Analysis of Transition from Compact to Mossy Structures During Galvanostatic Zinc Electrodeposition and Its Implications for CO2 Electroreduction
Abstract
1. Introduction
2. Materials and Methods
2.1. Electrochemical Synthesis and Characterization
2.2. Physical and Chemical Characterization
2.3. Electrocatalytic Tests
3. Results
3.1. Synthesis of the Zinc Electrodes by Electrodeposition
3.2. Physical Characterization
3.3. Electrocatalytic Performancess
- -
- No qualitative differences are observed between the XPS and Raman spectra of the different electrodes. The XPS confirms the presence of a Zn/ZnO heterointerface in all the samples, while the Raman spectroscopy reveals oxidized zinc species (zinc oxide and hydroxide).
- -
- Qualitative differences are instead observed in the XRD spectra of L20 and M20: while M20 is completely amorphous, L20 exhibits crystalline characteristics, though they are less intense compared to L2. These results can be explained by the formation of an oxidized amorphous phase through zinc hydroxide precipitation. SEM image analysis confirms that the transition from metallic to oxidized zinc took place earlier in M20 than in L20.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, Q.; Wang, L.; Sun, W.; Yang, Z.; Wang, S.; Liu, G. Effect of Chemical Conversion Induced by Self-Corrosion of Zinc Powders on Enhancing Corrosion Protection Performance of Zinc-Rich Coatings. Corros. Sci. 2022, 194, 109942. [Google Scholar] [CrossRef]
- Maniam, K.K.; Paul, S. Corrosion Performance of Electrodeposited Zinc and Zinc-Alloy Coatings in Marine Environment. Corros. Mater. Degrad. 2021, 2, 163–189. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doǧan, S.; Avrutin, V.; Cho, S.-J.; Morko̧, H. A Comprehensive Review of ZnO Materials and Devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Kegel, J.; Povey, I.M.; Pemble, M.E. Zinc Oxide for Solar Water Splitting: A Brief Review of the Material’s Challenges and Associated Opportunities. Nano Energy 2018, 54, 409–428. [Google Scholar] [CrossRef]
- Ruan, P.; Liang, S.; Lu, B.; Fan, H.J.; Zhou, J. Design Strategies for High-Energy-Density Aqueous Zinc Batteries. Angew. Chem.-Int. Ed. 2022, 61, e202200598. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Shan, L.; Liang, S.; Zhou, J. Issues and Opportunities Facing Aqueous Zinc-Ion Batteries. Energy Environ. Sci. 2019, 12, 3288–3304. [Google Scholar] [CrossRef]
- Espitia, P.J.P.; Soares, N.F.F.; Coimbra, J.S.R.; de Andrade, N.J.; Cruz, R.S.; Medeiros, E.A.A. Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food Bioprocess Technol. 2012, 5, 1447–1464. [Google Scholar] [CrossRef]
- Wang, L.; Muhammed, M. Synthesis of Zinc Oxide Nanoparticles with Controlled Morphology. J. Mater. Chem. 1999, 9, 2871–2878. [Google Scholar] [CrossRef]
- Shaba, E.Y.; Jacob, J.O.; Tijani, J.O.; Suleiman, M.A.T. A Critical Review of Synthesis Parameters Affecting the Properties of Zinc Oxide Nanoparticle and Its Application in Wastewater Treatment. Appl. Water Sci. 2021, 11, 48. [Google Scholar] [CrossRef]
- Otani, T.; Fukunaka, Y.; Homma, T. Effect of Lead and Tin Additives on Surface Morphology Evolution of Electrodeposited Zinc. Electrochim. Acta 2017, 242, 364–372. [Google Scholar] [CrossRef]
- Shimizu, M.; Hirahara, K.; Arai, S. Morphology Control of Zinc Electrodeposition by Surfactant Addition for Alkaline-Based Rechargeable Batteries. Phys. Chem. Chem. Phys. 2019, 21, 7045–7052. [Google Scholar] [CrossRef]
- Trigueros, P.P.; Claret, J.; Mas, F.; Sagués, F. Pattern Morphologies in Zinc Electrodeposition. J. Electroanal. Chem. 1991, 312, 219–235. [Google Scholar] [CrossRef]
- Wojnarowicz, J.; Chudoba, T.; Lojkowski, W. A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphoslogies. Nanomaterials 2020, 10, 1086. [Google Scholar] [CrossRef]
- Zheng, X.; Ahmad, T.; Chen, W. Challenges and Strategies on Zn Electrodeposition for Stable Zn-Ion Batteries. Energy Storage Mater. 2021, 39, 365–394. [Google Scholar] [CrossRef]
- Shen, Z.; Mao, J.; Yu, G.; Zhang, W.; Mao, S.; Zhong, W.; Cheng, H.; Guo, J.; Zhang, J.; Lu, Y. Electrocrystallization Regulation Enabled Stacked Hexagonal Platelet Growth toward Highly Reversible Zinc Anodes. Angew. Chem.-Int. Ed. 2023, 62, e202218452. [Google Scholar] [CrossRef]
- Won, D.H.; Shin, H.; Koh, J.; Chung, J.; Lee, H.S.; Kim, H.; Woo, S.I. Highly Efficient, Selective, and Stable CO2 Electroreduction on a Hexagonal Zn Catalyst. Angew. Chem. 2016, 128, 9443–9446. [Google Scholar] [CrossRef]
- Bozzini, B.; Boniardi, M.; Caielli, T.; Casaroli, A.; Emanuele, E.; Mancini, L.; Sodini, N.; Strada, J. Electrochemical Cycling Behaviour and Shape Changes of Zn Electrodes in Mildly Acidic Aqueous Electrolytes Containing Quaternary Ammonium Salts. ChemElectroChem 2023, 10, e202201130. [Google Scholar] [CrossRef]
- Otani, T.; Nagata, M.; Fukunaka, Y.; Homma, T. Morphological Evolution of Mossy Structures during the Electrodeposition of Zinc from an Alkaline Zincate Solution. Electrochim. Acta 2016, 206, 366–373. [Google Scholar] [CrossRef]
- Savsatli, Y.; Wang, F.; Guo, H.; Li, Z.; Hitt, A.; Zhan, H.; Ge, M.; Xiao, X.; Lee, W.-K.; Agarwal, H.; et al. In Situ and Operando Observation of Zinc Moss Growth and Dissolution in Alkaline Electrolyte for Zinc-Air Batteries. ACS Energy Lett. 2024, 9, 3516–3525. [Google Scholar] [CrossRef]
- Yufit, V.; Tariq, F.; Eastwood, D.S.; Biton, M.; Wu, B.; Lee, P.D.; Brandon, N.P. Operando Visualization and Multi-Scale Tomography Studies of Dendrite Formation and Dissolution in Zinc Batteries. Joule 2019, 3, 485–502. [Google Scholar] [CrossRef]
- Zheng, J.; Archer, L.A. Controlling Electrochemical Growth of Metallic Zinc Electrodes: Toward Affordable Rechargeable Energy Storage Systems. Sci. Adv. 2021, 7, eabe0219. [Google Scholar] [CrossRef]
- Kahanda, G.L.M.K.S.; Tomkiewicz, M. Morphological Evolution in Zinc Electrodeposition. J. Electrochem. Soc. 1989, 136, 1497–1502. [Google Scholar] [CrossRef]
- González-Zea, A.; Flores-López, J.G.; López-Montelongo, J.R.; Rodríguez-González, C.; Ortega, R.; Méndez-Albores, A.; Palomar-Pardavé, M.; Trejo, G. Study of Zn Electrodeposition on FTO and Its Nucleation and Growth Mechanisms from a Nitrate-Based Electrolytic Bath. Electrochim. Acta 2025, 512, 145419. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, W.; Han, X.; Fan, H.; Chen, T.; Yang, Y.; Gao, Y.; Zheng, C.; Yang, Y.; Xiong, T.; et al. Unveiling The Mechanism of The Dendrite Nucleation and Growth in Aqueous Zinc Ion Batteries. Adv. Energy Mater. 2024, 14, 2303737. [Google Scholar] [CrossRef]
- Trejo, G.; Meas, Y.; Ozil, P.; Chainet, E.; Nguyen, B. Nucleation and Growth of Zinc from Chloride Concentrated Solutions. J. Electrochem. Soc. 1998, 145, 4090. [Google Scholar] [CrossRef]
- Diggle, J.W.; Despic, A.R.; Bockris, J. The Mechanism of the Dendritic Electrocrystallization of Zinc. J. Electrochem. Soc. 1969, 116, 1503. [Google Scholar] [CrossRef]
- Jing, H.; Xing, H.; Zhang, H.; Du, X.; Wang, M.; Han, Y. Dynamics of Zinc Dendritic Growth in Aqueous Zinc-Based Flow Batteries: Insights from Phase Field-Lattice-Boltzmann Simulations. Chem. Eng. J. 2025, 503. [Google Scholar] [CrossRef]
- Wang, K.; Xiao, Y.; Pei, P.; Liu, X.; Wang, Y. A Phase-Field Model of Dendrite Growth of Electrodeposited Zinc. J. Electrochem. Soc. 2019, 166, D389. [Google Scholar] [CrossRef]
- Nie, C.; Wang, G.; Wang, D.; Wang, M.; Gao, X.; Bai, Z.; Wang, N.; Yang, J.; Xing, Z.; Dou, S. Recent Progress on Zn Anodes for Advanced Aqueous Zinc-Ion Batteries. Adv. Energy Mater. 2023, 13, 2300606. [Google Scholar] [CrossRef]
- Kumari, R.; Shubhangi; Dkhar, D.S.; Chandra, P. Metallic Dendrites: How Far Can We Go? Anal. Chem. 2025, 97, 8684–8694. [Google Scholar] [CrossRef]
- Lotfi, N.; Darband, G.B. A Review on Electrodeposited Metallic Ni-Based Alloy Nanostructure for Electrochemical Hydrogen Evolution Reaction. Int. J. Hydrogen Energy 2024, 70, 301–314. [Google Scholar] [CrossRef]
- Tan, X.; Yu, C.; Ren, Y.; Cui, S.; Li, W.; Qiu, J. Recent Advances in Innovative Strategies for the CO2 electroreduction Reaction. Energy Environ. Sci. 2021, 14, 765–780. [Google Scholar] [CrossRef]
- Birdja, Y.Y.; Pérez-Gallent, E.; Figueiredo, M.C.; Göttle, A.J.; Calle-Vallejo, F.; Koper, M.T.M. Advances and Challenges in Understanding the Electrocatalytic Conversion of Carbon Dioxide to Fuels. Nat. Energy 2019, 4, 732–745. [Google Scholar] [CrossRef]
- Ager, J.W.; Lapkin, A.A. Chemical Storage of Renewable Energy. Science 2018, 360, 707–708. [Google Scholar] [CrossRef]
- Kang, M.P.L.; Kolb, M.J.; Calle-Vallejo, F.; Yeo, B.S. The Role of Undercoordinated Sites on Zinc Electrodes for CO2 Reduction to CO. Adv. Funct. Mater. 2022, 32, 202111597. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, S.; Rao, Y.; Yang, L.; Yan, W.; Xu, H. Three-Dimension Porous Zn-Cu Alloy: An Inexpensive Electrocatalyst for Highly Selective CO2 Reduction to CO in Non-Aqueous Electrolyte. Chem. Eng. J. 2024, 479, 147376. [Google Scholar] [CrossRef]
- Li, M.; Hu, Y.; Dong, G.; Wu, T.; Geng, D. Achieving Tunable Selectivity and Activity of CO2 Electroreduction to CO via Bimetallic Silver–Copper Electronic Engineering. Small 2023, 19, 2207242. [Google Scholar] [CrossRef]
- Wei, S.; Zhu, J.; Chen, X.; Yang, R.; Gu, K.; Li, L.; Chiang, C.-Y.; Mai, L.; Chen, S. Planar Chlorination Engineering Induced Symmetry-Broken Single-Atom Site Catalyst for Enhanced CO2 Electroreduction. Nat. Commun. 2025, 16, 1652. [Google Scholar] [CrossRef]
- Rosen, J.; Hutchings, G.S.; Lu, Q.; Forest, R.V.; Moore, A.; Jiao, F. Electrodeposited Zn Dendrites with Enhanced CO Selectivity for Electrocatalytic CO2 Reduction. ACS Catal. 2015, 5, 4586–4591. [Google Scholar] [CrossRef]
- Lu, Y.; Han, B.; Tian, C.; Wu, J.; Geng, D.; Wang, D. Efficient Electrocatalytic Reduction of CO2 to CO on an Electrodeposited Zn Porous Network. Electrochem. Commun. 2018, 97, 87–90. [Google Scholar] [CrossRef]
- Moreno-García, P.; Schlegel, N.; Zanetti, A.; Cedeno López, A.; Gálvez-Vázquez, M.D.J.; Dutta, A.; Rahaman, M.; Broekmann, P. Selective Electrochemical Reduction of CO2 to CO on Zn-Based Foams Produced by Cu2+ and Template-Assisted Electrodeposition. ACS Appl. Mater. Interfaces 2018, 10, 31355–31365. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, J.; Li, M.; Züttel, A. Boosting CO Production in Electrocatalytic CO2 Reduction on Highly Porous Zn Catalysts. ACS Catal. 2019, 9, 3783–3791. [Google Scholar] [CrossRef]
- Qin, B.; Li, Y.; Fu, H.; Wang, H.; Chen, S.; Liu, Z.; Peng, F. Electrochemical Reduction of CO2 into Tunable Syngas Production by Regulating the Crystal Facets of Earth-Abundant Zn Catalyst. ACS Appl. Mater. Interfaces 2018, 10, 20530–20539. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Li, X.; Huang, Y.; Li, L.; Li, J.; Lu, Y.; Xu, Y.; Zhang, L. CO2-Induced Fibrous Zn Catalyst Promotes Electrochemical Reduction of CO2 to CO. Catalysts 2021, 11, 477. [Google Scholar] [CrossRef]
- Lamaison, S.; Wakerley, D.; Blanchard, J.; Montero, D.; Rousse, G.; Mercier, D.; Marcus, P.; Taverna, D.; Giaume, D.; Mougel, V.; et al. High-Current-Density CO2-to-CO Electroreduction on Ag-Alloyed Zn Dendrites at Elevated Pressure. Joule 2020, 4, 395–406. [Google Scholar] [CrossRef]
- Sirisomboonchai, S.; Machida, H.; Bao Tran, K.V.; Kawasumi, M.; Norinaga, K. Efficient CO2 Electrochemical Reduction by a Robust Electrocatalyst Fabricated by Electrodeposition of Indium and Zinc over Copper Foam. ACS Appl. Energy Mater. 2022, 5, 9846–9857. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, X.; Mahyoub, S.A.; Zhang, B.; Wan, X.; Cui, Y.; Xie, P.; Wang, Q.; Cheng, Z.; Li, Z. In Situ Growth of Hydrophobic 3D Porous Zn@Ag Electrode in Achieving Excellent Performance for ECO2RR. Chem. Eng. J. 2024, 499, 156159. [Google Scholar] [CrossRef]
- Keerthiga, G.; Chetty, R. Electrochemical Reduction of Carbon Dioxide on Zinc-Modified Copper Electrodes. J. Electrochem. Soc. 2017, 164, H164–H169. [Google Scholar] [CrossRef]
- Lamaison, S.; Wakerley, D.; Montero, D.; Rousse, G.; Taverna, D.; Giaume, D.; Mercier, D.; Blanchard, J.; Tran, H.N.; Fontecave, M.; et al. Zn–Cu Alloy Nanofoams as Efficient Catalysts for the Reduction of CO2 to Syngas Mixtures with a Potential-Independent H2/CO Ratio. ChemSusChem 2019, 12, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Gao, L.; Chen, Y.; Qin, L.; Li, J.; Li, X.; Qi, K.; Zhang, J.; Wang, J. Cu/Zn Bimetallic Catalysts Prepared by Facial Potential Steps Electrodeposition Favoring Zn Deposition and Grain Boundary Formation for Efficient CO2ER to Ethylene. Fuel 2024, 369, 131775. [Google Scholar] [CrossRef]
- Pinthong, P.; Klongklaew, P.; Praserthdam, P.; Panpranot, J. Effect of the Nanostructured Zn/Cu Electrocatalyst Morphology on the Electrochemical Reduction of CO2 to Value-Added Chemicals. Nanomaterials 2021, 11, 1671. [Google Scholar] [CrossRef]
- Jiang, X.; Cai, F.; Gao, D.; Dong, J.; Miao, S.; Wang, G.; Bao, X. Electrocatalytic Reduction of Carbon Dioxide over Reduced Nanoporous Zinc Oxide. Electrochem. Commun. 2016, 68, 67–70. [Google Scholar] [CrossRef]
- Geng, Z.; Kong, X.; Chen, W.; Su, H.; Liu, Y.; Cai, F.; Wang, G.; Zeng, J. Oxygen Vacancies in ZnO Nanosheets Enhance CO2 Electrochemical Reduction to CO. Angew. Chem. 2018, 130, 6162–6167. [Google Scholar] [CrossRef]
- Li, Y.H.; Liu, P.F.; Li, C.; Yang, H.G. Sharp-Tipped Zinc Nanowires as an Efficient Electrocatalyst for Carbon Dioxide Reduction. Chem. Eur. J. 2018, 24, 15486–15490. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Wang, J.; Shi, M.; Yan, J.; Jiang, Q. Simultaneous Achieving of High Faradaic Efficiency and CO Partial Current Density for CO2 Reduction via Robust, Noble-Metal-Free Zn Nanosheets with Favorable Adsorption Energy. Adv. Energy Mater. 2019, 9, 1900276. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, Q.; Zhang, J.; Moioli, E.; Zhao, K.; Züttel, A. Electrochemical Reconstruction of ZnO for Selective Reduction of CO2 to CO. Appl. Catal. B 2020, 273, 119060. [Google Scholar] [CrossRef]
- Chen, T.L.; Chen, H.C.; Huang, Y.P.; Lin, S.C.; Hou, C.H.; Tan, H.Y.; Tung, C.W.; Chan, T.S.; Shyue, J.J.; Chen, H.M. In Situ Unraveling of the Effect of the Dynamic Chemical State on Selective CO2 reduction upon Zinc Electrocatalysts. Nanoscale 2020, 12, 18013–18021. [Google Scholar] [CrossRef]
- Nguyen, D.L.T.; Jee, M.S.; Won, D.H.; Jung, H.; Oh, H.S.; Min, B.K.; Hwang, Y.J. Selective CO2 Reduction on Zinc Electrocatalyst: The Effect of Zinc Oxidation State Induced by Pretreatment Environment. ACS Sustain. Chem. Eng. 2017, 5, 11377–11386. [Google Scholar] [CrossRef]
- Schiavi, P.G.; Altimari, P.; Zanoni, R.; Pagnanelli, F. Morphology-Controlled Synthesis of Cobalt Nanostructures by Facile Electrodeposition: Transition from Hexagonal Nanoplatelets to Nanoflakes. Electrochim. Acta 2016, 220, 405–416. [Google Scholar] [CrossRef]
- Zou, C.; Li, Z.; Wang, C.; Hong, J.; Chen, J.; Zhong, S. Facile Electrodeposition Route for the Fabrication of Ni/Ni(OH)2 Nanocomposite Films with Different Supporting Electrolytes and Their Electrochemical Properties. Chem. Phys. Lett. 2022, 793, 139471. [Google Scholar] [CrossRef]
- Yu, Z.; Cheng, Z.; Majid, S.R.; Tai, Z.; Wang, X.; Dou, S. Smart Design of Free-Standing Ultrathin Co-Co(OH)2 Composite Nanoflakes on 3D Nickel Foam for High-Performance Electrochemical Capacitors. Chem. Commun. 2015, 51, 1689–1692. [Google Scholar] [CrossRef]
- Zhang, D.; Xue, B.; Wang, F.; Liang, H.; Cao, Y.; Zhang, D.; Liu, B. Electrodeposited Cobalt Nanoflake Arrays as an Efficient Anodic Catalyst for Direct Borohydride Fuel Cells. ACS Appl. Nano Mater. 2024, 7, 11465–11474. [Google Scholar] [CrossRef]
- Patil, R.T.; Patil, A.S.; Patil, S.S.; Wadakar, N.B.; Patil, T.M.; Dhas, S.D.; Fulari, V.J. Influence of Deposition Time on the Supercapacitive Performance of Electrodeposited Interconnected Co(OH)2 Nanoflakes. Mater. Today Proc. 2022, 62, 5223–5229. [Google Scholar] [CrossRef]
- Yao, K.; Zhai, M.; Ni, Y. α-Ni(OH)20.75H2O Nanofilms on Ni Foam from Simple NiCl2 Solution: Fast Electrodeposition, Formation Mechanism and Application as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting in Alkaline Solution. Electrochim. Acta 2019, 301, 87–96. [Google Scholar] [CrossRef]
- Liu, X.; Ge, J.; Li, S.; Yang, H.; Tian, H.; Liu, H.; Li, Y.; Zheng, X.; Tian, Y.; Cui, X.; et al. Activating Dynamic Zn-ZnO Interface with Controllable Oxygen Vacancy in CO2 Electroreduction for Boosting CO Production. Green Chem. 2025, 27, 6133–6144. [Google Scholar] [CrossRef]
- Xiang, Q.; Li, F.; Wang, J.; Chen, W.; Miao, Q.; Zhang, Q.; Tao, P.; Song, C.; Shang, W.; Zhu, H.; et al. Heterostructure of ZnO Nanosheets/Zn with a Highly Enhanced Edge Surface for Efficient CO2 Electrochemical Reduction to CO. ACS Appl. Mater. Interfaces 2021, 13, 10837–10844. [Google Scholar] [CrossRef]
- Scofield, J.H. Hartree-Slater Subshell Photoionization Cross-Sections at 1254 and 1487 EV. J. Electron Spectrosc. Relat. Phenom. 1976, 8, 129–137. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; Pergamon Press: New York, NY, USA, 1966. [Google Scholar]
- Milchev, A. Electrocrystallization: Fundamentals of Nucleation and Growth; Kluver Academic Publishers: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Guo, L.; Searson, P.C. On the Influence of the Nucleation Overpotential on Island Growth in Electrodeposition. Electrochim. Acta 2010, 55, 4086–4091. [Google Scholar] [CrossRef]
- Altuntasoglu, O.; Matsuda, Y.; Ida, S.; Matsumoto, Y. Syntheses of Zinc Oxide and Zinc Hydroxide Single Nanosheets. Chem. Mater. 2010, 22, 3158–3164. [Google Scholar] [CrossRef]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids; Clarendon Press: Oxford, UK, 1962. [Google Scholar]
- Kapdos, Á.; Ujvári, M.; Kovács, N.; Szakály, Z.; Busai, Á.; Sólyom, P.; Grozovski, V.; Moreno-García, P.; Broekmann, P.; Vesztergom, S. Modelling the Chronopotentiometric Response of Constant Current Hydrogen Evolution from Dilute Solutions of Strong Acids. J. Catal. 2025, 442, 115872. [Google Scholar] [CrossRef]
- Schlesinger, M.; Paunovic, M. Modern Electroplating; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 1118063147. [Google Scholar]
- Lide, D.R. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2004; Volume 85, ISBN 0849304857. [Google Scholar]
- Vanpaemel, J.; Van Der Veen, M.H.; De Gendt, S.; Vereecken, P.M. Enhanced Nucleation of Ni Nanoparticles on TiN Through H3BO3-Mediated Growth Inhibition. Electrochim. Acta 2013, 109, 411–418. [Google Scholar] [CrossRef]
- Vanpaemel, J.; Sugiura, M.; Cuypers, D.; Van Der Veen, M.H.; De Gendt, S.; Vereecken, P.M. Electrochemical Deposition of Subnanometer Ni Films on TiN. Langmuir 2014, 30, 2047–2053. [Google Scholar] [CrossRef]
- Russo, V.; Ghidelli, M.; Gondoni, P.; Casari, C.S.; Li Bassi, A. Multi-Wavelength Raman Scattering of Nanostructured Al-Doped Zinc Oxide. J. Appl. Phys. 2014, 115, 073508. [Google Scholar] [CrossRef]
- ’Curcio, A.L.; ’de Godoy, M.P.F.; ’De Giovanni Rodrigues, A. Raman Spectroscopy as a Method for Structural Characterization of ZnO-Based Systems at the Nanoscale. Appl. Nanosci. 2024, 14, 269–275. [Google Scholar] [CrossRef]
- Deroubaix, G.; Marcus, P. X-ray Photoelectron Spectroscopy Analysis of Copper and Zinc Oxides and Sulphides. Surf. Interface Anal. 1992, 18, 39–46. [Google Scholar] [CrossRef]
- Schön, G. Auger and Direct Electron Spectra in X-Ray Photoelectron Studies of Zinc, Zinc Oxide, Gallium and Gallium Oxide. J. Electron Spectrosc. Relat. Phenom. 1973, 2, 75–86. [Google Scholar] [CrossRef]
- Langer, D.W.; Vesely, C.J. Electronic Core Levels of Zinc Chalcogenides. Phys. Rev. B 1970, 2, 4885–4892. [Google Scholar] [CrossRef]
- Dake, L.S.; Baer, D.R.; Zachara, J.M. Auger Parameter Measurements of Zinc Compounds Relevant to Zinc Transport in the Environment. Surf. Interface Anal. 1989, 14, 71–75. [Google Scholar] [CrossRef]
- Moore, C.; Moon, J.; Chidambaram, D. Using Sputtering Parameters to Mitigate Argon Ion Sputtering Induced Reduction of Nickel in XPS. Appl. Surf. Sci. 2024, 659, 159876. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, Z.; Lin, Y.; Li, Z.; Tang, W.; Wang, J.; Chen, J.S.; Wu, R. Nano-engineering in Zinc-based Catalysts for CO2 Electroreduction: Advances and Challenges. Carbon Neutralization 2024, 3, 423–440. [Google Scholar] [CrossRef]
- Guo, S.-T.; Du, Y.-W.; Luo, H.; Zhu, Z.; Ouyang, T.; Liu, Z.-Q. Stabilizing Undercoordinated Zn Active Sites through Confinement in CeO2 Nanotubes for Efficient Electrochemical CO2 Reduction. Angew. Chem.-Int. Ed. 2024, 63, e202314099. [Google Scholar] [CrossRef] [PubMed]
Electrode | Zinc Surface (mm2) | Zinc Volume (mm3) | Surface-to-Volume Ratio (mm−1) |
---|---|---|---|
M2 | 87 | 0.46 | 189 |
M20 | 120 | 1.14 | 105 |
L2 | 121 | 0.49 | 247 |
L20 | 202 | 1.18 | 171 |
Electrode | Zn (%) |
---|---|
M2 | 3.30 |
M20 | 3.75 |
L2 | 2.15 |
L20 | 3.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altimari, P.; Iacobelli, S.; Schiavi, P.G.; Zanellato, G.; Amato, F.; Marrani, A.G.; Russina, O.; Sanna, A.; Pagnanelli, F. Analysis of Transition from Compact to Mossy Structures During Galvanostatic Zinc Electrodeposition and Its Implications for CO2 Electroreduction. Nanomaterials 2025, 15, 1025. https://doi.org/10.3390/nano15131025
Altimari P, Iacobelli S, Schiavi PG, Zanellato G, Amato F, Marrani AG, Russina O, Sanna A, Pagnanelli F. Analysis of Transition from Compact to Mossy Structures During Galvanostatic Zinc Electrodeposition and Its Implications for CO2 Electroreduction. Nanomaterials. 2025; 15(13):1025. https://doi.org/10.3390/nano15131025
Chicago/Turabian StyleAltimari, Pietro, Silvia Iacobelli, Pier Giorgio Schiavi, Gianluca Zanellato, Francesco Amato, Andrea Giacomo Marrani, Olga Russina, Alessia Sanna, and Francesca Pagnanelli. 2025. "Analysis of Transition from Compact to Mossy Structures During Galvanostatic Zinc Electrodeposition and Its Implications for CO2 Electroreduction" Nanomaterials 15, no. 13: 1025. https://doi.org/10.3390/nano15131025
APA StyleAltimari, P., Iacobelli, S., Schiavi, P. G., Zanellato, G., Amato, F., Marrani, A. G., Russina, O., Sanna, A., & Pagnanelli, F. (2025). Analysis of Transition from Compact to Mossy Structures During Galvanostatic Zinc Electrodeposition and Its Implications for CO2 Electroreduction. Nanomaterials, 15(13), 1025. https://doi.org/10.3390/nano15131025