Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (165)

Search Parameters:
Keywords = crystalline silicon solar cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4062 KB  
Article
Laser Truncation of Silicon Nanowires Fabricated by Ag-Assisted Chemical Etching for Reliable Electrode Deposition in Solar Cells
by Grażyna Kulesza-Matlak, Ewa Sarna, Tomasz Kukulski, Anna Sypień, Mariusz Kuglarz and Kazimierz Drabczyk
Appl. Sci. 2025, 15(24), 12873; https://doi.org/10.3390/app152412873 - 5 Dec 2025
Viewed by 293
Abstract
Silicon nanowires (SiNWs) fabricated by Ag-assisted metal-assisted chemical etching (MACE) exhibit excellent light-trapping performance, yet their fragile high-aspect-ratio morphology severely limits reliable metallization in photovoltaic devices. Conventional electrode deposition methods often fail on dense SiNW arrays due to poor mechanical stability of the [...] Read more.
Silicon nanowires (SiNWs) fabricated by Ag-assisted metal-assisted chemical etching (MACE) exhibit excellent light-trapping performance, yet their fragile high-aspect-ratio morphology severely limits reliable metallization in photovoltaic devices. Conventional electrode deposition methods often fail on dense SiNW arrays due to poor mechanical stability of the nanowire tips, leading to delamination, inhomogeneous coverage, and high contact resistance. In this work, we introduce a maskless laser-based truncation technique that selectively shortens MACE-derived SiNWs to controlled residual heights of 300–500 nm exclusively within the regions intended for electrode formation, while preserving the full nanowire morphology in active areas. A detailed parametric study of laser power, scanning speed, and pulse repetition frequency allowed the identification of an optimal processing window enabling controlled tip melting without damaging the nanowire roots or the crystalline silicon substrate. High-resolution SEM imaging confirms uniform planarization, well-preserved structural integrity, and the absence of subsurface defects in the laser-processed tracks. Optical reflectance measurements further demonstrate that introducing 2% and 5% truncated surface fractions—corresponding to the minimum and maximum metallized front-grid coverage in industrial Si solar cells—results in only a minimal reflectance increase, preserving the advantageous the light-trapping behavior of the SiNW texture. The proposed laser truncation approach provides a clean, scalable, and industrially compatible route toward creating electrode-ready surfaces on nanostructured silicon, enabling reliable metallization while maintaining optical performance. This method offers strong potential for integration into silicon photovoltaics, photodetectors, and nanoscale electronic and sensing devices. Full article
(This article belongs to the Special Issue Advances in Manufacturing and Machining Processes)
Show Figures

Figure 1

19 pages, 9510 KB  
Article
Thermal Management Performance of Phase Change Material Coupled with Heat Pipe for Photovoltaic Modules: Experimental Exploration
by Liang Tang, Rumei Yang, Peixian Zuo, Ziyu Leng, Xuanxun Zhou, Jinwei Li and Xiaoling Cao
Energies 2025, 18(23), 6349; https://doi.org/10.3390/en18236349 - 3 Dec 2025
Viewed by 463
Abstract
Solar photovoltaic (PV) power generation has become an important source of global renewable energy. The photoelectric conversion efficiency of crystalline silicon PV modules decreases as their surface temperature rises, while excessively high operating temperatures can also affect their service life. Therefore, reducing the [...] Read more.
Solar photovoltaic (PV) power generation has become an important source of global renewable energy. The photoelectric conversion efficiency of crystalline silicon PV modules decreases as their surface temperature rises, while excessively high operating temperatures can also affect their service life. Therefore, reducing the temperature of photovoltaic modules is one of the effective methods of enhancing their photoelectric conversion efficiency. Passive thermal management methods, such as the use of phase change materials (PCM) and heat pipes (HP), can be used to control the temperature of PV modules, but they manifest the problems of poor thermal conductivity and low heat transfer efficiency at low heat flux density, respectively. On the other hand, previous experimental studies have mostly focused on small-scale non-standard PV cell modules, without considering encapsulation and installation issues in practical applications. Meanwhile, passive cooling technology exhibits strong regional characteristics, with significant variations in temperature control and energy efficiency improvements under different climatic conditions. To address these issues, this paper proposes a novel PV module temperature control unit that couples PCM and HP. Standard commercial PV cell modules are used as experimental subjects, and tests are conducted in four different regions of China to study the adaptability and effectiveness of the coupled PCM and HP control method. The experimental results show that the power generation pattern of PV modules is consistent with the variation in solar radiation intensity. When the operating temperature of the PV module is below 40 °C, the high thermal conductivity of the heat pipe plays a dominant role in dissipating heat. When the operating temperature of PV rises above 40 °C, the phase change material begins to play a role in heat storage and temperature control. Compared to using PCM alone for temperature control, the coupled method further enhances the cooling effect, preventing a sharp temperature increase after the PCM has completely melted, and increases the power generation of PV by 4–5%. The temperature control effect of the PV module is influenced by local ambient temperature and wind speed. The coupled temperature control method exerts a relatively low improvement effect under high-temperature and low-radiation environmental conditions, but it performs better when used under low-temperature and high-radiation environmental conditions. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

7 pages, 857 KB  
Communication
Multilayer Haze-Assisted Luminescent Solar Concentrators for Enhanced Photovoltaic Performance
by Jae-Jin Lee, Tae-Woong Moon, Dong-Ha Kim and Suk-Won Choi
Materials 2025, 18(23), 5422; https://doi.org/10.3390/ma18235422 - 1 Dec 2025
Viewed by 322
Abstract
Building-integrated photovoltaics (BIPVs) can benefit not only from transparent but also from opaque modules that maximize light capture. We present haze-assisted luminescent solar concentrators (HALSCs) that integrate scattering and luminescence in multilayer designs. Polymer–liquid crystal composites with embedded dyes form micron-scale domains that [...] Read more.
Building-integrated photovoltaics (BIPVs) can benefit not only from transparent but also from opaque modules that maximize light capture. We present haze-assisted luminescent solar concentrators (HALSCs) that integrate scattering and luminescence in multilayer designs. Polymer–liquid crystal composites with embedded dyes form micron-scale domains that act as broadband Mie scattering centers, while the dye provides spectral conversion. Monte Carlo ray-tracing simulations and experiments reveal that edge-emitted intensity increases with haze thickness but saturates beyond a threshold; segmenting the same thickness into multiple thinner layers enables repeated scattering, markedly enhancing side-guided emission. When coupled with crystalline silicon solar cells, multilayer HALSCs converted this optical advantage into enhanced photocurrent, with triple-layer devices nearly doubling output relative to transparent controls. These findings establish opacity–luminescence coupling and multilayer haze engineering as effective design principles, positioning HALSCs as practical platforms for advanced BIPVs and optical energy-management systems. Full article
(This article belongs to the Special Issue Advances in Electronic and Photonic Materials)
Show Figures

Figure 1

27 pages, 3088 KB  
Review
Thin-Film Solar Cells for Building-Integrated Photovoltaic (BIPV) Systems
by Subodh Kumar Jha, Abubakar Siddique Farooq and Aritra Ghosh
Architecture 2025, 5(4), 116; https://doi.org/10.3390/architecture5040116 - 20 Nov 2025
Cited by 1 | Viewed by 1843
Abstract
The global temperature increase has posed urgent challenges, with buildings accountable for as much as 40% of CO2 emissions, and their decarbonization is critical to meet the net-zero target by 2050. Solar photovoltaics present a promising trajectory, especially through building-integrated photovoltaics (BIPVs), [...] Read more.
The global temperature increase has posed urgent challenges, with buildings accountable for as much as 40% of CO2 emissions, and their decarbonization is critical to meet the net-zero target by 2050. Solar photovoltaics present a promising trajectory, especially through building-integrated photovoltaics (BIPVs), where thin-film technologies can be used to replace traditional building materials. This article critically examined the development of thin-film solar cells for BIPVs, including their working mechanisms, material structures, and efficiency improvements in various generations. The discussion underscored that thin-film technologies, including CdTe and CIGS, had noticeably shorter energy payback times between 0.8 and 1.5 years compared to crystalline silicon modules that took 2 to 3 years, thus promising quicker recovery of energy and higher sustainability values. Whereas certain materials posed toxicity and environmental concerns, these were discovered to be surmountable through sound material selection and manufacturing innovation. The conclusions highlighted that the integration of lower material usage, high efficiency potential, and better energy payback performance placed thin-film BIPVs as an extremely viable option for mitigating lifecycle emissions. In summary, the review emphasized the critical role of thin-film solar technologies in making possible the large-scale implementation of BIPVs to drive the world toward net-zero emissions at a faster pace. Full article
Show Figures

Figure 1

13 pages, 2489 KB  
Article
UV-Engineered Oxygen Vacancies in MoOX Interlayers Enable 24.15% Efficiency for Crystalline Silicon Solar Cells
by Linfeng Yang, Wanyu Lu, Jingjie Li, Shaopeng Chen, Tinghao Liu, Dayong Yuan, Yin Wang, Ji Zhu, Hui Yan, Yongzhe Zhang and Qian Kang
Materials 2025, 18(22), 5167; https://doi.org/10.3390/ma18225167 - 13 Nov 2025
Viewed by 626
Abstract
Molybdenum oxide (MoOX) has been widely utilized as a hole transport layer (HTL) in crystalline silicon (c-Si) solar cells, owing to characteristics such as a wide bandgap and high work function. However, the relatively low conductivity of MoOX [...] Read more.
Molybdenum oxide (MoOX) has been widely utilized as a hole transport layer (HTL) in crystalline silicon (c-Si) solar cells, owing to characteristics such as a wide bandgap and high work function. However, the relatively low conductivity of MoOX films and their poor contact performance at the MoOX-based hole-selective contact severely degrade device performance, particularly because they limit the fill factor (FF). Oxygen vacancies are of paramount importance in governing the conductivity of MoOX films. In this work, MoOX films were modified through ultraviolet irradiation (UV-MoOX), resulting in MoOX films with tunable oxygen vacancies. Compared to untreated MoOX films, UV-MoOX films contain a higher density of oxygen vacancies, leading to an enhancement in conductivity (2.124 × 10−3 S/m). In addition, the UV-MoOX rear contact exhibits excellent contact performance, with a contact resistance of 20.61 mΩ·cm2, which is significantly lower than that of the untreated device. Consequently, the application of UV-MoOX enables outstanding hole selectivity. The power conversion efficiency (PCE) of the solar cell with an n-Si/i-a-Si:H/UV-MoOX/Ag rear contact reaches 24.15%, with an excellent FF of 84.82%. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Graphical abstract

15 pages, 3107 KB  
Review
Structural and Electrical Analysis of Crystalline Silicon Solar Cells: The Role of Busbar Geometry in First-Generation PV Technology
by Małgorzata Monika Musztyfaga-Staszuk and Claudio Mele
Materials 2025, 18(21), 4979; https://doi.org/10.3390/ma18214979 - 31 Oct 2025
Viewed by 703
Abstract
This study focuses on first-generation crystalline silicon photovoltaic (PV) cells, which remain the core of the PV industry. It outlines the structure and operation of single-junction cells, distinguishing between monocrystalline and polycrystalline technologies. A literature review was conducted using databases such as Web [...] Read more.
This study focuses on first-generation crystalline silicon photovoltaic (PV) cells, which remain the core of the PV industry. It outlines the structure and operation of single-junction cells, distinguishing between monocrystalline and polycrystalline technologies. A literature review was conducted using databases such as Web of Science and Scopus to identify research trends and inform future research directions. PV cell classification by generation is also presented based on production methods and materials. The experimental section includes both electrical and structural characterisation of crystalline silicon solar cells, with particular emphasis on the influence of the number and geometry of front-side busbars on metal-semiconductor contact resistance and electrical properties. Additionally, the paper highlights the use of dedicated laboratory equipment—such as a solar simulator (for determining photovoltaic cell parameters from current-voltage characteristics) and Corescan equipment (for determining layer parameters using the single-tip probe method)—in evaluating PV cell properties. This equipment is part of the Photovoltaics and Electrical Properties Laboratory at the Silesian University of Technology. The findings demonstrate clear structural correlations that can contribute to optimising the performance and longevity of silicon-based PV cells. Full article
Show Figures

Figure 1

23 pages, 3362 KB  
Review
Polymer Functional Layers for Perovskite Solar Cells
by Jinho Lee, Jaehyeok Kang, Jong-Hoon Lee and Soonil Hong
Polymers 2025, 17(19), 2607; https://doi.org/10.3390/polym17192607 - 26 Sep 2025
Viewed by 2546
Abstract
Perovskite solar cells (PSCs) are next-generation solar cells; they are replacing silicon-based solar cells due to their higher efficiency, greater cost-effectiveness, and enhanced potential for various applications. Exceeding the efficiency of crystalline silicon-based solar cells, the commercialization of PSCs has driven not only [...] Read more.
Perovskite solar cells (PSCs) are next-generation solar cells; they are replacing silicon-based solar cells due to their higher efficiency, greater cost-effectiveness, and enhanced potential for various applications. Exceeding the efficiency of crystalline silicon-based solar cells, the commercialization of PSCs has driven not only the development of perovskite photoactive materials but also charge transport layer advancements, interfacial engineering, and processing technologies. PSCs were developed later than dye-sensitized solar cells and organic solar cells; the adoption of techniques previously employed in these technologies is significant to enhancing their performance. Among them, polymers are widely employed in perovskite solar cells to facilitate efficient charge transport, provide interfacial passivation, enhance mechanical flexibility, enable solution-based processing, and improve environmental stability. In this review, we highlight the roles of polymer materials as charge transport layers, interfacial layers, and other functional layers for highly efficient and stable PSCs. Full article
(This article belongs to the Special Issue Polymer Thin Films: Synthesis, Characterization and Applications)
Show Figures

Figure 1

21 pages, 3462 KB  
Article
Estimation of Spectral Solar Irradiance Toward Deriving Spectral Mismatch Factor Across Diverse Photovoltaic Technologies by Using Aerosol Optical Properties
by Chang Ki Kim, Hyun-Goo Kim, Myeongchan Oh, Boyoung Kim and Chang-Yeol Yun
Remote Sens. 2025, 17(17), 3093; https://doi.org/10.3390/rs17173093 - 4 Sep 2025
Viewed by 2069
Abstract
This study presents a machine-learning framework for predicting spectral solar irradiance from 300 to 1100 nm using the random forest and neural network models. Two approaches were compared: one using the real aerosol optical depth at discrete wavelengths and the other using the [...] Read more.
This study presents a machine-learning framework for predicting spectral solar irradiance from 300 to 1100 nm using the random forest and neural network models. Two approaches were compared: one using the real aerosol optical depth at discrete wavelengths and the other using the synthetic aerosol optical depth derived from the Ångström exponent. The models were trained on atmospheric variables and were validated against high-resolution spectroradiometer data from the Korea Institute of Energy Research. The models based on the synthetic aerosol optical depth outperformed real-data models in terms of accuracy, bias, and variance explained (γ2 = 0.979 vs. 0.967). These models also provide more reliable estimates of the spectral mismatch factor across the diverse photovoltaic technologies. The copper indium gallium diselenide and mono-crystalline silicon cells showed a high spectral mismatch factor stability, whereas Perovskite cells exhibited a greater sensitivity to spectral variations. Full article
Show Figures

Figure 1

12 pages, 1513 KB  
Article
Impedance Spectroscopy for Interface Trap Effects Evaluation in Dopant-Free Silicon Solar Cells
by Ilaria Matacena, Laura Lancellotti, Eugenia Bobeico, Iurie Usatii, Marco della Noce, Elena Santoro, Pietro Scognamiglio, Lucia V. Mercaldo, Paola Delli Veneri and Santolo Daliento
Energies 2025, 18(17), 4558; https://doi.org/10.3390/en18174558 - 28 Aug 2025
Viewed by 839
Abstract
This work investigates the effect of interface traps on the impedance spectra of dopant-free silicon solar cells. The studied device consists of a crystalline silicon absorber with an a-Si:H/MoOx/ITO stack as the front passivating hole-collecting contact and an a-Si:H/LiF/Al stack as the rear [...] Read more.
This work investigates the effect of interface traps on the impedance spectra of dopant-free silicon solar cells. The studied device consists of a crystalline silicon absorber with an a-Si:H/MoOx/ITO stack as the front passivating hole-collecting contact and an a-Si:H/LiF/Al stack as the rear passivating electron-collecting contact. Experimental measurements, including illuminated current–voltage (I–V) characteristics and impedance spectroscopy, were performed on the fabricated devices and after a soft annealing treatment. The annealed cells exhibit an increased open-circuit voltage and a larger Nyquist plot radius. To interpret these results, a numerical model was developed in a TCAD environment. Simulations reveal that traps located at the p/i interface (MoOx/i-a-Si:H) significantly affect the impedance spectra, with higher trap concentrations leading to smaller Nyquist plot circumferences. The numerical impedance curves were aligned to the experimental data, enabling extraction of the interfacial traps concentration. The results highlight the sensitivity of impedance spectroscopy to interfacial quality and confirm that the performance improvement after soft annealing is primarily due to reduced defect density at the MoOx/i-a-Si:H interface. Full article
Show Figures

Figure 1

13 pages, 2057 KB  
Article
NOx-Free Leaching Methods for Efficient Silver and Aluminium Recovery from Crystalline Silicon Solar Cells
by Aistis Rapolas Zubas, Egidijus Griškonis, Gintaras Denafas, Vidas Makarevičius, Rita Kriūkienė and Jolita Kruopienė
Materials 2025, 18(11), 2668; https://doi.org/10.3390/ma18112668 - 5 Jun 2025
Viewed by 1759
Abstract
As photovoltaic (PV) installations expand globally, effective recycling of end-of-life crystalline silicon solar cells has become increasingly important, including the recovery of valuable metals such as silver (Ag) and aluminium (Al). Traditional nitric acid-based chemical leaching methods, although effective, present environmental challenges due [...] Read more.
As photovoltaic (PV) installations expand globally, effective recycling of end-of-life crystalline silicon solar cells has become increasingly important, including the recovery of valuable metals such as silver (Ag) and aluminium (Al). Traditional nitric acid-based chemical leaching methods, although effective, present environmental challenges due to the generation of hazardous nitrogen oxide (NOx) emissions. To address these concerns, this study investigated alternative hydrometallurgical leaching strategies. Two selective treatments (NaOH for Al, and NH3 + H2O2 for Ag) and one simultaneous treatment (HNO3 + H2O2) were evaluated for metal recovery efficiency. All methods demonstrated high recovery efficiencies, achieving at least 99% for both metals within 60 min. The investigated methods effectively suppressed NOx emissions without compromising leaching efficiency. These findings confirm that hydrometallurgical leaching techniques incorporating hydrogen peroxide can achieve efficient and environmentally safer recovery of silver and aluminium from solar cells, providing valuable insights into the development of more sustainable recycling practices for photovoltaic waste management. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

15 pages, 9567 KB  
Article
Characterization of Zno:Al Nanolayers Produced by ALD for Clean Energy Applications
by Marek Szindler, Magdalena Szindler, Krzysztof Matus, Błażej Tomiczek and Barbara Hajduk
Energies 2025, 18(11), 2860; https://doi.org/10.3390/en18112860 - 30 May 2025
Viewed by 1064
Abstract
The rising demand for sustainable energy solutions has spurred the development of advanced materials for photovoltaic devices. Among these, transparent conductive oxides (TCOs) play a pivotal role in enhancing device efficiency, particularly in silicon-based solar cells. However, the reliance on indium-based TCOs like [...] Read more.
The rising demand for sustainable energy solutions has spurred the development of advanced materials for photovoltaic devices. Among these, transparent conductive oxides (TCOs) play a pivotal role in enhancing device efficiency, particularly in silicon-based solar cells. However, the reliance on indium-based TCOs like ITO raises concerns over cost and material scarcity, prompting the search for more abundant and scalable alternatives. This study focuses on the fabrication and characterization of aluminum-doped zinc oxide (ZnO:Al, AZO) thin films deposited via Atomic Layer Deposition (ALD), targeting their application as transparent conductive oxides in silicon solar cells. The ZnO:Al thin films were synthesized by alternating supercycles of ZnO and Al2O3 depositions at 225 °C, allowing precise control of composition and thickness. Structural, optical, and electrical properties were assessed using Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), Transmission Electron Microscopy (TEM), Raman spectroscopy, spectroscopic ellipsometry, and four-point probe measurements. The results confirmed the formation of uniform, crack-free ZnO:Al thin films with a spinel-type ZnAl2O4 crystalline structure. Optical analyses revealed high transparency (more than 80%) and tunable refractive indices (1.64 ÷ 1.74); the energy band gap was 2.6 ÷ 3.07 eV, while electrical measurements demonstrated low sheet resistance values, reaching 85 Ω/□ for thicker films. This combination of optical and electrical properties underscores the potential of ALD-grown AZO thin films to meet the stringent demands of next-generation photovoltaics. Integration of Zn:Al thin films into silicon solar cells led to an optimized photovoltaic performance, with the best cell achieving a short-circuit current density of 36.0 mA/cm2 and a power conversion efficiency of 15.3%. Overall, this work highlights the technological relevance of ZnO:Al thin films as a sustainable and cost-effective alternative to conventional TCOs, offering pathways toward more accessible and efficient solar energy solutions. Full article
Show Figures

Figure 1

34 pages, 3259 KB  
Review
Recent Progress in the Recovery and Recycling of Polymers from End-of-Life Silicon PV Modules
by Pradeep Padhamnath
Sustainability 2025, 17(10), 4583; https://doi.org/10.3390/su17104583 - 16 May 2025
Cited by 3 | Viewed by 3754
Abstract
Solar photovoltaic (PV) technology has emerged as the most preferred source of clean energy generation and has been deployed at a large scale. However, end-of-life management of the PV modules is a critical issue that has garnered the recent attention of lawmakers and [...] Read more.
Solar photovoltaic (PV) technology has emerged as the most preferred source of clean energy generation and has been deployed at a large scale. However, end-of-life management of the PV modules is a critical issue that has garnered the recent attention of lawmakers and researchers alike. Consequently, several researchers are actively developing technology to recycle the end-of-life PV modules. Since silicon PV modules account for more than 90% of the modules deployed globally, most of these efforts are focused on recycling crystalline silicon PV modules. Researchers have primarily focused on recovering pure silver from the contacts and pure Si from the solar cells. However, to ensure complete recyclability of such panels, the different polymers used in these modules must also be recycled. This review addresses the issue of recycling the polymers from end-of-life c-Si modules. Scopus and Google Scholar were used to search for the relevant literature. This review presents the current state-of-the-art technology related to polymer recycling found in the PV modules, the challenges encountered in their recycling, and the outlook. While research on the recycling of polymers has progressed in the last few decades, the instances of their applications in the recycling of polymers from PV panels are rarely reported in the literature. In this work, certain technical pathways, which can be employed to recycled polymers obtained from end-of-life PV panels, are presented. Recycling the polymers from the end-of-life silicon PV modules is crucial for improving the sustainability of solar PV technology. Full article
Show Figures

Graphical abstract

22 pages, 10318 KB  
Article
Enhanced Efficiency of Polycrystalline Silicon Solar Cells Using ZnO-Based Nanostructured Layers
by Mihai Oproescu, Adriana-Gabriela Schiopu, Valentin-Marian Calinescu and Janusz D. Fidelus
Crystals 2025, 15(5), 398; https://doi.org/10.3390/cryst15050398 - 24 Apr 2025
Cited by 3 | Viewed by 1645
Abstract
In the context of the global energy transition, enhancing the efficiency of polycrystalline silicon-based solar cells remains a critical research priority. This study investigates the integration of ZnO-based nanostructured layers. ZnO and Al-doped ZnO nanoparticles, synthesized via hydrothermal methods and concentrated solar power [...] Read more.
In the context of the global energy transition, enhancing the efficiency of polycrystalline silicon-based solar cells remains a critical research priority. This study investigates the integration of ZnO-based nanostructured layers. ZnO and Al-doped ZnO nanoparticles, synthesized via hydrothermal methods and concentrated solar power (CSP) vapor condensation, exhibiting diverse morphologies—nanorods, spheres, and whisker structures—were deposited onto commercial solar cells using the spin coating technique. Structural, morphological, and spectroscopic analyses confirmed the formation of crystalline layers with high active surface areas and controlled morphology. Photovoltaic performance was assessed using a dedicated hardware–software system under real sunlight conditions. The results demonstrate a significant increase in energy efficiency, reaching up to 10.97%, compared with 1.51% for polycrystalline silicon cells without any supplementary layers. This improvement is attributed to enhanced light absorption, reduced carrier recombination, and more efficient charge transport, driven by nanoscale design and doping. This study underscores the importance of sustainable synthesis and morphological control in the development of high-performance and cost-effective solar technologies. Full article
Show Figures

Figure 1

10 pages, 4064 KB  
Article
Enhancement of Optoelectronic Properties of Multicrystalline Silicon Using Al-NPs and SiNx Layer
by Mohamed Ben Rabha, Ameny El Haj, Achref Mannai, Karim Choubani, Mohammed A. Almeshaal and Wissem Dimassi
Crystals 2025, 15(4), 381; https://doi.org/10.3390/cryst15040381 - 21 Apr 2025
Cited by 3 | Viewed by 820
Abstract
In this study, we investigated and compared the influence of alumina nanoparticles (Al-NPs) and silicon nitride (SiNx) layers individually deposited on multi-crystalline silicon (mc-Si) on mc-Si’s structural, optical, and optoelectronic characteristics to improve surface quality. Alumina nanoparticle-covered multi-crystalline silicon, immersion in [...] Read more.
In this study, we investigated and compared the influence of alumina nanoparticles (Al-NPs) and silicon nitride (SiNx) layers individually deposited on multi-crystalline silicon (mc-Si) on mc-Si’s structural, optical, and optoelectronic characteristics to improve surface quality. Alumina nanoparticle-covered multi-crystalline silicon, immersion in HF/H2O2/HNO3, and porous silicon (PS) covered with a silicon nitride structure are key components in achieving high electronic quality in multi-crystalline silicon. Surface reflectivity decreased from 27% to a minimum value of 2% for alumina nanoparticles/PS and a minimum value of 5% for silicon nitride/PS at a wavelength of 930 nm. Meanwhile, the minority carrier diffusion length increased from 2 µm to 300 µm for porous silicon combined with silicon nitride and to 100 µm for alumina nanoparticles/porous silicon. Two-dimensional current mapping further demonstrated a considerable enhancement in the generated current, rising from 2.8 nA for untreated mc-Si to 34 nA for Al-NPs/PS and 66 nA for PS/SiNx. These results confirm that the surface passivation of mc-Si using Al-NPs or PS combined with SiNx is a promising and efficient method to improve the electrical quality of mc-Si wafers, contributing to the development of high-performance mc-Si-based solar cells. Full article
Show Figures

Figure 1

40 pages, 1207 KB  
Review
Recent Advances in Flexible Solar Cells; Materials, Fabrication, and Commercialization
by Maoz Maoz, Zohair Abbas, Syed Abdul Basit Shah and Vanni Lughi
Sustainability 2025, 17(5), 1820; https://doi.org/10.3390/su17051820 - 21 Feb 2025
Cited by 10 | Viewed by 12606
Abstract
Flexibility, light weight, and mechanical robustness are the key advantages of flexible photovoltaic (PV) modules, making them highly versatile for sustainable energy solutions. Unlike traditional rigid PV modules, their flexible nature makes them incredibly versatile for harnessing energy in places where doing so [...] Read more.
Flexibility, light weight, and mechanical robustness are the key advantages of flexible photovoltaic (PV) modules, making them highly versatile for sustainable energy solutions. Unlike traditional rigid PV modules, their flexible nature makes them incredibly versatile for harnessing energy in places where doing so was once impossible. They have a wide range of applications due to their flexibility and moldability, making it possible to conform these modules to surfaces like curved rooftops and other irregular structures. In this paper, we provide a comprehensive review of all the materials used in flexible PV modules with a focus on their role in sustainability. We thoroughly discuss the active-layer materials for crystalline silicon (c-Si)-based solar cells (SC) and thin-film solar cells such as cadmium telluride (CdTe), as well as copper indium gallium diselenide (CIGS), amorphous thin-film silicon (a-Si), perovskite and organic solar cells. Various properties, such as the optical, barrier, thermal, and mechanical properties of different substrate materials, are reviewed. Transport layers and conductive electrode materials are discussed with a focus on emerging trends and contributions to sustainable PV technology. Various fabrication techniques involved in making flexible PV modules, along with advantages, disadvantages, and future trends, are highlighted in the paper. The commercialization of flexible PV is also discussed, which is a crucial milestone in advancing and adapting new technologies in the PV industry with a focus on contributing toward sustainability. Full article
Show Figures

Figure 1

Back to TopTop