Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,720)

Search Parameters:
Keywords = culturally significant species

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2950 KB  
Article
Spatial Patterns and Diversity of the Genus Agave in the Southern Iberian Peninsula: The Role of Anthropogenic Drivers in the Expansion of Agave americana
by Francisco Guerrero, Víctor Cid-Gaitán, Javier Jurado-Pardeiro, Fernando Ortega and Juan Diego Gilbert
Plants 2026, 15(2), 327; https://doi.org/10.3390/plants15020327 - 21 Jan 2026
Viewed by 36
Abstract
The genus Agave L. is a key component of Mediterranean alien flora, yet its inland distribution in the Iberian Peninsula remains poorly understood. This research integrates exhaustive field surveys with Species Distribution Models (SDMs) to characterize the genus diversity and, specifically, the spatial [...] Read more.
The genus Agave L. is a key component of Mediterranean alien flora, yet its inland distribution in the Iberian Peninsula remains poorly understood. This research integrates exhaustive field surveys with Species Distribution Models (SDMs) to characterize the genus diversity and, specifically, the spatial patterns and environmental niche of Agave americana in the southern Iberian Peninsula (Andalusia). Our results reveal a diversity of 23 taxa, yet crucially, the widespread occurrence of A. americana demonstrated that its actual inland distribution is significantly more extensive than previously recorded. Spatial Point Pattern Analysis (SPPA) revealed a strong aggregated distribution pattern (Clark & Evans R = 0.277; p < 0.001). The MaxEnt Spatial Distribution Model demonstrated robust predictive performance (Mean AUC = 0.770 ± 0.007; Mean TSS = 0.420 ± 0.009). The distribution was primarily driven by elevation range (26.9%) and land use (23.1%), with maximum suitability peaking in anthropized, low-to-intermediate elevation areas. Projections to the broader Andalusian region confirmed high suitability in the Guadalquivir valley and coastal zones, validated by low spatial uncertainty (SD < 0.05 in optimal areas). These findings provide new insights into the biogeography of Agave in the region, emphasizing the significance of anthropogenic drivers within a cultural landscape context. Full article
45 pages, 1829 KB  
Article
Horticultural Systems and Species Diversity of Roses in Classical Antiquity: Integrating Archaeological, Iconographic, and Literary Evidence from Ancient Greece and Rome
by Diego Rivera, Julio Navarro, Inmaculada Camarero, Javier Valera, Diego-José Rivera-Obón and Concepción Obón
Horticulturae 2026, 12(1), 118; https://doi.org/10.3390/horticulturae12010118 - 21 Jan 2026
Viewed by 34
Abstract
Roses held profound cultural and economic significance in ancient Greece and Rome, yet comprehensive documentation of their species diversity, cultivation practices, and horticultural innovations remains fragmented across archaeological, iconographic, and textual sources. This multidisciplinary study synthesizes evidence from classical texts, archaeological remains including [...] Read more.
Roses held profound cultural and economic significance in ancient Greece and Rome, yet comprehensive documentation of their species diversity, cultivation practices, and horticultural innovations remains fragmented across archaeological, iconographic, and textual sources. This multidisciplinary study synthesizes evidence from classical texts, archaeological remains including recently identified rose stem fragments from Oplontis, and iconographic materials—including frescoes, coins, and mosaics—to reconstruct the horticultural systems and cultural landscape of roses in classical antiquity. Analysis of literary sources, particularly Theophrastus’s fourth-century BCE taxonomic descriptions, reveals systematic cultivation of diverse rose varieties with flowers ranging from white to deep crimson, including yellow variants, characterized by morphologies from simple to double forms and valued for fragrance intensity and re-blooming capacity. Archaeological evidence from sites such as Paestum, Pompeii, and Oplontis, including pollen samples, preserved wood fragments with diagnostic prickle patterns, and fresco representations, documents commercial rose production and specialized cultivation techniques that demonstrate significantly greater morphological diversity than textual sources alone indicate. Field research and collection documentation establish the origins of Mediterranean rose cultivation, while iconographic analysis identifies roses in religious ceremonies, festivals, and daily life contexts. Textual sources provide detailed propagation methods, seasonal management practices, and evidence of Mediterranean hybridization events, alongside extensive documentation of medicinal and cosmetic applications. Economic analysis reveals specialized trade networks, commercial production centers, and diverse applications in perfumery, garland making, and pharmaceutical industries. This research establishes that Greek and Roman civilizations developed sophisticated rose cultivation systems integrating botanical selection, horticultural innovation, and cultural symbolism that directly influenced medieval and Renaissance practices and informed modern trait categorization systems. These findings demonstrate the foundational role of classical antiquity in European rose heritage, revealing how ancient horticultural knowledge, species diversification through hybridization, and cultivation techniques created an unbroken transmission that shaped contemporary rose industries and established conservation priorities for this horticultural heritage. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
13 pages, 777 KB  
Article
Antimicrobial Effect of Postbiotics on Multidrug-Resistant Escherichia coli
by Çiğdem Sezer, Nebahat Bilge, Gönül Damla Büyük and Merve Ayyıldız Akın
Foods 2026, 15(2), 384; https://doi.org/10.3390/foods15020384 - 21 Jan 2026
Viewed by 75
Abstract
Pathogens that have developed resistance to antibiotics pose a threat to public health. The primary goal in preventing foodborne infections is to inhibit the growth of and, subsequently, eliminate antibiotic-resistant pathogens at every stage from production to consumption. Escherichia coli, which has acquired [...] Read more.
Pathogens that have developed resistance to antibiotics pose a threat to public health. The primary goal in preventing foodborne infections is to inhibit the growth of and, subsequently, eliminate antibiotic-resistant pathogens at every stage from production to consumption. Escherichia coli, which has acquired resistance to most known antibiotics, is frequently found in chicken meat. In many countries, due to unregulated antibiotic use in poultry farming, poor hygiene in slaughterhouses, or cross-contamination, extended-spectrum beta-lactamase (ESBL)-producing E. coli has been identified as the causative agent in poultry-associated food poisoning. The need for more effective antimicrobial agents against this pathogen, which is resistant to existing antibiotics, has led to increased attention being paid to postbiotics produced by lactic acid bacteria, particularly bacteriocins. This study aimed to determine the antimicrobial effects of postbiotics obtained from kefir-derived Lactiplantibacillus plantarum and Lactococcus lactis against ESBL-positive E. coli. To achieve this, E. coli strains were isolated from raw chicken meat samples collected from the market using culture-based methods, and their antimicrobial resistance profiles were determined using the disk diffusion method. The ESBL positivity of the isolates was assessed using the double-disk synergy test. The antimicrobial activities of the postbiotics against the identified ESBL-positive E. coli strains were tested using the macro-dilution method to determine minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. ESBL-positive E. coli was detected in 48% of raw chicken meat samples. The antimicrobial effects of postbiotics were examined by disk diffusion, and postbiotics produced by 18 Lb. plantarum strains and 20 Lc. lactis strains showed strong antimicrobial activity. Significant differences in the antimicrobial effects of postbiotics were observed between the two species. Lb. plantarum postbiotics exhibited both bacteriostatic (concentration 60%) and bactericidal (concentration 80%) effects on ESBL-positive E. coli strains, whereas Lc. lactis postbiotics showed only bacteriostatic effects (80% concentration). Postbiotics derived from probiotic bacteria offer promising effects against multidrug-resistant E. coli due to their heat resistance, activity across different pH values, strong antimicrobial effects, affordability, and ease of production. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

16 pages, 5027 KB  
Article
Surface Properties of Dental Materials Influence the In Vitro Multi-Species Biofilm Formation
by Sabina Noreen Wuersching, David Manghofer, Bogna Stawarczyk, Jan-Frederik Gueth and Maximilian Kollmuss
Polymers 2026, 18(2), 288; https://doi.org/10.3390/polym18020288 - 21 Jan 2026
Viewed by 72
Abstract
This study examined the association between biofilm growth and surface properties of 3D printed, milled, and conventional materials used for manufacturing fixed dental prostheses. Disc-shaped specimens were produced and finished from five 3D-printing resins (VarseoSmile Crown plus [VSC], NextDent C&B MFH [ND], VarseoSmile [...] Read more.
This study examined the association between biofilm growth and surface properties of 3D printed, milled, and conventional materials used for manufacturing fixed dental prostheses. Disc-shaped specimens were produced and finished from five 3D-printing resins (VarseoSmile Crown plus [VSC], NextDent C&B MFH [ND], VarseoSmile Temp [VST], Temp PRINT [TP], P Pro Crown & Bridge [P]), two polymer milling blocks (composite: TetricCAD [TC], PMMA: TelioCAD [TEL]), two conventional polymer materials (Tetric EvoCeram [TEC], Protemp 4 [PT]), and zirconia (ZR). Surface roughness (Ra), wettability, interfacial tension (IFT) and surface topography were examined. Three-day biofilms were grown on the specimens using A. naeslundii, S. gordonii, S. mutans, S. oralis, and S. sanguinis in a multi-species suspension. Biofilms were quantified by crystal violet staining and with a plating and culture method (CFU/mL). Linear regression analysis was computed to demonstrate associations between the surface properties and biofilm growth. The strength of this relationship was quantified by calculating Spearman’s ρ. TC exhibited the highest, and TP the lowest IFT. TEC showed the highest Ra, while TEL had the lowest, with significant differences detected particularly between milled and 3D-printed specimens. TP specimens exhibited the highest biofilm mass, while ZR surfaces retained the least. Bacterial viability within the biofilms remained similar across all tested materials. There was a strong negative correlation between total IFT and biofilm mass, and a moderate positive correlation between Ra and CFU/mL. Surface properties are shaped by material composition, microstructure, and manufacturing methods and play a crucial role in biofilm formation on dental restorations. Full article
Show Figures

Figure 1

22 pages, 1289 KB  
Article
Evaluating the Quality of Selected Commercial Probiotic Products, Both Dietary Supplements and Foods for Special Medical Purposes
by Anna Zawistowska-Rojek, Justyna Rybak, Paulina Smoleń, Agnieszka Kociszewska, Paweł Rudnicki-Velasquez, Karolina Węgrzyńska, Tomasz Zaręba, Stefan Tyski and Anna Baraniak
Foods 2026, 15(2), 373; https://doi.org/10.3390/foods15020373 - 20 Jan 2026
Viewed by 206
Abstract
Probiotics are live microorganisms that provide health benefits when administered in adequate amounts. Due to the increasing popularity of probiotic supplements, concerns have arisen regarding their quality, microbial composition, and safety. This study aimed to evaluate the quantitative and qualitative characteristics of the [...] Read more.
Probiotics are live microorganisms that provide health benefits when administered in adequate amounts. Due to the increasing popularity of probiotic supplements, concerns have arisen regarding their quality, microbial composition, and safety. This study aimed to evaluate the quantitative and qualitative characteristics of the selected probiotics available on the Polish market, including both dietary supplements and foods for special medical purposes, and to compare the obtained results with the information provided on the product labels. Fifteen commercial probiotic products were analysed. Viable microorganism counts were determined using the traditional culture-based plate count method and by flow cytometry for selected products. Species identification was performed using MALDI-TOF MS and qPCR, whereas microbiological purity testing was conducted to confirm the absence of pathogenic bacteria. Significant differences were observed between the declared and experimentally determined numbers of viable microorganisms. Only a few products maintained bacterial counts consistent with label claims, while most contained considerably low viable cells. Flow cytometry revealed higher viable cell counts than plate counting, indicating the presence of viable but non-culturable bacteria. The declared species composition of the strains was mostly confirmed, although in several cases, undeclared probiotic microorganisms were identified. All tested products were free from pathogens. The study indicates significant discrepancies in the quality of probiotic supplements available on the Polish market. From a consumer perspective, these findings highlight the importance of verifying probiotic quality and suggest that not all commercial products may guarantee the full range of claimed health benefits. The implementation of standardised analytical procedures and enhanced quality control measures is therefore essential to ensure the product safety, strain authenticity, and reliability of health-related claims. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

13 pages, 450 KB  
Review
Arthrographis Infections in Humans—A Narrative Review
by Afroditi Ziogou, Alexios Giannakodimos, Ilias Giannakodimos, Andreas G. Tsantes, Stella Baliou, Petros Ioannou, Georgia Vrioni and George Samonis
Pathogens 2026, 15(1), 112; https://doi.org/10.3390/pathogens15010112 - 20 Jan 2026
Viewed by 142
Abstract
Background: Arthrographis spp. are environmental fungi commonly found in soil and compost. Infections caused by Arthrographis species remain an uncommon clinical occurrence. Although these infections are infrequent in the general population, their incidence appears to be elevated among immunocompromised patients or those with [...] Read more.
Background: Arthrographis spp. are environmental fungi commonly found in soil and compost. Infections caused by Arthrographis species remain an uncommon clinical occurrence. Although these infections are infrequent in the general population, their incidence appears to be elevated among immunocompromised patients or those with significant comorbidities. Objectives: This review seeks to examine all documented human cases of Arthrographis spp. infections, with particular focus on aspects such as epidemiology, microbiological features, resistance patterns, therapeutic approaches and associated mortality rates. Methods: A narrative review was performed based on data obtained from the PubMed/MedLine and Scopus databases. Results: A total of 21 articles reported Arthrographis spp. infections in 21 patients. The mean age of affected individuals was 43.62 years, with 66.6% being male. A history of trauma was the most common predisposing factor, present in 33.33% of cases. Fever and abscess formation were the predominant clinical manifestations (28.6%), followed by organ dysfunction in 19% of patients. In vitro, the yeast generally showed susceptibility to voriconazole and itraconazole, with a low rate of resistance to amphotericin B. Clinically, amphotericin B was the most frequently administered antifungal (55%), followed by voriconazole (40%) and itraconazole (30%). The overall mortality rate was 19%, while deaths directly attributable to the infection accounted for 14.3%. Conclusions: Due to the capacity of Arthrographis spp. to cause serious infections, it is important for healthcare providers to consider this organism when dimorphic yeast appears in biological specimens’ cultures, especially in patients with immunosuppression or significant underlying conditions, to facilitate timely and accurate diagnosis. Full article
Show Figures

Figure 1

18 pages, 1211 KB  
Article
Modulation of Alcohol Content in Wines Using Mixed Cultures
by María Belén Listur, Valentina Martín, Laura Fariña, Eduardo Boido, Eduardo Dellacassa, Francisco Carrau and Karina Medina
Fermentation 2026, 12(1), 57; https://doi.org/10.3390/fermentation12010057 - 19 Jan 2026
Viewed by 156
Abstract
Reducing the alcohol content of wines has received increasing attention, and various strategies have been proposed for this aim. In this study, non-Saccharomyces yeasts isolated from Uruguayan vineyards were screened to identify strains with low ethanol production for use in mixed cultures. [...] Read more.
Reducing the alcohol content of wines has received increasing attention, and various strategies have been proposed for this aim. In this study, non-Saccharomyces yeasts isolated from Uruguayan vineyards were screened to identify strains with low ethanol production for use in mixed cultures. Twenty-six strains belonging to six species were evaluated, considering key oenological parameters such as ethanol and glycerol production, glucose and fructose consumption, and absence of organoleptic defects. Based on these criteria, three strains from two genera were selected: Starmerella bacillaris (Sb1 and Sb2) and Metschnikowia fructicola (Mf2). In pure cultures, Starmerella bacillaris showed high sugar consumption along with high glycerol production. Subsequently, co-inoculation and sequential inoculation conditions were tested by combining the selected strains with commercial Saccharomyces cerevisiae (Sc). With Mf2 + Sc sequential inoculation, high sugar consumption, increased glycerol production, and a significant reduction in ethanol were observed compared to the control. For Starmerella bacillaris, only Sb1 achieved consistent alcohol reductions in sequential strategies. With co-inoculation, both strains reduced ethanol by 0.2–1% v/v, although only Sb1 showed complete sugar depletion. Overall, the results demonstrate a marked dependence of fermentation behavior on the strain and highlight the importance of studying biocompatibility and inoculation strategy in mixed cultures. Full article
(This article belongs to the Special Issue Applications of Microbial Biodiversity in Wine Fermentation)
Show Figures

Graphical abstract

41 pages, 6730 KB  
Article
Ethnobotany of Local Vegetables and Spices in Sakon Nakhon Province, Thailand
by Piyaporn Saensouk, Surapon Saensouk, Phiphat Sonthongphithak, Auemporn Junsongduang, Kamonwan Koompoot, Bin Huang, Wei Shen and Tammanoon Jitpromma
Diversity 2026, 18(1), 49; https://doi.org/10.3390/d18010049 - 17 Jan 2026
Viewed by 192
Abstract
Local vegetables and spices are essential components of traditional food and health systems in northeastern Thailand, yet quantitative ethnobotanical evidence remains limited. This study documents the diversity, utilization, and cultural significance of vegetables and spices used in Sang Kho Sub-district, Phu Phan District, [...] Read more.
Local vegetables and spices are essential components of traditional food and health systems in northeastern Thailand, yet quantitative ethnobotanical evidence remains limited. This study documents the diversity, utilization, and cultural significance of vegetables and spices used in Sang Kho Sub-district, Phu Phan District, Sakon Nakhon Province. Ethnobotanical data were collected in 2025 through field surveys, voucher-based plant identification, semi-structured interviews, and participant observation involving 92 informants across 23 villages. Cultural significance and medicinal knowledge were evaluated using the Cultural Importance Index (CI), Informant Consensus Factor (FIC), and Fidelity Level (FL). A total of 113 taxa belonging to 94 genera and 49 plant families were recorded. Poaceae and Zingiberaceae were the most species-rich families. Native species slightly predominated (51.33%), and herbaceous taxa were most common. Leaves were the most frequently used plant part. Most taxa were used as vegetables (92 species), followed by traditional medicines (20 species), spices or seasonings (18 species), and food ingredients or culinary additives (18 species). The highest CI values were recorded for Allium ascalonicum L. (1.152), Capsicum annuum L. (1.098), and Coriandrum sativum L. (1.043). FIC values ranged from 0.60 to 1.00, with complete consensus for circulatory and neurological disorders. Cymbopogon citratus showed the highest FL (75%) for gastrointestinal uses. These findings demonstrate the close integration of food and medicine in local plant-use systems and provide baseline data for food system resilience and cultural knowledge conservation. Full article
(This article belongs to the Special Issue Ethnobotany and Plant Diversity: Conservation and Sustainable Use)
Show Figures

Figure 1

12 pages, 1451 KB  
Article
Growth Variation Among Thai Duckweed Species Under Axenic Conditions
by Siwaporn Jansantia, Yosapol Harnvanichvech, Athita Senayai, Nuttha Sanevas, Tokitaka Oyama and Ekaphan Kraichak
Biology 2026, 15(2), 159; https://doi.org/10.3390/biology15020159 - 16 Jan 2026
Viewed by 264
Abstract
Duckweed has attracted considerable attention for its high protein content, rapid growth, and broad potential in biotechnological applications. Understanding key phenotypic traits is crucial for unlocking and maximizing this potential. While most studies on duckweed growth have been conducted under natural or non-sterile [...] Read more.
Duckweed has attracted considerable attention for its high protein content, rapid growth, and broad potential in biotechnological applications. Understanding key phenotypic traits is crucial for unlocking and maximizing this potential. While most studies on duckweed growth have been conducted under natural or non-sterile conditions, here we minimize environmental influences and focus on the genetic component of growth by assessing growth performance under axenic culture. In this study, we measured relative growth rate (RGR) in four duckweed species, Landoltia punctata (G. Mey.) Les & D. J. Crawford, Lemna aequinoctialis Welw., Spirodela polyrhiza (L.) Schleid., and Wolffia globosa (Roxb.) Hartog & Plas. collected from various natural locations across Thailand. A total of six to seven strains were tested for each species. The relative growth rates of studied species ranged from 0.012 day−1 in S. polyrhiza to 0.162 day−1 in W. globosa. Significant intraspecific variation was observed in L. punctata, S. polyrhiza, and W. globosa, with the coefficients of variation between 9.6 to 109.9 percent. Each strain showed distinct growth characteristics: Most displayed a steady growth pattern, whereas W. globosa showed exponential growth at Day 35 after the start of experiment. The results provide the first systematic comparisons of baseline growth rate data for duckweed species in Thailand. These findings advance the understanding of strain-specific growth traits in duckweed and establish a standardized protocol for evaluating growth traits under axenic conditions, providing a basis for future research and applications. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

24 pages, 2897 KB  
Article
The Effects of Hormone Diets with Different 17β-Estradiol Levels on Growth and Feminization in Long-Whiskered Catfish (Mystus gulio) Larvae Using Conventional and Microencapsulated Feed
by Sahabhop Dokkaew, Kritchavat Songdum, Noratat Prachom, Wiwiththanon Boonyung, Suwaree Kitikiew, Khwankhao Khamphet, Preecha Waicharoen, Uthairat Na-Nakorn, Natthapong Paankhao, Anurak Uchuwittayakul and Phunsin Kantha
Animals 2026, 16(2), 268; https://doi.org/10.3390/ani16020268 - 15 Jan 2026
Viewed by 228
Abstract
Feminization is an important biotechnological approach in aquaculture for species in which females exhibit superior growth and higher market value. The long-whiskered catfish (Mystus gulio), a euryhaline species cultivated in both monoculture and co-culture systems, contributes to sustainable aquaculture by grazing [...] Read more.
Feminization is an important biotechnological approach in aquaculture for species in which females exhibit superior growth and higher market value. The long-whiskered catfish (Mystus gulio), a euryhaline species cultivated in both monoculture and co-culture systems, contributes to sustainable aquaculture by grazing on uneaten feed and maintaining pond cleanliness. This study evaluated the effects of dietary 17β-estradiol (E2) at 0, 10, 30, and 60 mg/kg, incorporated into conventional and microencapsulated feeds, on the feminization and early growth of M. gulio larvae. Treatments were administered during the weaning stage for 14 and 21 days under controlled rearing conditions. Results showed that larvae fed microencapsulated feed containing 60 mg/kg E2 achieved the highest specific growth rate (26.91 ± 1.92%/day), feed efficiency (164.76 ± 33.23%), and feminization success (99.73 ± 0.04%). Hormonal assays confirmed elevated estradiol and reduced testosterone levels, consistent with ovarian development observed in histological sections. Gene expression analysis further supported these findings through the significant upregulation of cyp19a, erb1, and erb2 mRNA levels. Overall, this study demonstrates that microencapsulated hormone feeding is an effective and environmentally responsible strategy for achieving monosex female populations in M. gulio, enhancing productivity, reproductive performance, and sustainability in aquaculture systems. Full article
(This article belongs to the Special Issue Fish Reproductive Biology and Embryogenesis)
Show Figures

Figure 1

69 pages, 11672 KB  
Review
Review of Major and Minor Pathogens of Adult Pacific Salmon (Oncorhynchus spp.) in Freshwater in the Pacific Northwest of North America
by Tamsen M. Polley, Jayde A. Ferguson, Nora Hickey, Simon R. M. Jones, Anindo Choudhury, John S. Foott and Michael L. Kent
Pathogens 2026, 15(1), 87; https://doi.org/10.3390/pathogens15010087 - 13 Jan 2026
Viewed by 240
Abstract
This comprehensive review examines pathogens affecting adult anadromous Pacific salmon (Oncorhynchus spp.) during their terminal freshwater migration and spawning across populations from California through Alaska, including Oregon, Washington, and British Columbia. We systematically reviewed selected pathogens based on their significance to adult [...] Read more.
This comprehensive review examines pathogens affecting adult anadromous Pacific salmon (Oncorhynchus spp.) during their terminal freshwater migration and spawning across populations from California through Alaska, including Oregon, Washington, and British Columbia. We systematically reviewed selected pathogens based on their significance to adult salmon health or role in epizootiology, categorizing them by their impact on prespawn mortality (PSM), disease severity, and maternal or ‘egg-associated’ transmission risks to progeny. Our analysis encompasses macroparasites, microparasites, bacteria, and viruses affecting anadromous Pink (O. gorbuscha), Chum (O. keta), Coho (O. kisutch), Sockeye (O. nerka), and Chinook Salmon (O. tshawytscha) and Steelhead Trout (O. mykiss), integrating extensive literature analysis with direct field observations and case studies from representative geographic regions. Understanding pathogen impacts during the spawning life stage is crucial for salmon population sustainability, as the unique semelparous nature of Pacific salmon makes this terminal phase critical for reproductive success and the continuation of these ecologically, economically, and culturally vital species. Full article
(This article belongs to the Special Issue Infectious Diseases in Aquatic Animals)
Show Figures

Figure 1

24 pages, 4743 KB  
Article
Antifungal Potential of Diaporthe sp. Endophytes from Antillean Avocado Against Fusarium spp.: From Organic Extracts to In Silico Chitin Synthase Inhibition
by Angie T. Robayo-Medina, Katheryn Michell Camargo-Jimenez, Felipe Victoria-Muñoz, Wilman Delgado-Avila, Luis Enrique Cuca and Mónica Ávila-Murillo
J. Fungi 2026, 12(1), 52; https://doi.org/10.3390/jof12010052 - 11 Jan 2026
Viewed by 263
Abstract
Fungal endophytes have emerged as a promising source of bioactive compounds with potent antifungal properties for plant disease management. This study aimed to isolate and characterize fungal endophytes from Antillean avocado (Persea americana var. americana) trees in the Colombian Caribbean, capable [...] Read more.
Fungal endophytes have emerged as a promising source of bioactive compounds with potent antifungal properties for plant disease management. This study aimed to isolate and characterize fungal endophytes from Antillean avocado (Persea americana var. americana) trees in the Colombian Caribbean, capable of producing bio-fungicide metabolites against Fusarium solani and Fusarium equiseti. For this, dual culture assays, liquid-state fermentation of endophytic isolates, and metabolite extractions were conducted. From 88 isolates recovered from leaves and roots, those classified within the Diaporthe genus exhibited the most significant antifungal activity. Some of their organic extracts displayed median inhibitory concentrations (IC50) approaching 200 μg/mL. To investigate the mechanism of action, in silico studies targeting chitin synthase (CS) were performed, including homology models of the pathogens’ CS generated using Robetta, followed by molecular docking with Vina and interaction fingerprint similarity analysis of 15 antifungal metabolites produced by Diaporthe species using PROLIF. A consensus scoring strategy identified diaporxanthone A (12) and diaporxanthone B (13) as the most promising candidates, achieving scores up to 0.73 against F. equiseti, comparable to the control Nikkomycin Z (0.82). These results suggest that Antillean avocado endophytes produce bioactive metabolites that may inhibit fungal cell wall synthesis, offering a sustainable alternative for disease management. Full article
(This article belongs to the Special Issue Biological Control of Fungal Plant Pathogens)
Show Figures

Figure 1

20 pages, 5162 KB  
Article
Annual Dynamics of Mycobiota in Symptomatic Century-Old Trees of Aesculus hippocastanum, Fagus sylvatica, Populus alba, and Quercus robur
by Milan Spetik, Lucie Frejlichova, Jana Cechova, Pavel Bulir, Lenka Miksova, Lukas Stefl, Pavel Simek and Ales Eichmeier
J. Fungi 2026, 12(1), 50; https://doi.org/10.3390/jof12010050 - 11 Jan 2026
Viewed by 329
Abstract
This study investigated the composition and temporal dynamics of wood-inhabiting fungal communities in four aging tree species in Lednice Castle Park (Czech Republic), located within the Lednice–Valtice Cultural Landscape, a UNESCO World Heritage Site. Forty wood cores were collected from 20 trees at [...] Read more.
This study investigated the composition and temporal dynamics of wood-inhabiting fungal communities in four aging tree species in Lednice Castle Park (Czech Republic), located within the Lednice–Valtice Cultural Landscape, a UNESCO World Heritage Site. Forty wood cores were collected from 20 trees at two time points (2023 and 2024). The hosts included horse chestnut (Aesculus hippocastanum L.), copper beech (Fagus sylvatica ‘Atropunicea’ L.), oak (Quercus robur L.), and poplar (Populus alba L.), each exhibiting visual signs of decline. Fungal assemblages were profiled using ITS2 high-throughput amplicon sequencing. Ascomycota dominated across all hosts (72–89% of reads), while Basidiomycota contributed 8–24%, largely represented by Agaricomycetes in F. sylvatica. Alpha diversity varied significantly among hosts (Shannon: F3,36 = 10.61, p = 0.001 in 2023; F3,36 = 10.00, p = 0.001 in 2024). Temporal shifts were host-dependent: F. sylvatica exhibited the strongest year-to-year decline in richness (Chao1: −83%, p = 0.007) and increased beta dispersion, while A. hippocastanum and P. alba showed significant increases in diversity (+65% and +42%, respectively). Community composition was shaped by host species (PERMANOVA Bray–Curtis: p = 0.001) and shifted over time (Jaccard: p = 0.001), with F. sylvatica showing the highest temporal turnover. Functional guild analysis revealed consistent dominance of saprotrophs (29–41%) and mixed pathotroph–saprotroph guilds (23–36%) across hosts, indicating active degradation processes inside functional xylem. These results indicate that, within the studied system, the wood mycobiome of aging trees is host-dependent and temporally dynamic rather than static or functionally neutral. Short-term temporal turnover observed between sampling years may contribute to shifts in fungal community composition and succession within wood, with potential implications for tree decline processes in managed historical park landscapes. Full article
Show Figures

Figure 1

22 pages, 4808 KB  
Article
Metagenome Insights into Armenian Acid Mine Drainage: A Novel Thermoacidophilic Iron-Oxidizing Bacterium with Perspectives for Copper Bioleaching
by Anna Khachatryan, Arevik Vardanyan, Ruiyong Zhang, Yimeng Zhang, Xin Shi, Sabine Willscher, Nhung H. A. Nguyen and Narine Vardanyan
Microorganisms 2026, 14(1), 146; https://doi.org/10.3390/microorganisms14010146 - 9 Jan 2026
Viewed by 619
Abstract
The microbial ecology of acid mine drainage (AMD) systems in Armenia, with a long mining history, remains unexplored. This study aimed to characterize the microbial diversity and functional potential of AMD in the Syunik region and to isolate novel microorganisms with biotechnological value. [...] Read more.
The microbial ecology of acid mine drainage (AMD) systems in Armenia, with a long mining history, remains unexplored. This study aimed to characterize the microbial diversity and functional potential of AMD in the Syunik region and to isolate novel microorganisms with biotechnological value. A comprehensive analysis of the microbial communities’ structure of Kavart abandoned, Kapan exploring mines effluent, and Artsvanik tailing was conducted. Metagenomics revealed bacterial-dominated communities, comprising Pseudomonadota (previously “Proteobacteria”) (68–72%), with site-specific variations in genus abundance. A high abundance and diversity of metal resistance genes (MRGs), particularly for copper and arsenic, were identified. Carbohydrate-active enzyme (CAZy) analysis showed a dominance of GT2 and GT4 genes, suggesting a high potential for extracellular polymeric substances (EPS) production and biofilm formation. A novel strain of iron-oxidizing bacteria Arm-12 was isolated that shares only ~90% similarity with known Leptospirillum type species, indicating it may represent a new genus without culturable representatives. The strain exhibits enhanced copper extraction from concentrate. This study provides the first metagenomic insights into Armenian AMD systems and tailing, revealing a unique community rich in metal resistance and biofilm-forming genes. The isolation of a novel highly effective iron-oxidizer Arm-12 highlights the potential of AMD environments as a source of novel taxa with significant applications in biomining and bioremediation processes. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

17 pages, 2568 KB  
Article
Plesiomonas shigelloides as an Emerging Pathogen in Catfish Aquaculture: A Case from a South Texas Commercial Farm
by Haitham H. Mohammed, Noha I. ElBanna, Ozgur Erdogan, Suja Aarattuthodi, Hasan C. Tekedar, Hossam Abdelhamed and Josué Díaz-Delgado
Microorganisms 2026, 14(1), 144; https://doi.org/10.3390/microorganisms14010144 - 8 Jan 2026
Viewed by 288
Abstract
During the summer of 2023, a spontaneous disease outbreak occurred in intensively stocked hybrid catfish (♀ channel catfish, Ictalurus punctatus × ♂ blue catfish, I. furcatus) in earthen ponds on a commercial aquaculture farm in South Texas. The farmer reported 50 to [...] Read more.
During the summer of 2023, a spontaneous disease outbreak occurred in intensively stocked hybrid catfish (♀ channel catfish, Ictalurus punctatus × ♂ blue catfish, I. furcatus) in earthen ponds on a commercial aquaculture farm in South Texas. The farmer reported 50 to 80 dead fish per pond daily for a month. The fish were market size (1.0 ± 0.3 kg on average), resulting in substantial economic losses. Fifteen moribund fish were submitted for laboratory examination. Grossly, the fish showed distended abdomens, erythematous fins, and inflamed vents. Autopsy demonstrated visceral congestion, distended gastrointestinal tracts, and serosanguineous peritoneal effusion. Bacterial cultures from the internal organs revealed homogeneous bacterial growth after incubation. Presumptive biochemical characterization of the isolated bacteria identified Plesiomonas shigelloides. Further molecular confirmation was achieved by species-specific PCR amplification and 16S-rRNA sequencing. Juvenile catfish were experimentally challenged with the recovered isolates to fulfill Koch’s postulates. Moreover, an antibiogram was performed to evaluate the susceptibility of the isolates to a panel of FDA-approved antimicrobials. P. shigelloides isolates were pathogenic to channel catfish and alarmingly multidrug-resistant. We report here, for the first time, P. shigelloides infection in Texas commercial catfish aquaculture, emphasizing its significance as an emerging enteric pathogen that is difficult to treat with FDA-approved antimicrobials. Full article
Show Figures

Figure 1

Back to TopTop