Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = cubic m-polar group

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8368 KB  
Article
Aligned Electrospun PCL/PLA Nanofibers Containing Green-Synthesized CeO2 Nanoparticles for Enhanced Wound Healing
by Yen-Chen Le and Wen-Ta Su
Int. J. Mol. Sci. 2025, 26(13), 6087; https://doi.org/10.3390/ijms26136087 - 25 Jun 2025
Cited by 3 | Viewed by 1994
Abstract
Wound healing is a complex biological process that benefits from advanced biomaterials capable of modulating inflammation and promoting tissue regeneration. In this study, cerium oxide nanoparticles (CeO2NPs) were green-synthesized using Hemerocallis citrina extract, which served as both a reducing and stabilizing [...] Read more.
Wound healing is a complex biological process that benefits from advanced biomaterials capable of modulating inflammation and promoting tissue regeneration. In this study, cerium oxide nanoparticles (CeO2NPs) were green-synthesized using Hemerocallis citrina extract, which served as both a reducing and stabilizing agent. The CeO2NPs exhibited a spherical morphology, a face-centered cubic crystalline structure, and an average size of 9.39 nm, as confirmed by UV-Vis spectroscopy, FTIR, XRD, and TEM analyses. These nanoparticles demonstrated no cytotoxicity and promoted fibroblast migration, while significantly suppressing the production of inflammatory mediators (TNF-α, IL-6, iNOS, NO, and ROS) in LPS-stimulated RAW264.7 macrophages. Gene expression analysis indicated M2 macrophage polarization, with upregulation of Arg-1, IL-10, IL-4, and TGF-β. Aligned polycaprolactone/polylactic acid (PCL/PLA) nanofibers embedded with CeO2NPs were fabricated using electrospinning. The composite nanofibers exhibited desirable physicochemical properties, including porosity, mechanical strength, swelling behavior, and sustained cerium ions release. In a rat full-thickness wound model, the CeO2 nanofiber-treated group showed a 22% enhancement in wound closure compared to the control on day 11. Histological evaluation revealed reduced inflammation, enhanced granulation tissue, neovascularization, and increased collagen deposition. These results highlight the therapeutic potential of CeO2-incorporated nanofiber scaffolds for accelerated wound repair and inflammation modulation. Full article
(This article belongs to the Special Issue Nanofibrous Biomaterials for Biomedicine and Medical Applications)
Show Figures

Figure 1

22 pages, 5579 KB  
Article
Oxygen Nonstoichiometry, Electrical Conductivity, Chemical Expansion and Electrode Properties of Perovskite-Type SrFe0.9V0.1O3−δ
by Aleksei I. Ivanov, Sergey S. Nikitin, Mariya S. Dyakina, Ekaterina V. Tsipis, Mikhail V. Patrakeev, Dmitrii A. Agarkov, Irina I. Zverkova, Andrey O. Zhigachev, Victor V. Kedrov and Vladislav V. Kharton
Materials 2025, 18(3), 493; https://doi.org/10.3390/ma18030493 - 22 Jan 2025
Cited by 2 | Viewed by 2022
Abstract
X-ray diffraction analysis of the pseudo-binary SrFe1−xVxO3−δ system showed that the solid solution formation limit at atmospheric oxygen pressure corresponds to x ≈ 0.1. SrFe0.9V0.1O3−δ has a cubic perovskite-type structure with the [...] Read more.
X-ray diffraction analysis of the pseudo-binary SrFe1−xVxO3−δ system showed that the solid solution formation limit at atmospheric oxygen pressure corresponds to x ≈ 0.1. SrFe0.9V0.1O3−δ has a cubic perovskite-type structure with the Pm3¯m space group. The oxygen nonstoichiometry variations in SrFe0.9V0.1O3−δ, measured by coulometric titration in the oxygen partial pressure range of 10−21 to 0.5 atm at 1023–1223 K, can be adequately described using an ideal solution approximation with V5+ as the main oxidation state of vanadium cations. This approach was additionally validated by statistical thermodynamic modeling. The incorporation of vanadium decreases both oxygen deficiency and the average iron oxidation state with respect to undoped SrFeO3−δ. As a result, the electrical conductivity, thermal expansion and chemical expansivity associated with the oxygen vacancy formation all become lower compared to strontium ferrite. At 923 K, the conductivity of SrFe0.9V0.1O3−δ is 14% lower than that of SrFeO3−δ but 21% higher compared to SrFe0.9Ta0.1O3−δ. The area-specific polarization resistance of the porous SrFe0.9V0.1O3−δ electrode deposited onto 10 mol.% scandia- and 1 mol.% yttria-co-stabilized zirconia solid electrolyte with a protective Ce0.9Gd0.1O2−δ interlayer, was 0.34 Ohm×cm2 under open-circuit conditions at 1173 K in air. Full article
Show Figures

Figure 1

22 pages, 549 KB  
Article
Groups and Structures of Commutative Semigroups in the Context of Cubic Multi-Polar Structures
by Anas Al-Masarwah, Mohammed Alqahtani and Majdoleen Abu Qamar
Symmetry 2022, 14(7), 1493; https://doi.org/10.3390/sym14071493 - 21 Jul 2022
Viewed by 2335
Abstract
In recent years, the m-polar fuzziness structure and the cubic structure have piqued the interest of researchers and have been commonly implemented in algebraic structures like groupoids, semigroups, groups, rings and lattices. The cubic m-polar (CmP) structure [...] Read more.
In recent years, the m-polar fuzziness structure and the cubic structure have piqued the interest of researchers and have been commonly implemented in algebraic structures like groupoids, semigroups, groups, rings and lattices. The cubic m-polar (CmP) structure is a generalization of m-polar fuzziness and cubic structures. The intent of this research is to extend the CmP structures to the theory of groups and semigroups. In the present research, we preface the concept of the CmP groups and probe many of its characteristics. This concept allows the membership grade and non-membership grade sequence to have a set of m-tuple interval-valued real values and a set of m-tuple real values between zero and one. This new notation of group (semigroup) serves as a bridge among CmP structure, classical set and group (semigroup) theory and also shows the effect of the CmP structure on a group (semigroup) structure. Moreover, we derive some fundamental properties of CmP groups and support them by illustrative examples. Lastly, we vividly construct semigroup and groupoid structures by providing binary operations for the CmP structure and provide some dominant properties of these structures. Full article
(This article belongs to the Special Issue The Study of Lattice Theory and Universal Algebra)
Show Figures

Figure 1

11 pages, 1707 KB  
Article
Effects of Tin and Sulfur Chemical Substitution on the Structural and Electrical Properties of CuCr2Se4 Selenospinel
by Paulina Valencia-Gálvez, Daniel Aravena, Patricia Barahona, Silvana Moris and Antonio Galdámez
Appl. Sci. 2022, 12(3), 1586; https://doi.org/10.3390/app12031586 - 1 Feb 2022
Cited by 2 | Viewed by 2215
Abstract
A series of CuCr2-xSnxS2.3Se1.7 and CuCr2-xSnxS1.7Se2.3 (x = 0.4, 0.6, and 1.0) compounds were prepared by solid-state reaction [...] Read more.
A series of CuCr2-xSnxS2.3Se1.7 and CuCr2-xSnxS1.7Se2.3 (x = 0.4, 0.6, and 1.0) compounds were prepared by solid-state reaction at a high temperature. Single-crystal X-ray diffraction analysis showed that CuCr1.1Sn0.9S2.3Se1.7 crystallizes in a spinel-type structure (cubic Fd3¯m space group). The others samples were also consistent with a spinel-type structure but through powder X-ray diffraction patterns and Rietveld refinements. The systems studies showed p-type semiconductor behavior with a carrier concentration per volume of approximately ~+1020 cm−3. The electrical conductivity, σ, showed tin-content dependence. The conductivity of CuCr2-xSnxS1.7Se2.3 increased from ~9.0 to ~17.0 S·cm−1 at room temperature (RT) for x = 0.4 and 0.6, respectively, and the magneto-resistance average value determined for CuCr2-xSnxS2.3Se1.7 and CuCr2-xSnxS1.7Se2.3 was approximately ~10−4 Ω (0.566 T, external magnetic field). DFT calculations revealed that the Cr centers concentrated most of the spin density. A smaller spin polarization featuring the opposite spin was observed for S/Se atoms. Full article
Show Figures

Figure 1

19 pages, 13993 KB  
Article
Tuning of Structural, Dielectric, and Electronic Properties of Cu Doped Co–Zn Ferrite Nanoparticles for Multilayer Inductor Chip Applications
by Muhammad Hadi, Khalid Mujasam Batoo, Ankush Chauhan, Omar M. Aldossary, Ritesh Verma and Yujie Yang
Magnetochemistry 2021, 7(4), 53; https://doi.org/10.3390/magnetochemistry7040053 - 14 Apr 2021
Cited by 139 | Viewed by 6992
Abstract
Herein, we report the synthesis of nanoparticles and doping of Cu-doped Co–Zn ferrites using the auto-combustion sol–gel synthesis technique. X-ray diffraction studies confirmed the single-phase structure of the samples with space group Fd3m and crystallite size in the range of 20.57–32.69 [...] Read more.
Herein, we report the synthesis of nanoparticles and doping of Cu-doped Co–Zn ferrites using the auto-combustion sol–gel synthesis technique. X-ray diffraction studies confirmed the single-phase structure of the samples with space group Fd3m and crystallite size in the range of 20.57–32.69 nm. Transmission electron microscopy micrographs and selected area electron diffraction patterns confirmed the polycrystalline nature of the ferrite nanoparticles. Energy-dispersive X-ray spectroscopy revealed the elemental composition in the absence of any impurity phases. Fourier-transform infrared studies showed the presence of two prominent peaks at approximately 420 cm−1 and 580 cm−1, showing metal–oxygen stretching and the formation of ferrite composite. X-ray photoelectron spectroscopy was employed to determine the oxidation states of Fe, Co, Zn, and Cu and O vacancies based on which cationic distributions at tetrahedral and octahedral sites are proposed. Dielectric spectroscopy showed that the samples exhibit Maxwell–Wagner interfacial polarization, which decreases as the frequency of the applied field increases. The dielectric loss of the samples was less than 1, confirming that the samples can be used for the fabrication of multilayer inductor chips. The ac conductivity of the samples increased with increasing doping and with frequency, and this has been explained by the hopping model. The hysteresis loops revealed that coercivity decreases slightly with doping, while the highest saturation magnetization of 55.61 emu/g was obtained when x = 0.1. The magnetic anisotropic constant was found to be less than 0.5, which suggests that the samples exhibit uniaxial anisotropy rather than cubic anisotropy. The squareness ratio indicates that the samples are useful in high-frequency applications. Full article
(This article belongs to the Special Issue Advances in Fine Particle Magnetism and Bio-Magnetic Materials)
Show Figures

Figure 1

28 pages, 468 KB  
Article
Cubic M-polar Fuzzy Hybrid Aggregation Operators with Dombi’s T-norm and T-conorm with Application
by Muhammad Riaz, Muhammad Abdullah Khokhar, Dragan Pamucar and Muhammad Aslam
Symmetry 2021, 13(4), 646; https://doi.org/10.3390/sym13040646 - 11 Apr 2021
Cited by 7 | Viewed by 2996
Abstract
A cubic m-polar fuzzy set (CmPFS) is a new hybrid extension of cubic set (CS) and m-polar fuzzy set (mPFS). A CS comprises two parts; one part consists of a fuzzy interval (may sometimes be a fuzzy number) acting as membership grade (MG), [...] Read more.
A cubic m-polar fuzzy set (CmPFS) is a new hybrid extension of cubic set (CS) and m-polar fuzzy set (mPFS). A CS comprises two parts; one part consists of a fuzzy interval (may sometimes be a fuzzy number) acting as membership grade (MG), and the second part consists of a fuzzy number acting as non-membership grade (NMG). An mPFS assigns m number of MGs against each alternative in the universe of discourse. A CmPFS deals with single as well as multi-polar information in the cubic environment. In this article, we explore some new aspects and consequences of the CmPFS. We define score and accuracy functions to find the priorities of alternatives/objects in multi-criteria decision-making (MCDM). For this objective, some new operations, like addition, scalar/usual multiplication, and power, are defined under Dombi’s t-norm and t-conorm. We develop several new aggregation operators (AOs) using cubic m-polar fuzzy Dombi’s t-norm and t-conorm. We present certain properties of suggested operators like monotonicity, commutativity, idempotency, and boundedness. Additionally, to discuss the application of these AOs, we present an advanced superiority and inferiority ranking (SIR) technique to deal with the problem of conversion from a linear economy to a circular economy. Moreover, a comparison analysis of proposed methodology with some other existing methods is also given. Full article
(This article belongs to the Special Issue Uncertain Multi-Criteria Optimization Problems)
Show Figures

Figure 1

13 pages, 3596 KB  
Article
Tsikourasite, Mo3Ni2P1+x (x < 0.25), a New Phosphide from the Chromitite of the Othrys Ophiolite, Greece
by Federica Zaccarini, Luca Bindi, Elena Ifandi, Tassos Grammatikopoulos, Chris Stanley, Giorgio Garuti and Daniela Mauro
Minerals 2019, 9(4), 248; https://doi.org/10.3390/min9040248 - 24 Apr 2019
Cited by 12 | Viewed by 7130
Abstract
Tsikourasite, Mo3Ni2P1+x (x < 0.25), is a new phosphide discovered in a mantle-hosted podiform chromitite collected in the abandoned mine of Agios Stefanos (Othrys ophiolite), Central Greece. It forms tiny grains (from a few μm up [...] Read more.
Tsikourasite, Mo3Ni2P1+x (x < 0.25), is a new phosphide discovered in a mantle-hosted podiform chromitite collected in the abandoned mine of Agios Stefanos (Othrys ophiolite), Central Greece. It forms tiny grains (from a few μm up to about 80 μm) and occurs as isolated grains or associated with other known minerals such as nickelphosphide and awaruite, and with undetermined minerals such as Ni-allabogdanite or Ni-barringerite and a V-sulphide. Tsikourasite is brittle and has a metallic luster. In plane-polarized light, tsikourasite is white yellow and it shows no bireflectance, anisotropism or pleochroism. Internal reflections were not observed, Reflectance values of tsikourasite in air (R in %) are: 55.7 at 470 nm, 56.8 at 546 nm, 57.5 at 589 nm and 58.5 at 650 nm. Five spot analyses of tsikourasite give the average composition: P 7.97, S 0.67, V 14.13, Fe 14.37, Co 7.59, Ni 23.9, and Mo 44.16, total 99.60 wt.%, corresponding to the empirical formula (Mo1.778V1.071Fe0.082Co0.069)Σ3.000(Ni1.572Co0.428)Σ2.000(P0.981S0.079)Σ1.060, on the basis of Σ(Mo +V + Fe + Co + Ni) = 5 apfu and taking into account the structural results. The simplified formula is Mo3Ni2P1+x (x < 0.25). The density, which was calculated based on the empirical formula and single-crystal data, is 9.182 g/cm3. The mineral is cubic, space group F-43m, with a = 10.8215(5) Å and Z = 16. Although tsikourasite is similar in composition to those of monipite (MoNiP), polekhovskyite (MoNiP2), and the synthetic compound MoNiP2, all these phases are hexagonal and not cubic like tsikourasite. It exhibits the same structure as the cubic Mo3Ni2P1.18 compound [space group F-43m, a = 10.846(2) Å] synthesized at 1350 °C. The mineral and its name have been approved by the Commission of New Minerals, Nomenclature and Classification of the International Mineralogical Association (No. 2018-156). The mineral honors Professor Basilios Tsikouras of the Universiti Brunei Darussalam. Full article
(This article belongs to the Collection New Minerals)
Show Figures

Figure 1

Back to TopTop