Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = crystalline vs. amorphous phases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 12258 KB  
Article
Iron-Rich Slag-Based Alkali-Activated Materials for Radioactive Waste Management: Characterization and Performance
by Shymaa Ali Fathi Ali, Lander Frederickx, Emile Mukiza, Michael I. Ojovan and Hans-Jürgen Steinmetz
Minerals 2025, 15(12), 1229; https://doi.org/10.3390/min15121229 - 21 Nov 2025
Viewed by 600
Abstract
Iron-rich metallurgical slag is an underutilized precursor in alkali-activated materials (AAMs), despite its abundance and potential in sustainable construction and waste immobilization. This study evaluates a binary AAM system (Aachen GP), comprising 50 wt.% blast furnace slag (BFS) and 50 wt.% iron-rich slag [...] Read more.
Iron-rich metallurgical slag is an underutilized precursor in alkali-activated materials (AAMs), despite its abundance and potential in sustainable construction and waste immobilization. This study evaluates a binary AAM system (Aachen GP), comprising 50 wt.% blast furnace slag (BFS) and 50 wt.% iron-rich slag (Fe2O3 ≈ 24.6 wt.%), against a BFS-only reference (Ref GP). Characterization included isothermal calorimetry, Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Scanning Electron Microscopy with Energy Dispersive X-ray spectroscopy (SEM–EDX), Brunauer–Emmett–Teller (BET) surface area, water permeability, porosity, and compressive strength. Aachen GP showed delayed setting (32.9 h), reduced cumulative heat (∼70 J/g), and lower bound water (4.6% at 28 days), indicating limited gel formation. Compared to Ref GP, it had higher porosity (38.4%), water permeability (1.42×1010 m/s), and BET surface area (12.4 m2/g), but lower 28-day strength (14.4 MPa vs. 43 MPa). Structural analysis revealed unreacted crystalline phases and limited amorphous gel. While Aachen GP meets regulatory strength thresholds (≥8 MPa) for low- to intermediate-level wasteforms in Belgium and Germany, its elevated porosity may impact long-term containment. Further studies on radionuclide leaching and durability under thermal and radiation stress are recommended. Full article
(This article belongs to the Special Issue Development in Alkali-Activated Materials and Applications)
Show Figures

Figure 1

14 pages, 3057 KB  
Article
Microstructure and Compressive Properties of (Ti51Zr25Cu6Be18)100−xVx Bulk Metallic Glass Matrix Composites
by Xinhua Huang, Junnan Li, Guang Wang, Bin Chen, Chenghao Wei and Yuejun Ouyang
Crystals 2025, 15(10), 838; https://doi.org/10.3390/cryst15100838 - 26 Sep 2025
Viewed by 482
Abstract
Metallic glass alloys exhibit excellent properties, yet suffer from poor room-temperature plasticity, a limitation that restricts their engineering applications. Bulk metallic glass matrix composites (BMGMCs) have proven effective in enhancing the plasticity of metallic glasses, and the addition of alloying elements serves as [...] Read more.
Metallic glass alloys exhibit excellent properties, yet suffer from poor room-temperature plasticity, a limitation that restricts their engineering applications. Bulk metallic glass matrix composites (BMGMCs) have proven effective in enhancing the plasticity of metallic glasses, and the addition of alloying elements serves as a key strategy to regulate their microstructure and optimize the properties of these composites. This study aims to investigate the effects of a vanadium (V) addition on the mechanical properties and microstructure of Ti-based BMGMCs, while exploring the underlying mechanism of V’s influence. Using (Ti51Zr25Cu6Be18)100−xVx (x = 0, 4, 8, 12, 16, 20) BMGMCs as test specimens, microstructural characterization was performed via X-ray diffraction (XRD) and scanning electron microscopy (SEM), and compressive mechanical properties were tested. The results indicate that a V addition refines dendrites without altering the phase composition, which remains composed of β-Ti crystals and an amorphous matrix. With the increase in V content, the compressive plastic strain shows a trend of first increasing and then decreasing; when x = 12, the specimen exhibits the maximum compressive plastic strain, reaching 7.9%. Additionally, the volume fraction of the crystalline phase gradually increases with increasing V content. This study clarifies the mechanism by which V regulates the microstructure and properties of Ti-based BMGMCs, thereby providing theoretical and experimental insights for optimizing alloy compositions to enhance the mechanical performance. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

15 pages, 6388 KB  
Article
Properties of ZnO Prepared by Polymeric Citrate Amorphous Precursor Method: Influence of Cobalt Concentration
by Jailes J. Beltrán, Luis A. Flórez and Luis C. Sánchez
Materials 2025, 18(17), 3991; https://doi.org/10.3390/ma18173991 - 26 Aug 2025
Viewed by 864
Abstract
This study aims to investigate the vibrational, structural, morphological, optical, and magnetic properties of Zn1−xCoxO with 0.00 ≤ x ≤ 0.05 prepared by the sol–gel method via an amorphous citrate precursor. FTIR spectroscopy was used to follow the thermal [...] Read more.
This study aims to investigate the vibrational, structural, morphological, optical, and magnetic properties of Zn1−xCoxO with 0.00 ≤ x ≤ 0.05 prepared by the sol–gel method via an amorphous citrate precursor. FTIR spectroscopy was used to follow the thermal decomposition process of the ZnO precursor, identifying acetate zinc as the intermediate main component. XRD and FTIR-ATR techniques showed only the single wurtzite crystalline phase with the presence of oxygen deficiency and/or vacancies, and secondary phases were not detected. SEM micrographs showed agglomerated particles of irregular shape and size with a high distribution and evidenced particles of nanometric size with a morphology change for x = 0.05. We detected high–spin Co2+ ions located in the tetrahedral core and pseudo–octahedral surface sites, substituting Zn2+ ions. The energy band gap of the ZnO semiconductor decreased gradually when the Co doping concentration was increased. M vs. H for undoped ZnO nanoparticles exhibited a diamagnetic signal overlapped with a weak ferromagnetic signal at room temperature. Interestingly, temperature-dependent magnetization showed superparamagnetic behavior with a blocked state in the low temperature range. The Co–doped ZnO samples evidenced a weak ferromagnetic signal and a paramagnetic component, which increased with x. The saturation magnetization increased until x = 0.03 and then decreased for x = 0.05, while the coercive field gradually decreased. Full article
Show Figures

Graphical abstract

21 pages, 2610 KB  
Article
Analysis of Transition from Compact to Mossy Structures During Galvanostatic Zinc Electrodeposition and Its Implications for CO2 Electroreduction
by Pietro Altimari, Silvia Iacobelli, Pier Giorgio Schiavi, Gianluca Zanellato, Francesco Amato, Andrea Giacomo Marrani, Olga Russina, Alessia Sanna and Francesca Pagnanelli
Nanomaterials 2025, 15(13), 1025; https://doi.org/10.3390/nano15131025 - 2 Jul 2025
Viewed by 897
Abstract
The galvanostatic electrodeposition of zinc on carbon paper from mildly acidic solutions (ZnCl2: 0.05–0.1 M; H3BO3: 0.05 M) was investigated. The deposits’ growth mechanisms were analyzed through the study of the electrodeposition potential transients and the physical [...] Read more.
The galvanostatic electrodeposition of zinc on carbon paper from mildly acidic solutions (ZnCl2: 0.05–0.1 M; H3BO3: 0.05 M) was investigated. The deposits’ growth mechanisms were analyzed through the study of the electrodeposition potential transients and the physical characterization of the electrodes synthesized by varying the current density, transferred charge, and zinc precursor concentration. The analysis reveals that the transition from crystalline to amorphous mossy deposits takes place via the electrodeposition of metallic zinc followed by the formation of oxidized zinc structures. The time required for this transition can be controlled by varying the zinc precursor concentration and electrodeposition current density, allowing for the synthesis of composite zinc/oxidized zinc electrodes with varying ratios of the oxidized to underlying metallic phases. The impact of this ratio on the electrode activity for CO2 electroreduction is analyzed, highlighting that composite zinc/oxidized zinc electrodes can achieve a faradaic efficiency to CO equal to 82% at −1.8 V vs. Ag/AgCl. The mechanisms behind the variations in the catalytic activity with varying morphologies and structures are discussed, providing guidelines for the synthesis of composite zinc/oxidized zinc electrodes for CO2 electroreduction. Full article
Show Figures

Figure 1

17 pages, 1971 KB  
Article
Sustainable Microwave-Assisted Extraction of Hemp Seed Oil as Functional Additive into Polybutylene Succinate (PBS) Films for Food Packaging
by Giovanni Dal Poggetto, Mattia Di Maro, Luca Gargiulo, Donatella Duraccio, Gabriella Santagata and Giovanna Gomez d’Ayala
Polymers 2025, 17(10), 1376; https://doi.org/10.3390/polym17101376 - 16 May 2025
Cited by 1 | Viewed by 1032
Abstract
In this study, microwave-assisted extraction (MAE) was performed to recover antioxidant hemp seed oil (HSO) with the purpose of developing polybutylene succinate (PBS)/HSO-based films for active packaging to improve food shelf-life. It was found that MAE achieved comparable yields, structural characteristics, and antioxidant [...] Read more.
In this study, microwave-assisted extraction (MAE) was performed to recover antioxidant hemp seed oil (HSO) with the purpose of developing polybutylene succinate (PBS)/HSO-based films for active packaging to improve food shelf-life. It was found that MAE achieved comparable yields, structural characteristics, and antioxidant activity to Soxhlet extraction, but in significantly less time (2.5 min vs. 6 h). PBS-based films with 0.5 and 1 wt% HSO were prepared by compression molding. Morphological investigation of the PBS-HSO films highlighted uniform oil droplet dispersion and good compatibility. HSO reduced PBS crystallinity but did not affect the α-form of PBS. Thermal analysis showed reductions in Tm and Tc, whereas Tg remained unchanged at −17 °C. PBS containing 1 wt% HSO exhibited a 42% decrease in Young’s modulus, 47% reduction in elongation at break, and 47% decrease in tensile strength due to the plasticizing effect of the oil and, which reduced the intermolecular forces and facilitated polymer chain disentanglement, in agreement with the FTIR analysis, which showed a distinct broadening of the carbonyl stretching region associated with the amorphous phase (1720–1730 cm−1) in the PBS-HSO films compared to neat PBS. Migration tests showed that the films are unsuitable for fatty foods but safe for aqueous, acidic, and alcoholic foods. Full article
Show Figures

Figure 1

33 pages, 4731 KB  
Review
Soft Matter Electrolytes: Mechanism of Ionic Conduction Compared to Liquid or Solid Electrolytes
by Kyuichi Yasui and Koichi Hamamoto
Materials 2024, 17(20), 5134; https://doi.org/10.3390/ma17205134 - 21 Oct 2024
Cited by 6 | Viewed by 2442
Abstract
Soft matter electrolytes could solve the safety problem of widely used liquid electrolytes in Li-ion batteries which are burnable upon heating. Simultaneously, they could solve the problem of poor contact between electrodes and solid electrolytes. However, the ionic conductivity of soft matter electrolytes [...] Read more.
Soft matter electrolytes could solve the safety problem of widely used liquid electrolytes in Li-ion batteries which are burnable upon heating. Simultaneously, they could solve the problem of poor contact between electrodes and solid electrolytes. However, the ionic conductivity of soft matter electrolytes is relatively low when mechanical properties are relatively good. In the present review, mechanisms of ionic conduction in soft matter electrolytes are discussed in order to achieve higher ionic conductivity with sufficient mechanical properties where soft matter electrolytes are defined as polymer electrolytes and polymeric or inorganic gel electrolytes. They could also be defined by Young’s modulus from about 105 Pa to 109 Pa. Many soft matter electrolytes exhibit VFT (Vogel–Fulcher–Tammann) type temperature dependence of ionic conductivity. VFT behavior is explained by the free volume model or the configurational entropy model, which is discussed in detail. Mostly, the amorphous phase of polymer is a better ionic conductor compared to the crystalline phase. There are, however, some experimental and theoretical reports that the crystalline phase is a better ionic conductor. Some methods to increase the ionic conductivity of polymer electrolytes are discussed, such as cavitation under tensile deformation and the microporous structure of polymer electrolytes, which could be explained by the conduction mechanism of soft matter electrolytes. Full article
(This article belongs to the Special Issue Advances in Functional Soft Materials—2nd Volume)
Show Figures

Figure 1

19 pages, 4802 KB  
Article
The Effect of Y Content on Structural and Sorption Properties of A2B7-Type Phase in the La–Y–Ni–Al–Mn System
by Emil H. Jensen, Loris Lombardo, Alessandro Girella, Matylda N. Guzik, Andreas Züttel, Chiara Milanese, Pamela Whitfield, Dag Noréus and Sabrina Sartori
Molecules 2023, 28(9), 3749; https://doi.org/10.3390/molecules28093749 - 27 Apr 2023
Cited by 9 | Viewed by 2613
Abstract
Metal hydrides are an interesting group of chemical compounds, able to store hydrogen in a reversible, compact and safe manner. Among them, A2B7-type intermetallic alloys based on La-Mg-Ni have attracted particular attention due to their high electrochemical hydrogen storage [...] Read more.
Metal hydrides are an interesting group of chemical compounds, able to store hydrogen in a reversible, compact and safe manner. Among them, A2B7-type intermetallic alloys based on La-Mg-Ni have attracted particular attention due to their high electrochemical hydrogen storage capacity (∼400 mAh/g) and extended cycle life. However, the presence of Mg makes their synthesis via conventional metallurgical routes challenging. Replacing Mg with Y is a viable approach. Herein, we present a systematic study for a series of compounds with a nominal composition of La2-xYxNi6.50Mn0.33Al0.17, x = 0.33, 0.67, 1.00, 1.33, 1.67, focusing on the relationship between the material structural properties and hydrogen sorption performances. The results show that while the hydrogen-induced phase amorphization occurs in the Y-poor samples (x < 1.00) already during the first hydrogen absorption, a higher Y content helps to maintain the material crystallinity during the hydrogenation cycles and increases its H-storage capacity (1.37 wt.% for x = 1.00 vs. 1.60 wt.% for x = 1.67 at 50 °C). Thermal conductivity experiments on the studied compositions indicate the importance of thermal transfer between powder individual particles and/or a measuring instrument. Full article
(This article belongs to the Special Issue Advances in Hydrogen Storage Materials for Energy Utilization 2.0)
Show Figures

Figure 1

17 pages, 3682 KB  
Article
Superior Gas Barrier Properties of Biodegradable PBST vs. PBAT Copolyesters: A Comparative Study
by Pengkai Qin, Linbo Wu, Bogeng Li, Naixiang Li, Xiaohu Pan and Junming Dai
Polymers 2021, 13(19), 3449; https://doi.org/10.3390/polym13193449 - 8 Oct 2021
Cited by 52 | Viewed by 5627
Abstract
As a bio-based counterpart of poly(butylene adipate-co-terephthalate) (PBAT), the well-known commercially available biodegradable aliphatic-aromatic copolyester, poly(butylene succinate-co-terephthalate) (PBST) has comparable physical and mechanical properties, but its gas barrier properties, which are very important for packaging material and mulch film applications, have not yet [...] Read more.
As a bio-based counterpart of poly(butylene adipate-co-terephthalate) (PBAT), the well-known commercially available biodegradable aliphatic-aromatic copolyester, poly(butylene succinate-co-terephthalate) (PBST) has comparable physical and mechanical properties, but its gas barrier properties, which are very important for packaging material and mulch film applications, have not yet been reported in literature. In this paper, the O2, CO2 and water vapor barrier properties of PBST vs. PBAT were comparatively studied and reported for the first time. Theoretical calculation of O2 and CO2 permeation coefficients via group contribution method was also conducted. The barrier properties of PBST show clear copolymer composition dependence due to different contribution of BS and BT repeat units and composition-dependent crystallinity. Comparing with PBAT, PBST with close copolymer and three-phase (crystalline, amorphous, rigid amorphous) compositions shows 3.5 times O2 and CO2 and 1.5 times water vapor barrier properties. The slower segment movement and less free volume of PBST, and therefore slower gas diffusion in PBST, accounts for its superior O2 and CO2 barrier, while the better hydrophilicity of PBST counteracts partial contribution of slower segment movement so that the improvement in water vapor barrier is not as high as in O2 and CO2 barrier. Full article
Show Figures

Graphical abstract

13 pages, 3221 KB  
Article
Influence of the Curing and Annealing Temperatures on the Properties of Solution Processed Tin Oxide Thin Films
by Christophe Avis and Jin Jang
Crystals 2021, 11(8), 851; https://doi.org/10.3390/cryst11080851 - 22 Jul 2021
Cited by 3 | Viewed by 3846
Abstract
We report the effect of the curing (Tcuring) and annealing (Tanneal) temperatures on the structural, electrical, and optical properties of solution processed tin oxide. Tanneal was varied from 300 to 500 °C, and Tcuring from 200 °C [...] Read more.
We report the effect of the curing (Tcuring) and annealing (Tanneal) temperatures on the structural, electrical, and optical properties of solution processed tin oxide. Tanneal was varied from 300 to 500 °C, and Tcuring from 200 °C to Tanneal. All Tanneal lead to a polycrystalline phase, but the amorphous phase was observed at Tanneal = 300 °C and Tcuring ranging from 250 to 300 °C. This could be explained by the melting point of the precursor (SnCl2), occurring at 250 °C. The crystallinity can be effectively controlled by the annealing temperature, but the curing temperature dramatically affects the grain size. We can reach grain sizes from 5–10 nm (Tcuring = 200 °C and Tanneal = 300 °C) to 30–50 nm (Tcuring = 500 °C and Tanneal = 500 °C). At a fixed Tanneal, Hall mobilities, carrier concentration, and conductivity increased with the curing temperature. The Hall mobility was in the range of 1 to 9.4 cm2/Vs, the carrier concentration was 1018 to 1019 cm−3, and the conductivity could reach ~20 S/cm when the grain size was 30–50 nm. The optical transmittance, the optical bandgap, the refractive index, and the extinction coefficient were also analyzed and they show a correlation with the annealing process. Full article
(This article belongs to the Special Issue Grain Size Control in the Processing of Poly-Crystalline Materials)
Show Figures

Figure 1

Back to TopTop