Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,581)

Search Parameters:
Keywords = crystallization inhibition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1335 KB  
Article
Investigating the Role of Silica in Thermo-Oxidative Degradation of EPDM Recycled Composites for Applications in Building and Construction
by Xavier Colom, Leire Moral and Javier Cañavate
Polymers 2026, 18(2), 250; https://doi.org/10.3390/polym18020250 - 16 Jan 2026
Abstract
This work investigates the structural, acoustic, and thermo-oxidative degradation behavior of elastomeric composites made from neat EPDM and recycled devulcanized EPDM (EPDMd) blends, both with and without silica (SiO2). SiO2 plays a complex role in degradation, possibly acting as a [...] Read more.
This work investigates the structural, acoustic, and thermo-oxidative degradation behavior of elastomeric composites made from neat EPDM and recycled devulcanized EPDM (EPDMd) blends, both with and without silica (SiO2). SiO2 plays a complex role in degradation, possibly acting as a catalyst and also affecting the properties of the materials. Samples were subjected to accelerated degradation at 80 °C for 30 days. The characterization included the mechanical, spectroscopical (FTIR-ATR), thermal (TGA), and morphological (SEM) studies of the samples. Given EPDM’s use in construction as a sound-absorber, its acoustic properties were also analyzed. The determination of the mechanical properties shows that the incorporation of SiO2 improves the Young’s modulus (YM), maintains the tensile strength (TS) at similar values, and causes a decrease in elongation at break (EB). The content of EPDMd slightly decreases both the TS and the EB and increases the YM. The thermo-oxidative degradation of the studied composites does not affect the TS values, but it increases the YM for the samples with and without SiO2 for EPDMd contents higher than 40 phr, and decreases the EB for samples with and without SiO2 for all EPDMd contents. The FTIR-ATR, TGA, and SEM results show that the addition of SiO2 catalyzes the thermo-oxidative degradation process, while the EPDMd inhibits structural degradation. Migration of the ZnSt2 included in the formulations to the surface is common in these elastomers. In this case, EPDMd forms microaggregates, which retain the exudation of ZnSt2 crystals, especially in the non-degraded samples. The degraded samples present irregular structures, with microcavities, cracks, and occlusions, which increase the acoustic absorption mainly at frequencies below 1500 Hz. Full article
Show Figures

Graphical abstract

20 pages, 14008 KB  
Article
The Antimicrobial Peptide CRAMP-34 Eradicates Escherichia coli Biofilms by Interfering with the kduD-Dependent Network
by Hongzao Yang, Jing Xiong, Sisi Su, Zhuo Yang, Wu Yang, Lianci Peng, Suhui Zhang, Jinjie Qiu, Yuzhang He and Hongwei Chen
Antibiotics 2026, 15(1), 83; https://doi.org/10.3390/antibiotics15010083 - 14 Jan 2026
Viewed by 43
Abstract
Background/Objectives: Bacterial biofilms formed by Escherichia coli pose a significant challenge in veterinary medicine due to their intrinsic resistance to antibiotics. Antimicrobial peptides (AMPs) represent a promising alternative. AMPs exert their bactericidal activity by binding to negatively charged phospholipids in bacterial membranes [...] Read more.
Background/Objectives: Bacterial biofilms formed by Escherichia coli pose a significant challenge in veterinary medicine due to their intrinsic resistance to antibiotics. Antimicrobial peptides (AMPs) represent a promising alternative. AMPs exert their bactericidal activity by binding to negatively charged phospholipids in bacterial membranes via electrostatic interactions, leading to membrane disruption and rapid cell lysis. Methods: In vitro assays including MIC determination, biofilm eradication testing (crystal violet, colony counts, and CLSM), swimming motility, and EPS quantification were performed. CRISPR/Cas9 was used to construct and complement a kduD mutant. A transposon mutagenesis library was screened for biofilm-defective mutants. In an in vivo murine excisional wound infection model treated with the mouse cathelicidin-related antimicrobial peptide (CRAMP-34), wound closure and bacterial burden were monitored. Gene expression changes were analyzed via RT-qPCR. Results: CRAMP-34 effectively eradicated pre-formed biofilms of a clinically relevant, porcine-origin E. coli strain and promoted wound healing in the murine infection model. We conducted a genome-wide transposon mutagenesis screen, which identified kduD as a critical gene for robust biofilm formation. Functional characterization revealed that kduD deletion drastically impairs flagellar motility and alters exopolysaccharide production, leading to defective biofilm architecture without affecting growth. Notably, the anti-biofilm activity of CRAMP-34 phenocopied aspects of the kduD deletion, including motility inhibition and transcriptional repression of a common set of biofilm-related genes. Conclusions: This research highlights CRAMP-34 as a potent anti-biofilm agent and unveils kduD as a previously unrecognized regulator of E. coli biofilm development, which is also targeted by CRAMP-34. Full article
(This article belongs to the Special Issue Antimicrobial Resistance in Biofilm-Associated Infections)
Show Figures

Figure 1

21 pages, 7072 KB  
Article
Cold Shock Protein B as an Alternative to DMSO for Oocyte Vitrification
by Xinhai Wang, Jing Guo, Kaiyan Zhang, Yi Fang, Hongyu Liu, He Ding, Yang Lyu, Xin Ma and Wenfa Lyu
Antioxidants 2026, 15(1), 107; https://doi.org/10.3390/antiox15010107 - 14 Jan 2026
Viewed by 30
Abstract
Dimethyl sulfoxide (DMSO) is widely utilized in the vitrification of oocytes, but DMSO exhibits concentration-dependent toxicity, which can compromise oocyte developmental potential by disrupting key cellular processes. This study reports the first successful use of cold shock protein B (CspB protein) as a [...] Read more.
Dimethyl sulfoxide (DMSO) is widely utilized in the vitrification of oocytes, but DMSO exhibits concentration-dependent toxicity, which can compromise oocyte developmental potential by disrupting key cellular processes. This study reports the first successful use of cold shock protein B (CspB protein) as a substitute for DMSO in vitrification solutions for oocyte vitrification. Combining dynamics simulations and experimental validation, we demonstrated CspB’s ability to inhibit ice crystallization and recrystallization by stabilizing its position at the ice–water interface and reducing ice formation rates. Recombinant CspB was successfully expressed and shown to bind to the oolemma. In vitrification solutions, CspB (1–2 mg/mL) effectively reduced ice crystal size and enabled a significant reduction or complete replacement of DMSO. This strategy markedly improved the post-thaw survival rates of both mouse and bovine metaphase II (MII) oocytes. Furthermore, oocytes vitrified with an optimized formulation (15% ethylene glycol + 2 mg/mL CspB) exhibited developmental competence (cleavage and blastocyst rates), oxidative stress markers (ROS, GSH), mitochondrial function (membrane potential and content), and apoptosis levels (Caspase-3/9) comparable to those treated with a standard DMSO-containing system. Transcriptomic analysis revealed that CspB’s cryoprotection involves the modulation of the mTOR signaling pathway. This role was functionally confirmed, as activation of mTOR abolished CspB’s beneficial effects, reinstating oxidative damage, mitochondrial dysfunction, and apoptosis. Thus, the CspB protein replaces DMSO with direct ice crystal formation suppression and mTOR-mediated oxidative stress regulation. This study offers a protein-based alternative to conventional permeable cryoprotectants. This approach holds promise for improving reproductive biotechnologies across species. Full article
Show Figures

Figure 1

19 pages, 3620 KB  
Article
Decoding iNOS Inhibition: A Computational Voyage of Tavaborole Toward Restoring Endothelial Homeostasis in Venous Leg Ulcers
by Naveen Kumar Velayutham, Chitra Vellapandian, Himanshu Paliwal, Suhaskumar Patel and Bhupendra G. Prajapati
Pharmaceuticals 2026, 19(1), 137; https://doi.org/10.3390/ph19010137 - 13 Jan 2026
Viewed by 82
Abstract
Background: Due to chronic venous insufficiency, venous leg ulcers (VLUs) develop as chronic wounds characterized by impaired healing, persistent inflammation, and endothelial dysfunction. Nitrosative stress, mitochondrial damage, and tissue apoptosis caused by excess nitric oxide (NO) produced by iNOS in macrophages and fibroblasts [...] Read more.
Background: Due to chronic venous insufficiency, venous leg ulcers (VLUs) develop as chronic wounds characterized by impaired healing, persistent inflammation, and endothelial dysfunction. Nitrosative stress, mitochondrial damage, and tissue apoptosis caused by excess nitric oxide (NO) produced by iNOS in macrophages and fibroblasts are contributing factors in the chronic wound environment; therefore, pharmacological modulation of iNOS presents an attractive mechanistic target in chronic wound pathophysiology. Methods: Herein, we present the use of a structure-based computational strategy to assess the inhibition of tavaborole, a boron-based antifungal agent, against iNOS using human iNOS crystal structure (PDB ID: iNOS) by molecular docking using AutoDock 4.2, 500 ns simulation of molecular dynamics (MD), with equilibration within ~50 ns and analyses over full trajectory and binding free energy calculations through the MM-PBSA approach. Results: Docking studies showed favorable binding of tavaborole (–6.1 kcal/mol) in the catalytic domain, which stabilizes contacts with several key residues (CYS200, PRO350, PHE369, GLY371, TRP372, TYR373, and GLU377). MD trajectories for 1 ns showed stable structural configurations with negligible deviations (RMSD ≈ 0.44 ± 0.10 nm) and hydrogen bonding, and MM-PBSA analysis confirmed energetically favorable complex formation (ΔG_binding ≈ 18.38 ± 63.24 kJ/mol) similar to the control systems (L-arginine and 1400W). Conclusions: Taken together, these computational findings indicate that tavaborole can stably occupy the iNOS active site and interact with key catalytic residues, providing a mechanistic basis for further in vitro and ex vivo validation of its potential as an iNOS inhibitor to reduce nitrosative stress and restore endothelial homeostasis in venous leg ulcers, rather than direct therapeutic proof. Full article
Show Figures

Graphical abstract

17 pages, 3603 KB  
Article
Structural Interactions of β-Lactam Antibiotics with Mammalian Serum Albumins
by Kajetan Duszynski, Bartosz Sekula, Julita Talaj and Anna Bujacz
Int. J. Mol. Sci. 2026, 27(2), 776; https://doi.org/10.3390/ijms27020776 - 13 Jan 2026
Viewed by 66
Abstract
The Bactericidal action of β-lactam antibiotics is related to covalent modification of transpeptidases, enzymes that take part in the synthesis of bacterial cell wall. The β-lactam moiety mimics the transpeptidase substrate and irreversibly inhibits the enzyme. In penicillin and cephalosporin, the β-lactam ring [...] Read more.
The Bactericidal action of β-lactam antibiotics is related to covalent modification of transpeptidases, enzymes that take part in the synthesis of bacterial cell wall. The β-lactam moiety mimics the transpeptidase substrate and irreversibly inhibits the enzyme. In penicillin and cephalosporin, the β-lactam ring is coupled with a five-membered thiazolidine ring or a six-membered dihydrothiazine ring, respectively. In the case of penicillins, such conjunction causes higher tension of this bicyclic moiety; therefore, the β-lactam ring can be hydrolyzed in certain conditions, inactivating the antibiotic. Serum albumin is known for its drug binding capabilities, which enable it to transport pharmaceuticals through the circulatory system. Penicillins and cephalosporins are no exception in this aspect, and they are also carried by serum albumin in the bloodstream. In this study, we structurally investigate the ability of three serum albumins—equine (ESA), caprine (CSA), and ovine (OSA)—to bind two penicillins, ampicillin (Amp) and oxacillin (Oxa), and two cephalosporins, cefaclor (Cef) and cephalosporin C (Csc). The crystal structures of these mammalian serum albumin complexes shed new light on the albumin binding properties of β-lactam antibiotics, showing one common binding site for Amp, Oxa, and Cef in Fatty Acid Site 6 (FA6), and a second cefaclor molecule bound in domain I of the equine serum albumin. It was surprising that these antibiotics are not bound in the main drug binding site. However, cephalosporin C is bound in OSA Drug Site 1 (DS1). Full article
(This article belongs to the Section Macromolecules)
Show Figures

Graphical abstract

15 pages, 2300 KB  
Article
Sustained Release Varnish of Chlorhexidine for Prevention of Biofilm Formation on Non-Absorbable Nasal and Ear Sponges
by Sari Risheq, Athira Venugopal, Andres Sancho, Michael Friedman, Irit Gati, Ron Eliashar, Doron Steinberg and Menachem Gross
Pharmaceutics 2026, 18(1), 96; https://doi.org/10.3390/pharmaceutics18010096 - 12 Jan 2026
Viewed by 116
Abstract
Background: Non-absorbable polyvinyl alcohol sponges (Merocel) are widely used in otolaryngology for nasal and ear packing but are prone to bacterial colonization and biofilm formation, which may increase infection risk and drive frequent use of systemic antibiotics. Sustained-release drug delivery systems enable [...] Read more.
Background: Non-absorbable polyvinyl alcohol sponges (Merocel) are widely used in otolaryngology for nasal and ear packing but are prone to bacterial colonization and biofilm formation, which may increase infection risk and drive frequent use of systemic antibiotics. Sustained-release drug delivery systems enable prolonged local antiseptic activity at the site of packing while minimizing systemic exposure. Methods: We developed a sustained-release varnish containing chlorhexidine (SRV-CHX) and coated sterile Merocel sponges. Antibacterial, in vitro, activity against Staphylococcus aureus and Pseudomonas aeruginosa was evaluated using kinetic diffusion assays on agar, optical density (OD600) measurements of planktonic cultures, drop plate, ATP-based viability assays, biofilm analysis by MTT metabolic assay, crystal violet bio-mass staining, high-resolution scanning electron microscopy (HR-SEM), and spinning disk confocal microscopy. Results: SRV-CHX-coated sponges produced sustained zones of inhibition on agar plates for up to 37 days against S. aureus and 39 days against P. aeruginosa, far exceeding the usual 3–5 days of clinical sponge use. Planktonic growth was significantly reduced compared with SRV-placebo, and a bactericidal effect persisted for up to 16 days for S. aureus and 5 days for P. aeruginosa before becoming predominantly bacteriostatic. Biofilm formation was markedly inhibited, with suppression of metabolic activity and biomass for at least 33 days for S. aureus and up to 16 days for P. aeruginosa. HR-SEM and confocal imaging confirmed sparse, discontinuous biofilms and predominance of non-viable bacteria on SRV-CHX-coated sponges compared with dense, viable biofilms on the placebo controls. Conclusions: Coating Merocel sponges with SRV-CHX provides prolonged antibacterial and anti-biofilm activity against clinically relevant pathogens. This strategy may reduce dependence on systemic antibiotics and improve infection control in nasal and ear packing applications in otolaryngology. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

13 pages, 3075 KB  
Article
Inhibition of Streptococcus Biofilm Formation by 6′-Sialyllactose and N-Acetylneuraminic Acid
by Yohei Sato, Yuta Watanabe, Tatsuhiro Ayabe and Takeshi Kokubo
Dent. J. 2026, 14(1), 41; https://doi.org/10.3390/dj14010041 - 7 Jan 2026
Viewed by 218
Abstract
Background/Objectives: Oral hygiene is crucial for maintaining overall health, as poor oral care can lead to various systemic diseases. Although xylitol is widely used to inhibit plaque formation, more effective agents are needed to control oral biofilms. Herein, we evaluated the inhibitory [...] Read more.
Background/Objectives: Oral hygiene is crucial for maintaining overall health, as poor oral care can lead to various systemic diseases. Although xylitol is widely used to inhibit plaque formation, more effective agents are needed to control oral biofilms. Herein, we evaluated the inhibitory effects of sialyllactose (SL), a type of human milk oligosaccharide (HMO), and its partial structure N-acetylneuraminic acid (Neu5Ac) against Streptococcus biofilm. Methods: Under a CO2 atmosphere, Streptococcus mutans and mixed Streptococcus species were each cultivated in vitro, and the inhibitory effects of HMOs [2′-fucosyllactose, 3′-sialyllactose (3′-SL) and 6′-sialyllactose (6′-SL)] and Neu5Ac on biofilm formation were evaluated. Bacterial biofilm formation was quantified using the crystal violet assay. Biofilm architecture and viability were visualized using confocal laser-scanning microscopy (CLSM) with SYTO9/propidium iodide staining. Transcriptomic responses of S. mutans biofilms to the test compounds were analyzed by RNA-Seq. Statistical analysis was performed using one-way analysis of variance followed by Tukey’s test. Results: SLs and Neu5Ac at 100 mM significantly inhibited S. mutans biofilm formation, with stronger effects than those of xylitol. The inhibitory effects varied among HMOs, with 6′-SL being more effective than 3′-SL and Neu5Ac being most effective. These effects were consistent in assays targeting biofilms formed by other S. mutans strains and in a mixed biofilm comprising Streptococcus species. Gene expression analysis suggested that the inhibitory mechanism involves the physical inhibition of surface adhesion and stress-induced regulation of gene expression. Conclusions: This study provides insights into the physiological significance of HMOs in the oral cavities of humans. HMOs exhibited potential as functional foods to control oral biofilm formation and reduce the risk of oral and systemic diseases. Full article
Show Figures

Figure 1

13 pages, 2156 KB  
Article
Unraveling the Effects of Concentration and Temperature on the Molecular Dynamics Adsorption of a Phosphonic Acid Scale Inhibitor
by Hongjun Wu, Bao Zhang, Yi Yang, Tao Sun, Shiling Zhang, Zhongwu Yang, Kun Huang, Jiaxin Tang and Guangguang Xiang
Coatings 2026, 16(1), 42; https://doi.org/10.3390/coatings16010042 - 1 Jan 2026
Viewed by 255
Abstract
Based on static scale inhibition experiments and molecular dynamics (MD) simulations, this study investigated the influence of concentration and temperature on the scale inhibition performance and adsorption behavior of the hydroxyphosphonic acid-based XCN scale inhibitor on calcite (104) surfaces. Experimental results demonstrate that [...] Read more.
Based on static scale inhibition experiments and molecular dynamics (MD) simulations, this study investigated the influence of concentration and temperature on the scale inhibition performance and adsorption behavior of the hydroxyphosphonic acid-based XCN scale inhibitor on calcite (104) surfaces. Experimental results demonstrate that XCN exhibits excellent inhibition efficiency against CaCO3 scale, achieving 91.26% at 30 ppm and 60 °C. Further increasing the concentration to 35 ppm improves the inhibition rate by only 0.52%, a marginal gain attributable to the threshold effect. Performance improves with decreasing temperature, increasing from 91.26% at 60 °C to 96.92% at 30 °C. MD simulations reveal that the adsorption energy between XCN and calcite peaks at a specific molecular count (9 molecules), indicating optimal surface coverage. Radial distribution function analyses confirm chemisorption via Ca-O and Ca-H interactions within 1–3.5 Å, inducing lattice distortion that inhibits crystal growth. However, increasing temperature weakens adsorption and promotes molecular desorption, reducing inhibition efficiency. These findings provide molecular-level insights into the threshold and thermal behaviors of phosphonic acid scale inhibitors, supporting the optimized application of XCN in oilfield operations. Full article
(This article belongs to the Special Issue Advanced Coating Protection Technology in the Oil and Gas Industry)
Show Figures

Figure 1

22 pages, 12500 KB  
Article
Shrinkage Characteristics of Bentonite–Sand Mixtures Considering the Influence of Sand Content and Pore Water Chemistry
by Dongyue Pan, Chongxi Zhao, Bowen Hu, Pengyu Ren and Ping Liu
Processes 2026, 14(1), 137; https://doi.org/10.3390/pr14010137 - 31 Dec 2025
Viewed by 328
Abstract
The safe disposal of high-level radioactive waste (HLW) is a significant challenge in the nuclear industry. As the buffer backfill material for deep geological disposal engineering barriers, the shrinkage characteristics of bentonite–sand mixtures are critical to the long-term stability of repositories. This study [...] Read more.
The safe disposal of high-level radioactive waste (HLW) is a significant challenge in the nuclear industry. As the buffer backfill material for deep geological disposal engineering barriers, the shrinkage characteristics of bentonite–sand mixtures are critical to the long-term stability of repositories. This study systematically conducted drying shrinkage tests using an improved thin-film technique under varying sand contents Rs (0–50%), salt solution concentrations (0–1.5 mol/L), and ion types (Na+, Mg2+, Ca2+, Cl, SO42−). The mechanisms of the effects of sand content and salt solutions on the shrinkage behavior of bentonite were revealed based on the results. In addition, the rationality of the MCG-B model in simulating the shrinkage characteristics of mixtures was also discussed. The results show that a sand content of 30% is the minimum sand content for inhibiting the shrinkage behavior of bentonite–sand mixtures observed in this work: below this ratio, bentonite dominates the shrinkage process, and samples are prone to cracking due to uneven matrix suction; above this ratio, quartz sand forms a rigid skeleton that significantly inhibits volume shrinkage and accelerates water evaporation. Salt solutions suppress shrinkage by compressing the thickness of the diffuse double layer and inducing ion crystallization. Higher cation concentrations and valences (Mg2+ > Na+ > Ca2+) enhance the inhibitory effect. Crystalline salts such as Na2SO4 cause measurement deviations in water content due to hydration and delay the shrinkage process. However, NaCl solutions effectively inhibit shrinkage with minimal impact on shrinkage time. Fitting results with the MCG-B model (Coefficient of determination > 0.97) demonstrate that the MCG-B model can empirically describe the results of thin-film technique experiment, though the model’s prediction accuracy decreases for the residual shrinkage stage at high sand contents (>40%). This study provides a theoretical basis for optimizing buffer material proportions and curing processes, with significant implications for the long-term safety of HLW repositories. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

19 pages, 4399 KB  
Article
Novel Insights on the Synergistic Mechanism of Action Between the Polycationic Peptide Colistin and Cannabidiol Against Gram-Negative Bacteria
by Merlina Corleto, Matías Garavaglia, Melina M. B. Martínez, Melanie Weschenfeller, Santiago Urrea Montes, Martin Aran, Leonardo Pellizza, Diego Faccone and Paulo C. Maffía
Pharmaceutics 2026, 18(1), 51; https://doi.org/10.3390/pharmaceutics18010051 - 30 Dec 2025
Viewed by 311
Abstract
Background/Objectives: Colistin (polymyxin E) has re-emerged as a last-hope treatment against MDR Gram-negative pathogens due to the development of extensively drug-resistant Gram-negative bacteria. Unfortunately, rapid global resistance towards colistin has emerged, which represents a major public health concern. In this context (CBD), [...] Read more.
Background/Objectives: Colistin (polymyxin E) has re-emerged as a last-hope treatment against MDR Gram-negative pathogens due to the development of extensively drug-resistant Gram-negative bacteria. Unfortunately, rapid global resistance towards colistin has emerged, which represents a major public health concern. In this context (CBD), a lipophilic molecule derived from Cannabis sativa, exhibits antimicrobial activity mainly against Gram-positive bacteria but is generally ineffective against Gram-negative species. However, synergistic antibacterial activity between CBD and polymyxin B has been reported. The objective of this work is to analyze the colistin–CBD synergy against clinically relevant Gram-negative isolates displaying diverse mechanisms of colistin resistance and to explore the basis of the possible mechanism of action involved in the first steps of this synergy. Methods: Microbiological assays, minimal inhibitory concentration, cell culture, synergy tests by checker board and time kill, biofilm inhibition evaluation by crystal violet and MTT, SEM (scanning electron microscopy), molecules interaction analysis by nuclear magnetic resonance (NMR). Results: The colistin–CBD combination displayed synergy in colistin resistant Gram-negative bacteria and also disrupted preformed biofilms and killed bacteria within them. Time-kill assays revealed rapid bactericidal activity and SEM showed mild surface alterations on bacterial outer membranes after sublethal colistin monotherapy. Furthermore, a series of sequential treatment assays on colistin-resistant Escherichia coli showed that simultaneous exposure to both compounds was required for activity, as introducing a washing step between treatments abolished the antibacterial effect. In order to obtain deeper insight into this mechanism, NMR analyses were performed, revealing specific molecular interactions between CBD and colistin molecules. Conclusions: These results provide evidence for the first time that both molecules engage through a specific and structurally meaningful interaction and only display synergy when acting together on colistin-resistant bacteria. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Graphical abstract

15 pages, 4750 KB  
Article
Tuning Crystallization Pathways via Phase Competition: Heat-Treatment-Induced Microstructural Evolution
by Yan Pan, Yulong Wu, Jiahui Zhang, Yanping Ma, Minghan Li and Hong Jiang
Crystals 2026, 16(1), 29; https://doi.org/10.3390/cryst16010029 - 30 Dec 2025
Viewed by 182
Abstract
Spinel-based glass-ceramics face challenges such as a narrow crystallization window for the target phase and the difficulty in suppressing the competitive LixAlxSi1−xO2 crystals. This study proposes a method to regulate the phase formation in ZnO-MgO-Al2 [...] Read more.
Spinel-based glass-ceramics face challenges such as a narrow crystallization window for the target phase and the difficulty in suppressing the competitive LixAlxSi1−xO2 crystals. This study proposes a method to regulate the phase formation in ZnO-MgO-Al2O3-SiO2 glass by precisely controlling the heat treatment temperature. The microstructural evolution was analyzed by DSC, XRD, Raman spectroscopy, SEM, TEM, and XPS. The results indicate that the heat treatment at a nucleation temperature of 780 °C for 2 h and a crystallization temperature of 880 °C for 2 h effectively inhibits the precipitation of the LixAlxSi1−xO2 secondary phase, yielding a glass-ceramic with nano-sized MgAl2O4, ZnAl2O4 spinel as the primary crystalline phase. The obtained glass-ceramic exhibits excellent mechanical properties, including a Vickers hardness of 922.6 HV, a flexural strength of 384 MPa, and an elastic modulus of 113 GPa, while maintaining a high visible light transmittance of 84.3%. This work provides a clear processing window and theoretical basis for fabricating high-performance, highly transparent spinel-based glass-ceramics through tailored heat treatment. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

11 pages, 1543 KB  
Article
Enhanced Stability and Performance of α-FAPbI3 Photodetectors via Long-Chain n-Heptanoic Acid Passivation
by Xintao Bai, Yunjie Lou, Mengxuan Wang, Zhenkun Gu and Yanlin Song
Materials 2026, 19(1), 122; https://doi.org/10.3390/ma19010122 - 30 Dec 2025
Viewed by 314
Abstract
Owing to its narrow bandgap and excellent thermal stability, formamidinium–lead triiodide (FAPbI3) is a promising perovskite for high-performance, wide-spectrum photodetectors. Here, we selected long-chain n-heptanoic acid as the passivating agent and introduced it onto the perovskite surface via post-treatment, thereby enabling [...] Read more.
Owing to its narrow bandgap and excellent thermal stability, formamidinium–lead triiodide (FAPbI3) is a promising perovskite for high-performance, wide-spectrum photodetectors. Here, we selected long-chain n-heptanoic acid as the passivating agent and introduced it onto the perovskite surface via post-treatment, thereby enabling the fabrication of high-quality α-FAPbI3 perovskite films and photodetectors. It is found that the carboxylic acid group in the n-heptanoic acid molecule can effectively passivate crystal defects, greatly reduce the density of defect states in the perovskite film, and inhibit the non-radiative recombination of carriers. The α-FAPbI3 perovskite phase was effectively stabilized. The responsivity of the photodetector optimized by n-heptanoic acid is as high as 0.47 A W−1 at 740 nm. At the same time, the optimized device still maintains 95% of its initial performance after 552 h of storage in an air environment with a room temperature of 25 °C and a relative humidity of 25%. This method provides a reliable way to prepare a high-performance and stable α-FAPbI3 photodetector. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Graphical abstract

14 pages, 2537 KB  
Article
Chemical-Assisted Microwave Disinfection Used to Eradicate Candida albicans from Acrylic Resin Surfaces
by Marek Witold Mazur, Anna Grudniak, Julia Konstancja Wawer and Dominika Gawlak
J. Funct. Biomater. 2026, 17(1), 4; https://doi.org/10.3390/jfb17010004 - 20 Dec 2025
Viewed by 376
Abstract
Microwave radiation is a potential alternative to conventional disinfection of acrylic resin, but exposure time must be minimized, e.g., by combining it with chemical agents, due to its effects on material properties. This study aimed to microbiologically evaluate the antifungal activity of microwave [...] Read more.
Microwave radiation is a potential alternative to conventional disinfection of acrylic resin, but exposure time must be minimized, e.g., by combining it with chemical agents, due to its effects on material properties. This study aimed to microbiologically evaluate the antifungal activity of microwave disinfection performed in distilled water, sodium hypochlorite (NaOCl), chlorhexidine (CHX), hydrogen peroxide (H2O2), or without immersion. Thermally polymerized PMMA samples colonized with Candida albicans ATCC 14053 were exposed to microwaves for 1 or 3 min in an unmodified microwave oven. Disinfection effectiveness was assessed by colony counting after 48 h of culture and absorbance after crystal violet staining. All microwave treatments significantly reduced fungal counts compared with the control (5360.00 ± 1663.09 CFU/mL). Complete inhibition of colony growth occurred only after 3 min exposure in distilled water, NaOCl, or CHX. One-minute exposure in these liquids reduced but did not eliminate fungi. The least effective method was disinfection without immersion, yielding 1040.00 ± 169.71 CFU/mL after 1 min and 560.00 ± 108.32 CFU/mL after 3 min. None of the tested conditions fully removed biofilms, although microwaves combined with NaOCl produced the best results. Overall, it was found that the presence of a liquid itself, rather than the type of chemical used, was the key factor in effective microwave-assisted disinfection. Microwave disinfection without the addition of chemicals does not remove biofilms. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

20 pages, 1978 KB  
Article
Antibiofilm and Immunomodulatory Effects of Cinnamaldehyde in Corneal Epithelial Infection Models: Ocular Treatments Approach
by Ashraf Khalifa, Muthukumar Thangavelu, Krishnaraj Thirugnanasambantham and Hairul-Islam M. Ibrahim
Pharmaceutics 2026, 18(1), 5; https://doi.org/10.3390/pharmaceutics18010005 - 19 Dec 2025
Viewed by 457
Abstract
Background: Bacterial keratitis, a major cause of corneal blindness, is frequently associated with biofilm-forming pathogens such as Klebsiella pneumoniae. Cyclic-di-GMP (c-di-GMP) controls biofilm development, which increases antibiotic resistance and makes treatment more difficult, highlighting the need for innovative therapeutic approaches. Methods: [...] Read more.
Background: Bacterial keratitis, a major cause of corneal blindness, is frequently associated with biofilm-forming pathogens such as Klebsiella pneumoniae. Cyclic-di-GMP (c-di-GMP) controls biofilm development, which increases antibiotic resistance and makes treatment more difficult, highlighting the need for innovative therapeutic approaches. Methods: This study investigated cinnamaldehyde as a potential ocular therapeutic using combined computational and experimental approaches. Molecular docking and in vitro assays (XTT, resazurin reduction, crystal violet staining, qRT-PCR, and fluorescence microscopy) were used to evaluate the anti-biofilm and immunomodulatory activities of cinnamaldehyde (CA) against Klebsiella pneumoniae. Results: CA inhibited biofilm formation in a dose-dependent manner (≈89% at 1000 µM; >50% at 250 µM), reduced bacterial attachment to contact lenses, and downregulated key biofilm genes (mrkA, mrkC, ybtS, bolA). Docking analysis revealed strong binding affinity to the mrkH regulator (−5.46 kcal/mol. CA maintained more than 80% corneal cell viability by increasing IL-10, suppressing inflammatory mediators (IL-1β, IL-6, and TNF-α), and improving bacterial clearance. Conclusions: This study combines computational docking, biofilm quantification, immune cell assays, and functional gene expression analyses to reveal the ability of cinnamaldehyde not only to suppress biofilm formation but also to enhance macrophage-mediated clearance and modulate corneal immune responses, a multi-target approach not previously described in the context of bacterial keratitis. Such effects highlight its potential as a novel ocular drug candidate for protecting corneal integrity in infectious keratitis. Full article
(This article belongs to the Special Issue Ophthalmic Drug Delivery, 3rd Edition)
Show Figures

Graphical abstract

30 pages, 16196 KB  
Article
In Silico Optimization of Inhibitors of the 3-Chymotrypsin-like Protease of SARS-CoV-2
by Issouf Fofana, Brice Dali, Mawa Koné, Katarina Sujova, Eugene Megnassan, Stanislav Miertus and Vladimir Frecer
Life 2026, 16(1), 6; https://doi.org/10.3390/life16010006 - 19 Dec 2025
Viewed by 348
Abstract
In this study, new improved inhibitors of the viral enzyme 3-chymotrypsin-like protease (3CLpro) were designed using structure-based drug design techniques in an effort to discover more effective treatment of coronavirus disease 2019 (COVID-19). Three-dimensional models of 3CLpro–inhibitor complexes were [...] Read more.
In this study, new improved inhibitors of the viral enzyme 3-chymotrypsin-like protease (3CLpro) were designed using structure-based drug design techniques in an effort to discover more effective treatment of coronavirus disease 2019 (COVID-19). Three-dimensional models of 3CLpro–inhibitor complexes were prepared by in situ modification of the crystal structure of the submicromolar covalent inhibitor IPCL6 for a set of 25 known inhibitors with published inhibitory potencies (IC50exp). The QSAR model was prepared with a reasonable correlation between the calculated free energies of formation of the 3CLpro-IPCL complex (∆∆Gcom) and the experimentally determined activities IC50exp, which explained approximately 92% of the variation in the 3CLpro inhibition data. A similar agreement was achieved for the QSAR pharmacophore model (PH4) built on the basis of the active conformations of the IPCL inhibitors bound at the active site of the 3CLpro. The virtual combinatorial library of more than 567,000 IPCL analogues was screened in silico using the PH4 model and resulted in the identification of 39 promising analogues. The best inhibitors designed in this study show high predicted affinity for the 3CLpro protease, as well as favourable predicted ADME properties. For the best new virtual inhibitor candidate IPCL 80-27-74-4, the inhibitory concentration IC50pre was predicted equal to 0.8 nM, which represents a significant improvement in the inhibitory potency of known IPCLs. Ultimately, molecular dynamics simulations of the 12 newly designed top-scoring IPCL inhibitors demonstrated that the 3CLpro–inhibitor complexes exhibited good structural stability, confirming the potential for further development of the designed IPCL analogues. Full article
(This article belongs to the Section Biochemistry, Biophysics and Computational Biology)
Show Figures

Figure 1

Back to TopTop