  yellow/orange color of
) leaves and fruits
[3-, y-carotene, astaxanthin, Anah;;‘na SP- .Cy lmd]r\(;sp I o several aromas in plants
canthaxanthin, zesarthin, Sy TR LRI esental componentinpho-
lutein, lycopene, phytoene, S P HALLTLSP-, tosynthesis/photoprotection
echinenone ynechococcus sp., Spirulina sp., production of
Tolypothrix sp. phytohormones
Aphanizomenon flos-aquae, e  regulation of plant growth
Calothrix ghosei, and development
tides. f . Cylindrospermum musciola, ¢ triggers plant
pepides, ree amino Hapalosiphon intricatus, defense responses [68,80-86]

acids, proteins

Microcystis aeruginosa, Nostoc
muscorum, Nostoc sp.,
Westiellopsis sp.

antioxidative defense
systems
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Table 1. Cont.
Class Metabolites Cyanobacteria Effects on Plants Reference
e  protection against biotic and
abiotic stress
Polvsaccharides -glucans, chitin, lipopolysac- Arthrospira platensis, Nostoc ° %mproveg PS,III activity . [18,87-90]
o4 charides, carrageenans muscorum, H. fontinalis, P. tenue ~ ® improved soil aggregation !
e  binding of heavy metals
. facilitated nutrient uptake
. stress reduction
Anabaena sp., Chroococcus . improved growth
riboflavin, ascorbic acid, mimulus, Microcystis pulverana, and development
Vitamins . th1a.mme: col.aa.laml.ne, . Nostoc sp-, Nos'toc muscqrum, . increased immunity [91-96]
pyridoxine, nicotinic acid, folic Oscillatoria jasorvensis, against disease
acid, phenothene Phormidium bijugatum, e enzyme cofactors
Spirulina

Cyanobacterial secondary metabolites can not only have a direct effect on plant growth,
but also lead to improved growth conditions. Rogers et al. [102] showed that the secretion
of polysaccharides by Nostoc muscorum led to an increase in soil stability of 18% within
300 days. At the same time, the carbon content in the soil was also increased. Both together
led to an increase in the germination rate of lettuce plants by approximately 50%.

3.2. Resistance against Plant Disease

Plant diseases can have multiple causes and effects, with the initiators being either
living organisms or environmental factors [103]. Especially against diseases triggered
by other organisms, cyanobacteria represent a promising solution with their potential
antibacterial, antifungal, or pesticidal effects. Shaieb et al. [104] investigated the antibacte-
rial and antifungal effects of fifteen cyanobacteria against seven bacteria and one fungus.
Antibacterial and/or antifungal activity was demonstrated for all cyanobacterial extracts,
although not every strain is active against every bacterium or fungus. Additionally, the
activity depended on the type of solvent (water and ethanol). Many fungi pose a threat
to plant growth mainly due to their pathogenic effects. Therefore, Pawar et al. [105] in-
vestigated the effects of 40 cyanobacteria against five fungal pathogens. The strength
of the inhibitory effect depended on the solvent, whereby methanol extracts with 34.9%
inhibition followed by petroleum ether with 30.2% were most effective in inhibiting the
pathogens. Chaudhary et al. [106] showed an increased growth of tomato plants suffering
from damping off disease by treatment with Anabaena variabilis. Treatment with A. variabilis
even outperformed chemical control by treatment with artificial fungicides (thiram and
carbendazim). Similar results were obtained by Dukare et al. [107], who demonstrated the
use of cyanobacteria for controlling root disease in tomato plants caused by pathogenic
fungi. Kim [108] was able to show that not all cyanobacteria have antifungal effects. A
total of 142 cyanobacteria from rice fields were examined, whereby only 6.34% showed an
antifungal effect against the seven plant pathogenic fungi tested in this study. This does not
automatically mean that the other cyanobacteria have no antifungal effect at all, but it does
show that the inhibitory effect is often specialized to a few pathogenic species. The potential
range of antifungal activity was investigated by Abo-Shady et al. [109] by testing the activ-
ity of extracts of Anabaena subcylindrica, Nostoc muscorum, and Oscillatoria angusta against
pathogenic fungi isolated from faba bean roots, stems, and leaves. The fungi belonged to
six different families. The inhibitory effect shown by the cyanobacteria against several of
the fungi thus indicates that cyanobacteria are generally capable of acting as antifungal
agents against a wide variety of genera. However, no cyanobacteria showed inhibition
against all fungi, which is why a combination would be favorable. The antibacterial and
antifungal effects of cyanobacteria thus represent a promising approach to suppress, or
at least minimize, plant diseases caused by pathogenic organisms. Nevertheless, it must
be noted that most studies only investigate the in vitro effect of extracts and this does not
automatically imply any effect in vivo [110].
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Cyanobacterial extracts can not only show antibacterial or antifungal effects, but also
pesticidal or herbicidal effects. Biondi et al. [111] observed an antifungal effect against nine
fungi, as well as insecticidal (Helicoverpa armigera), nematocidal (Caenorhabditis elegans),
and cytotoxic (Artemia salina) effects of methanol extracts of the cyanobacterium Nostoc
ATCC 53789. While the insecticidal and nematocidal effects are desirable, the application
of the strain becomes problematic due to its cytotoxic effect. Furthermore, the herbicidal
effect of the strain against grasses could also be shown, although here again the application
is complicated by the fact that damage to the roots of tomato plants was also observed. All
the effects described were attributed by Biondi et al. to the formation of cryptophycins.
In summary, this work shows that cyanobacteria are a promising source of substances
for protection against pathogenic eukaryotes, but at the same time, they can also have
undesirable effects against useful organisms [111].

3.3. Protection against Biotic and Abiotic Stress

Plants are exposed to a variety of environmental influences that have an impact on
growth and yield. A distinction can be made between biotic and abiotic stress factors [112].
Cyanobacteria are able to produce a variety of bioactive compounds against biotic stressors,
such as bacteria, fungi, or insects. The mortality of tomato plants exposed to biotic stress by
Fusarium wilt can be reduced by the use of Anabaena variabilis. In this context, the activity
of defense enzymes in the tomato plants was also increased [113]. Manjunath et al. [114]
investigated the use of Calothrix elenkii as a biocontrol agent against biotic stress triggered
by the fungi Phytium aphanidermatum in the culture of tomato, chili, and brinjal plants,
resulting in a decreased mortality and an increased growth of all vegetables. The diseases
caused by bacteria and fungi described in Section 3.2 can also be regarded as biotic stress
for plants, thus demonstrating the diversity of cyanobacteria as a protective agent against
biotic stress. An increase in defense systems combined with an improved growth was
observed by Priya et al. [115] for rice plants inoculated with cyanobacteria.

Abiotic stress for plants is very diverse and ranges from weather influences (drought,
flooding, or wind) and seasonal influences (temperature or light) to the composition of
the soil (salinity, heavy metals, or acidic soil) [116,117]. By using cyanobacteria, the ger-
mination of plants can be improved, for example, under drought stress, or in areas with
water contaminated with heavy metals or pesticides [118]. For instance, Chua et al. [119]
showed that with the help of cyanobacteria, plant colonization and growth are enhanced
for the restoration of arid landscapes. Furthermore, Cyanobacteria have developed diverse
mechanisms to respond to high soil salinity through the: (i) synthesis and accumulation
of protective substances, (ii) maintenance of low ion concentrations within the cells, and
(iii) expression of so-called salt stress proteins [120]. Apte et al. [121] observed a change in
the protein composition of two cyanobacterial strains, Anabaena torulosa and Anabaena sp.,
under salinity effects. The cyanobacteria reacted to salt stress in three different ways re-
garding their protein synthesis: (i) the expression of some proteins was suppressed, (ii) the
expression of some proteins was enhanced, and (iii) through the expression of specialized
salt stress proteins. Pandhal et al. [122] observed differences in the protein composition
of cyanobacteria Euthalothece sp., a halotolerant strain, and Synechocystis sp., a moderately
halotolerant strain, depending on the salt concentration. While Euthalothece showed a stress
response at 0% salt, the opposite was the case for 3% and 6% salt. Rodriguez et al. [123]
investigated the influence of extracellular products of the cyanobacterium Scytonema hof-
manni on the growth of rice plants under salt stress. The extracellular products were able
to counteract the stress caused by the high salt concentrations. A comparison with the
effects triggered by gibberellic acid suggests that S. hofmanni produces gibberellin-like
plant-growth promoters. Another way to increase the stress sensitivity of plants is through
the expression of cyanobacterial flavodoxin within them. This can induce multiple re-
sistances in plants, though de la Pena et al. [124] showed that it can reduce salt stress in
the model plant Medicago truncatula. The effects of salt stress can also be reduced in bell
pepper plants. Bello et al. [125] observed in a soilless cultivation of Capsicum annum L. an
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increase in growth, as well as in the water content of the plants by using a liquid extract of
Roholtiella sp. Mutale-Joan et al. [126] showed improved growth of tomato plants under
salt stress by adding the microalgae Dunaliella salina and Chlorella ellipsoidea together with
the cyanobacteria Aphanothece sp. and Arthrospira maxima. This improved both the growth
of the plants and their composition in terms of chlorophyll content and the content of
essential nutrients such as nitrogen, phosphorus, and potassium. The effects of inoculation
of high salinity soils go far beyond the synthesis of specific proteins. Various effects have
been demonstrated in laboratory and field experiments. Cyanobacteria lead to an increase
in nitrogen and carbon content, aggregation status, and water retention, and a decrease
in pH, electrical conductivity, exchangeable sodium, and heavy metals, as well as a re-
establishment of microbial flora [127-129]. Phytohormones, such as salicylic or jasmonic
acid, can also contribute to the protection of plants against biotic or abiotic stress by in-
ducing the expression of genes synthesizing for specific proteins [130]. Hussain et al. [131]
observed the release of phytohormones from Nostoc into the culture media and thereupon
a growth stimulation on rice and wheat.

4. Symbiotic Association between Plant(-Cell) and Cyanobacteria

Cyanobacteria often grow in symbiosis with various host organisms, such as other
prokaryotes [132], eukaryotic protists [133], fungi [134], or plants [135], though only sym-
biotic associations with the latter will be described in this review. In symbiotic growth,
both partners can benefit from each other in different ways. For example, the host or-
ganisms (plants) profit from the provision of the nitrogen that the cyanobacteria can fix
from the air. This is also the reason why symbiotic cyanobacteria are mostly heterocyst-
forming strains [136] and, in particular, belong almost exclusively to the genus Nostoc and
Anabaena [137,138]. The cyanobacteria, called cyanobionts in symbiosis, in turn benefit from
the host organisms by the latter providing them with carbon sources, such as sucrose. Here,
the cyanobionts can either occur within the host or attach themselves more or less firmly to
the host [139]. The strength of the interaction depends on both the cyanobacterium and the
plant, whereby the specificity is often such that one eukaryote can only form symbioses
with one prokaryote [140]. Gantar et al. [141] observed the colonization of cyanobacteria in
different parts of wheat. A large proportion of the cyanobacteria accumulated around the
roots in the form of a thick biofilm. However, they also found cyanobacteria in intercellular
spaces in the root epidermis and cortex. Single cells were also found within plant cells.
Cells associated with the stem or on the surface of leaves were observed as well.

The symbiosis has diverse effects on the growth and development of cyanobionts.
For example, an increased heterocyst formation of up to 80% could be observed in the
Gunnera—Nostoc symbiosis [142]. Thereby, it could also be shown that only about 12%
of the fixed nitrogen remains in the cyanobacteria, while the remaining 88% is supplied
to the host organism in the form of NHj [142]. The enhanced release of ammonium
also causes a decrease in glutamine synthetase activity in the heterocysts. Glutamine
synthetase (GS) is the enzyme mainly responsible for the assimilation of ammonium
in cyanobacterial heterocysts (see Figure 2). Joseph and Meeks [143] observed a three-
to four-fold reduction in GS activity in heterocysts in the Nostoc—Anthoceros symbiosis
compared to axenic cultivation of cyanobacteria. Reduced GS activity was also shown
for the Azolla—Anabaena [144] symbiosis and the symbiosis between Nostoc and Anthoceros
punctatus [145]. In symbiosis, the modification of the cyanobionts extends to the point
where heterocysts can be formed even in the absence of nitrogen deficiency signs [9].
However, due to the increased heterocyst frequency of cyanobionts, they may be unable
to fix sufficient carbon. In these cases, it has been observed that the cyanobionts obtain
fixed carbon, for example, in the form of sucrose, from the host plants [137]. Eily et al. [146]
investigated the Azolla—Nostoc symbiosis. Nostoc azollae is not able to survive in nature
without the host plant Azolla, as the genome of the organism is adapted to the symbiotic
way of life. The photosynthetic activity of N. azollae is limited, making the organism
dependent on a carbon source from its host [147]. Steinberg and Meeks [148] examined the
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nitrogen fixation rate of cyanobacteria of the genus Nostoc with Anthoceros punctatus and
obtained similar nitrogen fixation rates under dark heterotrophic conditions in symbiosis as
achieved by the cyanobacterium exposed to light. This indicates a supply of the cyanobiont
by the host with a carbon source. Nevertheless, it is also possible that the cyanobiont
transfers both nitrogen and carbon to its host, which occurs, for example, in the symbiosis
with bipartite lichens [140]. Apart from obtaining a carbon source, there are few known
benefits for the cyanobiont. In general, it probably benefits from a more stable habitat if
it accumulates in the host and is also better supplied with additional nutrients, which is
partly due to the host’s higher range [136].

It is not only the exchange of nitrogen and carbon that leads to improved plant growth.
Another limiting nutrient for plant development is phosphorus [149]. Cyanobacteria are
partially capable of converting mineral, insoluble phosphorus, such as ferric phosphate,
aluminum phosphate, or hydroxyapatite, into soluble forms that can be used by other
organisms [9,149,150]. There are different mechanisms for achieving this, such as the
production of organic acids, the synthesis of chelators, a dissimilatory reduction of iron
ions, or the enzymatic solubilization of phosphorus compounds. Often, a combination of
mechanisms also takes place [151]. Furthermore, plants benefit from a general improvement
in the condition of soils and also the provision of growth-promoting substances such as
auxins (see Section 3.1). The reduction of biotic and abiotic stress (see Section 3.3) and the
protection against plant diseases (see Section 3.2) are also factors that favor the development
of symbioses from a plant’s point of view.

Besides the association of cyanobacteria with whole plants, little is known about the
formation of symbioses with plant cell cultures. Among the symbioses studied is the
co-culture of cyanobacteria with wheat callus. Callus is generally defined as disorganized
tissue that plants form in response to stress factors such as injury. In the laboratory, callus
tissue is induced by using the plant hormones auxin and cytokinin [152]. Gantar [153]
showed that the cyanobacterium Nostoc sp. 259B in co-culture with wheat callus penetrates
the callus and fills the intercellular cavities. The cyanobacteria were enlarged, and the
biomass yield increased. At the same time, the production of EPS and the nitrogen fixation
rate increased. A penetration of cyanobacteria into callus cells was demonstrated by
Gusev et al. [154] using the co-cultivation of Anabaena variabilis and tobacco callus. As
previously described, symbiosis with plants can lead to increased formation of heterocysts.
Gorelova and Kleimenov [155] investigated the effects of co-culturing the cyanobacteria
C. fritschii and D. muscorum with callus cells of the plants Rauwolfa serpenting and Solanum
lacinatum on the nitrogen fixation of the cyanobacteria. They showed that in co-cultivation,
the cyanobacteria formed more cyanophycin granules (which serve as nitrogen storage)
and formed heterocysts even in nitrogen-containing media. The effects of the symbiosis
also depend on the growth status of the plant cells. Thus, these can either stimulate
the accumulation of nitrogen in vegetative cells, increase the degradation of nitrogen in
them, or initiate the production of heterocysts, even if the cyanobacteria do not detect a
nitrogen deficit.

5. Potential Application of Artificial Co-Cultures in (Agrar-)Industry

A large part of the nitrogen on Earth exists elementally in the form of gaseous N.
Only a few organisms belonging to alphaproteobacterial (e.g., Rhizobia), betaproteobacteria
(e.g., Nitrosospira), gammaproteobacterial (e.g., Pseudomonas), firmicutes, and cyanobacteria
(e.g., Nostocales) have the ability to biologically fix nitrogen from the atmosphere and
release it as bioavailable nitrogen such as ammonia [156]. As mentioned before, synthetic
fertilizers are mainly used to increase yields in agriculture, and their production as well
as their use are harmful to the environment. Nitrogen-fixing cyanobacteria provide a
possible solution for a sustainable fertilizer. Since eukaryotic microalgae are not able to fix
nitrogen, their application as biofertilizers will not be discussed in detail here, whereby
the interested reader is referred to corresponding reviews [47,157-159]. Initially, the use of
cyanobacteria, especially the heterocyst-forming strains, was mainly limited to fertilizing
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rice plants [160-165]. However, research in the last two decades has shown increased
interest and success in fertilizing other crops [166]. Beneficial effects of cyanobacteria
have also been demonstrated for the growth of wheat [85,167-170], tomatoes [113,171,172],
maize [173], peas [101,174], and cotton [175]. In each case, the cyanobacteria were added
to the soil as a suspension. Farmers can further benefit from such communities in several
ways. First, they benefit directly from faster plant growth and thus increased productivity.
The production of agricultural products could also become cheaper due to a reduced
amount of fertilizer. In addition, cyanobacteria live embedded in a self-produced matrix of
EPS that holds the cells together and acts as both nutrient storage [176,177] and a water
reservoir [178]. These properties lead to a positive effect on the stability and fertility of the
soil [179,180]. In addition to the cells, the EPS also binds and immobilizes soil particles,
which counteracts erosion [181]. Further, the EPS improves the water retention of the
soil [182]. In addition to its application in soil, the use of cyanobacteria in hydroponic
systems should also be mentioned here, as its cultivation in liquid medium facilitates an
attachment of the cyanobacteria to the roots of the plants and thus the exchange of nutrients
and secondary metabolites. Mutale-Joan et al. [183] give a detailed review on the use of
cyanobacteria in hydroponics.

Cyanobacteria are found by nature in rice fields, ensuring that the amount of available
nitrogen for the plants is increased [165]. As a result, there is great interest in studying the
symbioses between rice plants and cyanobacteria and the specific effects of different sym-
biotic partners or cultivation conditions on each other. Chittapun et al. [162] investigated
the effects of the two Nostoc strains, Nostoc carneum and Nostoc commune, on the growth of
rice plants. It was shown that the use of the biofertilizer significantly increased seedling
growth and the number of grains per plant compared to the control without fertilizer.
A combination of cyanobacteria and chemical fertilizer also had a positive effect [162].
Mishra et al. [161] demonstrated a grain yield increase of up to 19.48% in rice plants co-
cultured with cyanobacteria. In hydroponic co-culture, cyanobacteria attach themselves
to and within the roots of rice plants, increasing the activity of hydrolytic and defense
enzymes in the plant, resulting in increased growth and yield [164]. However, there are not
only positive effects. For example, Prieto et al. showed the inhibitory effect of cyanobacte-
rial toxins on the growth of rice plants [184]. Prasanna et al. [173] investigated the growth
of maize plants in combination with the cyanobacterial strains Anabaena sp., Anabaena
doliolum, Nostoc carneum, and Nostoc piscinale. An increase in the amount of pigment in the
cyanobacteria was shown in combination with increased growth of the plants. In addition,
an increase of the carbon available in the soil by 10-39%, of the nitrogen by 41-43%, and of
the phosphate by 13-32% could be demonstrated. The same experiments were carried out
by Prasanna et al. [175] with cotton plants. The seed germination rate was increased from
90 +£ 2% to 98 & 5% with the addition of Anabaena spp. and Nostoc spp. Furthermore, the
available amount of nitrogen increased from 97 4 5 kg ha~! to 190 & 3 kg ha~!, and the
yield per plot from 3.6 £ 0.1 kg to 3.8 = 0.3 kg. Plant weights and heights were also higher
under the influence of cyanobacteria. The growth of wheat in symbiosis with cyanobacteria
was investigated in several studies. Rana et al. [167] were able to increase the yield and
total biomass gain of wheat by co-cultivation with Anabaena sp. and Chalothrix sp. The
same results were obtained by Karthikeyan et al. [85] with the strains Chalothrix ghosei,
Hapalosiphon intricatus, and Nostoc sp. Furthermore, the nitrogen and protein content of the
harvested grains could be increased [85]. Obreht et al. [168] observed a stimulation of root
growth in co-cultivation of wheat with the cyanobacteria Nostoc 256B, Nostoc 259B, and
Anabaena C5 in both nitrogen-containing and nitrogen-free medium. The cyanobacteria
attached to the roots and led to increased nitrogen contents in the roots, depending on the
cyanobacterial strain. A tight association between cyanobacteria and the roots of wheat was
also observed by Fadl-Allah et al. [185] and Gantar et al. [186]. Gantar et al. describe that the
strength of the association of the cyanobacteria to the roots is dependent on the strain [186].
Mazhar et al. [169] and Sood et al. [187] also observed increased growth of wheat in co-
culture with cyanobacteria. This can be attributed to an increase in the endogenous auxin
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content in the plants, which in turn correlates with the exogenous auxin production of
the cyanobacteria [169]. Signaling substances for the formation of symbioses include the
amino acids and sugars secreted by the cyanobacteria [187]. Khollsi et al. [170] also in-
vestigated the use of cyanobacteria (Calothrix sp. and Anabaena cylindrica) to increase the
growth of wheat, but in combination with plant-growth-promoting rhizobacteria (PGPR),
which resulted in a maximum 36% increase in plant height for Calothrix sp. with PGPR.
Prasanna et al. [174] reported an up to 39% increased yield of pea plants by co-cultivation of
Anabaena laxa compared to growth without fertilizer. The protein content of peas was also
increased by 11%. Bidyarani et al. [188] conducted similar experiments with the same strain
and observed a yield increase of 104% and a 50% increase in the nitrogen content of the
plant compared to cultivation without fertilizer. The use of cyanobacteria as biofertilizer for
peas has also been studied by Osman et al. [101], resulting in increased germination rates
combined with stimulated growth. It was also found that a combination of 50% chemical
fertilizer and 50% biofertilizer was most effective, which would still mean a significant
reduction in the amount of artificial fertilizer used for one treatment. Suresh et al. [189]
investigated the use of two cyanobacterial strains (Anabaena variabilis and Nostoc calcicola)
on the germination rate of five different crop plants (maize, rice, beans, and two types of
millet). The results differed greatly between the individual combinations, varying from
a germination rate of 5% for N. calcicola with beans to 100% for A. variabilis with maize,
sorghum millet, and beans, with the controls having germination rates of about 50%. They
were able to identify indole acetic acid as the dominant auxin in the cyanobacteria [189].
Co-cultivation of tomatoes with cyanobacteria resulted in a lower yield in terms of freshly
harvested fruits compared to the use of conventional fertilizers [172]. Kaushik et al. [171]
confirmed these observations. In addition, an increase in the nitrogen content of the plant
of up to 78% was observed. The quality of the fruit increased when the biofertilizer was
used, which could be attributed to an increase in sugar content of up to 33% and an increase
in carotenoid content of up to 70%, as well as an increase in the dry matter of the fruit
of up to 34% [172]. Shariatmadari et al. [98] used cyanobacterial extracts from the genera
Nostoc and Anabaena to improve the growth of cucumber, pumpkin, and tomato plants.
The treatment with the extracts led to an increase in root length and plant height, as well
as root fresh and dry weight at the end of cultivation over 40 days. A more than 50%
increased germination rate of lettuce plants was achieved by Rogers and Burns [102] using
Nostoc muscorum as a biofertilizer. Grzesik et al. [190] observed intensified growth and
physiological performance of willow plants after biofertilization with Microcystis aeruginosa,
Anabaena sp. and Chlorella sp. independent of the application of synthetic fertilizer. The
growth of water spinach (Ipomoea aquatica L.) was increased by Salamah et al. [191] with
the help of the cyanobacterium Nostoc sp. SO-A31. In a nitrogen-free environment, the
biomass yield, the number of leaves, and the growth of stems and roots could be improved.
Rodgers et al. [192] observed an improvement in growth of radish plants co-cultivated with
cyanobacteria. While the previously discussed applications of cyanobacteria as fertilizers
mainly consider the fertilization of plants via soils, it is also possible to fertilize, for exam-
ple, by spraying the plant leaves with a solution of cyanobacteria or their extracts [193].
Another field of application for cyanobacteria in the agricultural industry is the treatment
of agricultural wastewater. In addition to nutrients such as nitrogen and phosphorus,
cyanobacteria can also remove heavy metals, toxins, and pathogens [194]. An overview of
the effects of cyanobacterial co-cultures on crops is given in Table 2.

In summary, the suitability of cyanobacteria as biofertilizers has already been proven
for many crops. The symbiotic growth not only improves the quantity of many plants,
but, in some cases, also the quality. Figure 3 summarizes the positive effects of co-culture
on the symbiotic partners and the environment. By mixing commercial fertilizer and
cyanobacteria, even better results could be achieved in some cases. Nevertheless, not every
cyanobacterial strain formed symbioses with every plant, and an improvement in growth
could not be observed for all co-cultivations. Svircev et al. [139], for example, investigated
the growth of Nostoc 259B and Anabaena LC2 and C5 during co-cultivations with maize,
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beet, bean, wheat, and rice plants. The cyanobacteria and plants were brought together in
liquid culture. Nostoc 259B and Anabaena LC2 attached to the roots of all organisms, while
Anabaena C5 attached only to the roots of the wheat plant. Co-cultivation of Anabaena C5
with wheat had neither positive nor negative effects on the growth of the organisms. This
example shows how different the behavior of cyanobacteria is during co-cultivation with
different host plants. Therefore, a prior screening for a suitable strain is necessary for each
application. Further, a mixture of cyanobacteria with chemical fertilizer should be carried
out in each case to achieve optimal results. It is also conceivable to mix cyanobacteria with
other diazotrophic organisms, such as rhizobacteria, which are used, among other things,
to fertilize peas [174]. Depending on the plant, the yields and quality of the products can
be further maximized in this way.

Table 2. Investigations into the potential use of cyanobacteria for co-cultivation with crops and their
effects on the growth of the organisms.

root length

Plant Cyanobacterial Strain Effects Reference
Improvement:
e  germination rate of the seeds
Cotton Anabaena sp., Nostoc sp. e  yield of cotton plants [175]
. available N-amount
. biomass/height of the plant
Improvement:
Lettuce Nostoc muscorum s [102]
. germination rate
Improvement:
. Anabaena sp., Anabaena doliolum, Nostoc growth cyanobacteria
Maize . [173]
carneum, Nostoc piscinale . growth plant
° C-/P-/N-ratio in the soil
Improvement:
Peas Anabaena laxa, Anabaena torulosa ° yleld. . [174,188]
. protein content in the peas
. N-content in the plants
Improvement:
Radish Anabaena variabilis, Nostoc muscorum . growth rate [192]
. yield
Improvement:
. growth/yield
Anabaena laxa, Anabaena azollae, Calothrix e root length
Rice elenkinii, Calothrix sp., Nostoc carneum, . amount of seeds per plant [115,161,162,164]
Nostoc commune e activity of hydrolytic and defense enzymes
° nutrient mobilization
. plant fitness
Improvement:
. . yield
Spinach Nostoc sp. . Aumber of leaves [191]
. root length
Improvement:
° N-content
L] sugar content
. carotenoid content
Tomatoes Anabaena laxa, Anabaena variabilis ° tCDW tomatoes [171,172]
Reduction:
. yield
. CWW tomatoes
Improvement:
Anabaena sp., Anabaena C5, Chalothrix sp., e yield and total biomass (but worse than conventional fertilizer)
Wheat Chalothrix ghosei, Hapalosiphon intricatus, e content of nitrogen and protein in the seeds, roots, and shoots [85,167-169]
Nostoc sp., Nostoc PCC 9229, Nostoc 256B, e« content of chlorophyll in the plants N
Nostoc 259B .
[ ]

endogenous auxin content
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Effects on cyanobacteria: Exchange of:

- Receiving nutrients (carbon - Nitrogen
source) - Carbohydrates
- Stabilised environment - Phosphorus

- Enhanced growth - Secondary metabolites

co, O,

Effects on soil:

- Increased water retention
- Improved soil aggregation
- Reduced salinity effects

} Formation of biofilms

Attachement to roots
Penetration of roots

Effects on plants:

- Improved nutrient supply (N, C, P) - Reduced biotic and abiotic stress
- Enhanced growth and yield - Increased germination rate
- Increased resistance against plant disease - Increased content of valuables (i.e. pigments)

Figure 3. Schematic overview of the effects of a cyanobacteria—plant symbiosis on both partners and
their surroundings.

6. Conclusions

Cyanobacteria are a promising source of biological fertilizer. Due to their ability to
fix elemental nitrogen from the air and release it into the environment in the form of
bioavailable nitrogen, they are able to make this essential element accessible to plants. In
addition to nitrogen fixation, plants also benefit from cyanobacterial secondary metabolites.
These can protect plants from diseases as well as from biotic or abiotic stress and/or trigger
defense reactions in the plants. Cyanobacterial secondary metabolites can furthermore
influence plant growth directly or indirectly by improving the growth environment. When
cyanobacteria and plants are co-cultivated, symbiotic growth can occur. In this case,
the cyanobacteria attach themselves closely to the plant or even penetrate into intra- or
intercellular spaces. In most cases, both partners, the cyanobionts and the host, benefit from
the symbiosis by exchanging various nutrients. The potential of using cyanobacteria as
biofertilizers has already been demonstrated in many studies. The studies focus primarily
on agriculturally relevant plants such as rice, wheat, or maize. However, their positive
effects on vegetables, such as tomatoes, cucumbers, and other plants, have also been
investigated. An improvement in growth, especially in nitrogen-poor environments, could
be observed in most cases. Nevertheless, there are also cases of inhibitory effects, or the use
of cyanobacteria is often worse in comparison with artificial fertilizer. In the latter cases,
however, at least part of the fertilizer can be replaced, which would already be of ecological
advantage. In summary, it can be stated that cyanobacteria often have growth-promoting
effects on plants, but that further studies are needed for their use in the agriculture industry.
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