Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (166)

Search Parameters:
Keywords = crystalline anisotropy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1740 KiB  
Article
Crystal Plasticity Finite Element Analysis of Spherical Nanoindentation Stress–Strain Curve of Single-Crystal Copper
by Haoming Xia, Zhanfeng Wang, Shichao Qu, Weijie Shan and Rongkai Tan
Crystals 2025, 15(6), 561; https://doi.org/10.3390/cryst15060561 - 13 Jun 2025
Viewed by 455
Abstract
In this paper, we perform crystal plasticity finite element (CPFE) simulations of spherical nanoindentation to extract the indentation stress–strain (ISS) curve for a single-crystalline copper. The load–displacement curves on the Cu (010) surface at incremental indentation depths are obtained. Surface pile-up topography is [...] Read more.
In this paper, we perform crystal plasticity finite element (CPFE) simulations of spherical nanoindentation to extract the indentation stress–strain (ISS) curve for a single-crystalline copper. The load–displacement curves on the Cu (010) surface at incremental indentation depths are obtained. Surface pile-up topography is explored and characterized by the activated slip systems on the indented surface and stress distribution on the cross-section to reveal the crystal anisotropy. And the effect of indentation depth on the stiffness and surface pile-up height is further analyzed. Finally, the zero point is defined, and the indentation stress–strain (ISS) curve is extracted from load–displacement curves. The validity of the ISS curve is demonstrated for crystalline copper materials by comparing measured results published in the literature. Full article
(This article belongs to the Special Issue Performance and Processing of Metal Materials)
Show Figures

Figure 1

13 pages, 3247 KiB  
Article
Anisotropic Photoelectric Properties of Aligned P3HT Nanowire Arrays Fabricated via Solution Blade Coating and UV-Induced Molecular Ordering
by Qianxun Gong, Jin Luo, Chen Meng, Zuhong Xiong, Sijie Zhang and Tian Yu
Materials 2025, 18(11), 2649; https://doi.org/10.3390/ma18112649 - 5 Jun 2025
Viewed by 418
Abstract
This paper reports on the anisotropic optoelectronic properties of aligned poly(3-hexylthiophene) (P3HT) nanowire (NW) arrays fabricated via blade coating and UV irradiation, exhibiting a remarkably high electrical resistance anisotropy ratio of up to 8.05 between the parallel (0°) and perpendicular (90°) directions. This [...] Read more.
This paper reports on the anisotropic optoelectronic properties of aligned poly(3-hexylthiophene) (P3HT) nanowire (NW) arrays fabricated via blade coating and UV irradiation, exhibiting a remarkably high electrical resistance anisotropy ratio of up to 8.05 between the parallel (0°) and perpendicular (90°) directions. This resistance anisotropy originates from the advantage of directional charge transport. Optimized 5 mg/mL P3HT solutions under 32 min UV irradiation yielded unidirectional π-π*-stacked NWs with enhanced crystallinity. Polarized microscopy and atomic force microscopy confirmed high alignment and dense NW networks. The angular dependence of polarization exhibits a cosine-modulated response, while the angular anisotropy of the measured photocurrent points to structural alignment rather than trap-state control. The scalable fabrication and tunable anisotropy demonstrate potential for polarization-sensitive organic electronics and anisotropic logic devices. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

16 pages, 5064 KiB  
Article
Effect of the Electrodeposition Potential on the Chemical Composition, Structure and Magnetic Properties of FeCo and FeNi Nanowires
by Anna Nykiel, Alain Walcarius and Malgorzata Kac
Materials 2025, 18(11), 2629; https://doi.org/10.3390/ma18112629 - 4 Jun 2025
Cited by 1 | Viewed by 497
Abstract
This study focused on investigations of FeCo and FeNi nanowires prepared by template-assisted electrodeposition in polycarbonate membranes. Nanowires with a diameter of 100 nm and length of 6 µm were grown at different cathodic potentials and electrolyte compositions. Scanning electron microscopy images revealed [...] Read more.
This study focused on investigations of FeCo and FeNi nanowires prepared by template-assisted electrodeposition in polycarbonate membranes. Nanowires with a diameter of 100 nm and length of 6 µm were grown at different cathodic potentials and electrolyte compositions. Scanning electron microscopy images revealed densely packed arrays of continuous nanowires with smooth surfaces without visible porosity, regardless of the applied potential. Chemical analysis of nanowires pointed out weak sensitivity of chemical composition on the electrodeposition potential in the case of FeCo nanowires, in contrast to FeNi nanowires, where the increase of the cathodic potential resulted in higher Ni content. X-ray diffraction studies showed polycrystalline structure for all samples indicating B2 phase (Pm-3m) with isotropic growth of FeCo nanowires and FeNi3 phase with a preferential growth along [111] direction in the case of FeNi nanowires. The peak broadening suggests a fine crystalline structure for both FeCo and FeNi materials with average crystallite sizes below 20 nm. Magnetic studies indicated an easy axis of magnetization parallel to the nanowire axis for all FeCo nanowires and potential-dependent anisotropy for FeNi nanowires. The present studies thus suggested the feasibility of producing segmented nanowires based on FeNi alloys, while poor chemical sensitivity to the applied potential was observed for the FeCo system. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

14 pages, 2320 KiB  
Article
F-p Hybridization-Induced Ferromagnetism for Ultrathin Two-Dimensional Ferromagnetic Half-Metal (EuN) Monolayer: A First-Principles Study
by Wenxue Sun, Yan Hu, Yuling Song, Yuhong Huang and Shuyao Cao
Molecules 2025, 30(10), 2100; https://doi.org/10.3390/molecules30102100 - 9 May 2025
Viewed by 477
Abstract
By performing first-principles calculations, we predicted a kind of novel ultrathin two-dimensional (2D) ferromagnet, single-atomic-layer EuN. EuN monolayer is a ferromagnetic half-metal with a large band gap of 1.69 eV; Eu ions in EuN are in the highest spin state and have large [...] Read more.
By performing first-principles calculations, we predicted a kind of novel ultrathin two-dimensional (2D) ferromagnet, single-atomic-layer EuN. EuN monolayer is a ferromagnetic half-metal with a large band gap of 1.69 eV; Eu ions in EuN are in the highest spin state and have large magnetic moments of 6 μB, much larger compared with the non-rare-earth (RE) metal ions. The magneto-crystalline anisotropy energy (MCE) of EuN monolayer is −3.72 meV per Eu ion, which is much higher than that of CrI3 monolayer (0.685 meV per Cr ion); the magnetic dipolar energy (MDE) enhances magnetic anisotropy for EuN monolayer; large magnetic anisotropy energy (MAE) is beneficial to stabilizing the long-range ferromagnetic ordering. More importantly, different from many RE metal monolayers, hybridization between Eu-f and N-p orbitals induces ferromagnetism for EuN monolayer; the Curie temperature of EuN monolayer is above the liquid-nitrogen temperature (100 K). Additionally, the Curie temperature of EuN monolayer increases with increasing biaxial strain due to increased f-p hybridization. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

12 pages, 3171 KiB  
Article
Impact of Thermal and Ultraviolet Treatments on the Structural, Mechanical, and Laser Ablation Properties of Fluorinated Ethylene Propylene Films
by Brigita Abakevičienė, Algirdas Lazauskas, Viktoras Grigaliūnas and Dalius Jucius
Appl. Sci. 2025, 15(9), 4796; https://doi.org/10.3390/app15094796 - 25 Apr 2025
Viewed by 445
Abstract
Fluorinated ethylene propylene (FEP) films were subjected to heat, UV, and heat–UV treatments. Structural changes that occurred after these treatments were recorded via X-ray diffraction (XRD), microtensile, and laser ablation testing. XRD macromolecular orientation texture analysis revealed changes in the fraction of crystalline [...] Read more.
Fluorinated ethylene propylene (FEP) films were subjected to heat, UV, and heat–UV treatments. Structural changes that occurred after these treatments were recorded via X-ray diffraction (XRD), microtensile, and laser ablation testing. XRD macromolecular orientation texture analysis revealed changes in the fraction of crystalline components and the degree of anisotropy of the FEP films after being subjected to different processing conditions. Heat treatment at 200 °C affected structural properties by rearranging the crystallites and resulting in a higher degree of anisotropy. By contrast, the UV treatment of FEP resulted in a lower degree of anisotropy. The changes in anisotropy and crystallinity of FEP films significantly affected their Young’s modulus and yield stress. The UV laser ablation threshold values were found to be lower for the heat-treated FEP films. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

25 pages, 3353 KiB  
Article
Thermo-Physical Behaviour of Thermoplastic Composite Pipe for Oil and Gas Applications
by Obinna Okolie, Nadimul Haque Faisal, Harvey Jamieson, Arindam Mukherji and James Njuguna
Polymers 2025, 17(8), 1107; https://doi.org/10.3390/polym17081107 - 19 Apr 2025
Viewed by 728
Abstract
Thermoplastic composite pipes (TCP) consist of three distinct layers—liner, reinforcement, and coating—offering superior advantages over traditional industrial pipes, including flexibility, lightweight construction, and corrosion resistance. This study systematically characterises the thermal properties of TCP layers and their compositions using a multi-method approach. Thermal [...] Read more.
Thermoplastic composite pipes (TCP) consist of three distinct layers—liner, reinforcement, and coating—offering superior advantages over traditional industrial pipes, including flexibility, lightweight construction, and corrosion resistance. This study systematically characterises the thermal properties of TCP layers and their compositions using a multi-method approach. Thermal analysis was conducted through differential scanning calorimetry (DSC) for isothermal and non-isothermal crystallisation, thermogravimetric analysis (TGA) for thermal stability, and Fourier transform infrared spectroscopy (FTIR) for material identification. FTIR confirmed polyethylene as the primary component of TCP, with compositional variations across the layers. TGA results indicated that thermal degradation begins at approximately 200 °C, with complete decomposition at 500 °C. DSC analysis revealed a double melting peak, prompting further investigation into its mechanisms. On-isothermal crystallisation kinetics, analysed at cooling rates of 10 °C/min and 50 °C/min, revealed an anisotropic crystalline growth pattern. Although nucleation occurs uniformly, the subsequent three-dimensional crystalline growth is governed more by the degree of supercooling than by the crystallography of the glass fibres. This underscores the importance of precisely controlling the cooling rate during manufacturing to optimise the anisotropic properties of the reinforced layer. This study also demonstrates the value of FTIR, TGA, and DSC techniques in characterising the thermo-physical behaviour of TCP, offering critical insights into thermal expansion, shrinkage phenomena, and overall material stability. Given the limited body of research on this specific TCP formulation, the findings presented here lay a foundation for both quality enhancement and process optimisation. Moreover, the paper offers a distinctive perspective on the dynamic behaviour, thermal expansion, and long-term performance of TCP in demanding oil and gas environments. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

13 pages, 3082 KiB  
Article
Tungsten Diselenide Nanoparticles Produced via Femtosecond Ablation for SERS and Theranostics Applications
by Andrei Ushkov, Dmitriy Dyubo, Nadezhda Belozerova, Ivan Kazantsev, Dmitry Yakubovsky, Alexander Syuy, Gleb V. Tikhonowski, Daniil Tselikov, Ilya Martynov, Georgy Ermolaev, Dmitriy Grudinin, Alexander Melentev, Anton A. Popov, Alexander Chernov, Alexey D. Bolshakov, Andrey A. Vyshnevyy, Aleksey Arsenin, Andrei V. Kabashin, Gleb I. Tselikov and Valentyn Volkov
Nanomaterials 2025, 15(1), 4; https://doi.org/10.3390/nano15010004 - 24 Dec 2024
Cited by 4 | Viewed by 1331
Abstract
Due to their high refractive index, record optical anisotropy and a set of excitonic transitions in visible range at a room temperature, transition metal dichalcogenides have gained much attention. Here, we adapted a femtosecond laser ablation for the synthesis of WSe2 nanoparticles [...] Read more.
Due to their high refractive index, record optical anisotropy and a set of excitonic transitions in visible range at a room temperature, transition metal dichalcogenides have gained much attention. Here, we adapted a femtosecond laser ablation for the synthesis of WSe2 nanoparticles (NPs) with diameters from 5 to 150 nm, which conserve the crystalline structure of the original bulk crystal. This method was chosen due to its inherently substrate-additive-free nature and a high output level. The obtained nanoparticles absorb light stronger than the bulk crystal thanks to the local field enhancement, and they have a much higher photothermal conversion than conventional Si nanospheres. The highly mobile colloidal state of produced NPs makes them flexible for further application-dependent manipulations, which we demonstrated by creating substrates for SERS sensors. Full article
Show Figures

Figure 1

17 pages, 4618 KiB  
Article
Effect of Aggregate Crystalline Surface Anisotropy on Asphalt–Aggregate Interface Interaction Based on Molecular Dynamics
by Jian Li and Liang He
Appl. Sci. 2024, 14(24), 11969; https://doi.org/10.3390/app142411969 - 20 Dec 2024
Cited by 1 | Viewed by 800
Abstract
To investigate the influence of aggregate crystalline surface anisotropy on the interfacial effects and understand the bonding mechanisms, molecular dynamics simulations were employed to analyze the spatial distribution, diffusion, and adhesion properties of asphalt on typical acidic (α-quartz, SiO2) and weakly [...] Read more.
To investigate the influence of aggregate crystalline surface anisotropy on the interfacial effects and understand the bonding mechanisms, molecular dynamics simulations were employed to analyze the spatial distribution, diffusion, and adhesion properties of asphalt on typical acidic (α-quartz, SiO2) and weakly alkaline (calcite, CaCO3) aggregates. The results indicated that different types and crystalline surfaces of aggregates did not alter the distribution patterns of the asphalt components on their surfaces. However, the magnitude of the radial distribution function (RDF) varied with different crystalline surfaces, and a higher RDF value was correlated with better adhesion performance. Different diffusion behaviors were exhibited by asphalt molecules on different crystalline surfaces: slower diffusion was correlated with stronger adhesion and faster diffusion with weaker adhesion. The adhesion performance was significantly affected by the anisotropy of the aggregates. In the asphalt–SiO2 system, the van der Waals energy and surface atomic density were the major influencing factors, whereas, in the asphalt–CaCO3 system, the electrostatic energy was significantly influenced by ionic bonding. Overall, alkaline aggregates showed greater adhesion performance with asphalt than acidic aggregates. Full article
(This article belongs to the Special Issue Fracture Mechanics of Asphalt Pavement Materials and Structures)
Show Figures

Figure 1

13 pages, 2973 KiB  
Article
Liquid Crystal Ordering in Densely Packed Colloidal Suspensions of Highly Anisotropic Monolayer Nanosheets
by Yue Shi, Min Shuai, Yongqiang Shen, Dong Chen, Joseph E. Maclennan, Zhengdong Cheng and Noel A. Clark
Crystals 2024, 14(11), 963; https://doi.org/10.3390/cryst14110963 - 6 Nov 2024
Viewed by 1073
Abstract
Monolayer nanosheets of zirconium phosphate in aqueous suspension exhibit short-range repulsion and long-range attraction, producing, at overall volume fractions larger than about half a percent, phase separation into higher-concentration liquid crystal and lower-concentration isotropic regions. At high concentrations, this phase separation takes the [...] Read more.
Monolayer nanosheets of zirconium phosphate in aqueous suspension exhibit short-range repulsion and long-range attraction, producing, at overall volume fractions larger than about half a percent, phase separation into higher-concentration liquid crystal and lower-concentration isotropic regions. At high concentrations, this phase separation takes the form of an emulsion of condensed, liquid-crystalline droplets, which anneal to form lens-shaped tactoids. These tactoids provide an opportunity to study the liquid crystal ordering of inorganic nanosheets in the limit of large shape anisotropy (diameter/thickness~400) and high packing fraction (volume fraction 70%). The internal liquid crystal structure of the tactoids remains nematic even under conditions that would usually favor ordering into lamellar smectics. Local lamellar ordering is suggested by short-range, smectic-like layer correlations, but a full transition into a smectic phase appears to be inhibited by the nanosheet edges, which act as a perturbative population of dislocation loops in the system of layers. Under conditions of thermal equilibrium, the nanoplates organize positionally to enable bend deformation of the director, a hallmark of the nematic phase and its principal distinction from the smectic, where bend must be expelled. Full article
Show Figures

Figure 1

17 pages, 5453 KiB  
Article
Process-Induced Crystal Surface Anisotropy and the Impact on the Powder Properties of Odanacatib
by Isha Bade, Vikram Karde, Luke Schenck, Marina Solomos, Margaret Figus, Chienhung Chen, Stephanus Axnanda and Jerry Y. Y. Heng
Pharmaceutics 2024, 16(7), 883; https://doi.org/10.3390/pharmaceutics16070883 - 30 Jun 2024
Cited by 2 | Viewed by 2032
Abstract
Crystalline active pharmaceutical ingredients with comparable size and surface area can demonstrate surface anisotropy induced during crystallization or downstream unit operations such as milling. To the extent that varying surface properties impacts bulk powder properties, the final drug product performance such as stability, [...] Read more.
Crystalline active pharmaceutical ingredients with comparable size and surface area can demonstrate surface anisotropy induced during crystallization or downstream unit operations such as milling. To the extent that varying surface properties impacts bulk powder properties, the final drug product performance such as stability, dissolution rates, flowability, and dispersibility can be predicted by understanding surface properties such as surface chemistry, energetics, and wettability. Here, we investigate the surface properties of different batches of Odanacatib prepared through either jet milling or fast precipitation from various solvent systems, all of which meet the particle size specification established to ensure equivalent biopharmaceutical performance. This work highlights the use of orthogonal surface techniques such as Inverse Gas Chromatography (IGC), Brunauer–Emmett–Teller (BET) surface area, contact angle, and X-ray Photoelectron Spectroscopy (XPS) to demonstrate the effect of processing history on particle surface properties to explain differences in bulk powder properties. Full article
(This article belongs to the Special Issue Pharmaceutical Solids: Advanced Manufacturing and Characterization)
Show Figures

Figure 1

13 pages, 1863 KiB  
Article
Theoretical Study of the Magnetic Properties of the SmFe12−xMox (x = 1, 2) and SmFe10Mo2H Compounds
by Diana Benea, Eduard Barna, Viorel Pop and Olivier Isnard
Crystals 2024, 14(7), 598; https://doi.org/10.3390/cryst14070598 - 27 Jun 2024
Viewed by 1268
Abstract
We present theoretical investigations examining the electronic and magnetic properties of the SmFe12−xMox (x = 1, 2) and SmFe10Mo2H compounds, including magneto-crystalline anisotropy, magnetic moments, exchange-coupling parameters, and Curie temperatures. The spin-polarized fully relativistic Korringa–Kohn–Rostoker (SPR-KKR) [...] Read more.
We present theoretical investigations examining the electronic and magnetic properties of the SmFe12−xMox (x = 1, 2) and SmFe10Mo2H compounds, including magneto-crystalline anisotropy, magnetic moments, exchange-coupling parameters, and Curie temperatures. The spin-polarized fully relativistic Korringa–Kohn–Rostoker (SPR-KKR) band structure method has been employed, using the coherent potential approximation (CPA) to deal with substitutional disorder. Hubbard-U correction was applied to the local spin density approximation (LSDA+U) in order to account for the significant correlation effects arising from the 4f electronic states of Sm. According to our calculations, the total magnetic moments increases with H addition, in agreement with experimental data. Adding one H atom in the near-neighbor environment of the Fe 8j site reduces the magnetic moments of Fe 8j and enhances the magnetic moment of Fe 8f. For every investigated alloy, the site-resolved spin magnetic moments of Fe on the 8i, 8j, and 8f sites exhibit the same magnitude sequence, with msFe (8i) > msFe (8j) > msFe (8f). While the addition of H has a positive impact on magneto-crystalline anisotropy energy (MAE), the increase in Mo concentration is detrimental to MAE. The computed exchange-coupling parameters reveal the highest values between the closest Fe 8i spins, followed by Fe 8i and Fe 8j spins, for all investigated alloys. The Curie temperature of the alloys under investigation is increased by decreasing the Mo concentration or by H addition, which is qualitatively consistent with experimental findings. Full article
(This article belongs to the Special Issue New Trends in Materials for Permanent Magnets)
Show Figures

Figure 1

27 pages, 17974 KiB  
Review
Properties and Applications of Iron–Chalcogenide Superconductors
by Jianlong Zhao, Junsong Liao, Chiheng Dong, Dongliang Wang and Yanwei Ma
Materials 2024, 17(13), 3059; https://doi.org/10.3390/ma17133059 - 21 Jun 2024
Cited by 1 | Viewed by 1452
Abstract
Iron–chalcogenide superconductors continue to captivate researchers due to their diverse crystalline structures and intriguing superconducting properties, positioning them as both a valuable platform for theoretical investigations and promising candidates for practical applications. This review begins with a comprehensive overview of the fabrication techniques [...] Read more.
Iron–chalcogenide superconductors continue to captivate researchers due to their diverse crystalline structures and intriguing superconducting properties, positioning them as both a valuable platform for theoretical investigations and promising candidates for practical applications. This review begins with a comprehensive overview of the fabrication techniques employed for various iron–chalcogenide superconductors, accompanied by a summary of their phase diagrams. Subsequently, it delves into the upper critical field, anisotropy, and critical current density. Furthermore, it discusses the successful fabrication of meters-long coated conductors and explores their applications in superconducting radio-frequency cavities and coils. Finally, several prospective avenues for future research are proposed. Full article
Show Figures

Figure 1

19 pages, 6011 KiB  
Article
Optical, Structural, and Synchrotron X-ray Absorption Studies for GaN Thin Films Grown on Si by Molecular Beam Epitaxy
by Zhe Chuan Feng, Jiamin Liu, Deng Xie, Manika Tun Nafisa, Chuanwei Zhang, Lingyu Wan, Beibei Jiang, Hao-Hsiung Lin, Zhi-Ren Qiu, Weijie Lu, Benjamin Klein, Ian T. Ferguson and Shiyuan Liu
Materials 2024, 17(12), 2921; https://doi.org/10.3390/ma17122921 - 14 Jun 2024
Cited by 5 | Viewed by 1556
Abstract
GaN on Si plays an important role in the integration and promotion of GaN-based wide-gap materials with Si-based integrated circuits (IC) technology. A series of GaN film materials were grown on Si (111) substrate using a unique plasma assistant molecular beam epitaxy (PA-MBE) [...] Read more.
GaN on Si plays an important role in the integration and promotion of GaN-based wide-gap materials with Si-based integrated circuits (IC) technology. A series of GaN film materials were grown on Si (111) substrate using a unique plasma assistant molecular beam epitaxy (PA-MBE) technology and investigated using multiple characterization techniques of Nomarski microscopy (NM), high-resolution X-ray diffraction (HR-XRD), variable angular spectroscopic ellipsometry (VASE), Raman scattering, photoluminescence (PL), and synchrotron radiation (SR) near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. NM confirmed crack-free wurtzite (w-) GaN thin films in a large range of 180–1500 nm. XRD identified the w- single crystalline structure for these GaN films with the orientation along the c-axis in the normal growth direction. An optimized 700 °C growth temperature, plus other corresponding parameters, was obtained for the PA-MBE growth of GaN on Si, exhibiting strong PL emission, narrow/strong Raman phonon modes, XRD w-GaN peaks, and high crystalline perfection. VASE studies identified this set of MBE-grown GaN/Si as having very low Urbach energy of about 18 meV. UV (325 nm)-excited Raman spectra of GaN/Si samples exhibited the GaN E2(low) and E2(high) phonon modes clearly without Raman features from the Si substrate, overcoming the difficulties from visible (532 nm) Raman measurements with strong Si Raman features overwhelming the GaN signals. The combined UV excitation Raman–PL spectra revealed multiple LO phonons spread over the GaN fundamental band edge emission PL band due to the outgoing resonance effect. Calculation of the UV Raman spectra determined the carrier concentrations with excellent values. Angular-dependent NEXAFS on Ga K-edge revealed the significant anisotropy of the conduction band of w-GaN and identified the NEXAFS resonances corresponding to different final states in the hexagonal GaN films on Si. Comparative GaN material properties are investigated in depth. Full article
(This article belongs to the Special Issue III-V Semiconductor Optoelectronics: Materials and Devices)
Show Figures

Figure 1

18 pages, 4897 KiB  
Article
Enhancing Transparency in Non-Cubic Calcium Phosphate Ceramics: Effect of Starting Powder, LiF Doping, and Spark Plasma Sintering Parameters
by Kacper Albin Prokop, Sandrine Cottrino, Vincent Garnier, Gilbert Fantozzi, Yannick Guyot, Georges Boulon and Małgorzata Guzik
Ceramics 2024, 7(2), 607-624; https://doi.org/10.3390/ceramics7020040 - 30 Apr 2024
Cited by 1 | Viewed by 2088
Abstract
Our objective is to achieve a new good-quality and mechanically durable high-transparency material that, when activated by rare earth ions, can be used as laser sources, scintillators, or phosphors. The best functional transparent ceramics are formed from high-symmetry systems, mainly cubic. Considering hexagonal [...] Read more.
Our objective is to achieve a new good-quality and mechanically durable high-transparency material that, when activated by rare earth ions, can be used as laser sources, scintillators, or phosphors. The best functional transparent ceramics are formed from high-symmetry systems, mainly cubic. Considering hexagonal hydroxyapatite, which shows anisotropy, the particle size of the initial powder is extremely important and should be of the order of several tens of nanometers. In this work, transparent micro-crystalline ceramics of non-cubic Ca10(PO4)6(OH)2 calcium phosphate were fabricated via Spark Plasma Sintering (SPS) from two types of nanopowders i.e., commercially available (COM. HA) and laboratory-made (LAB. HA) via the hydrothermal (HT) protocol. Our study centered on examining how the quality of sintered bodies is affected by the following parameters: the addition of LiF sintering agent, the temperature during the SPS process, and the quality of the starting nanopowders. The phase purity, microstructure, and optical transmittance of the ceramics were investigated to determine suitable sintering conditions. The best optical ceramics were obtained from LAB. HA nanopowder with the addition of 0.25 wt.% of LiF sintered at 1000 °C and 1050 °C. Full article
(This article belongs to the Special Issue Transparent Ceramics—a Theme Issue in Honor of Dr. Adrian Goldstein)
Show Figures

Graphical abstract

18 pages, 7416 KiB  
Article
Adsorption and Structuration of PEG Thin Films: Influence of the Substrate Chemistry
by Maurice Brogly, Sophie Bistac and Diane Bindel
Polymers 2024, 16(9), 1244; https://doi.org/10.3390/polym16091244 - 29 Apr 2024
Cited by 1 | Viewed by 2549
Abstract
This study investigates polyethylene glycol (PEG) homopolymer thin film adsorption on gold surfaces of controlled surface chemistry. The conformational states of physisorbed PEG are analyzed through polarization modulation infrared reflection–absorption spectrometry (PM-IRRAS). The PM-IRRAS principle is based on specific optical selection rules allowing [...] Read more.
This study investigates polyethylene glycol (PEG) homopolymer thin film adsorption on gold surfaces of controlled surface chemistry. The conformational states of physisorbed PEG are analyzed through polarization modulation infrared reflection–absorption spectrometry (PM-IRRAS). The PM-IRRAS principle is based on specific optical selection rules allowing the detection of surface-specific FTIR response of thin polymer films on the basis of differential reflectivity at the polymer/substrate interface for p- and s-polarized light. The intensification of the electric field generated at the PEG/substrate interface for p-polarized IR light in comparison with s-polarized light permits the analysis of PEG chain anisotropy and conformational changes induced by the adsorption. Results showed that PEG adsorbs on model substrates having a rather hydrophilic character in a way that the PEG chains spread parallel to the surface. In the case of a very hydrophilic substrate, the adsorbed PEG chains are in a stable thermodynamic state which allows them to arrange and crystallize as stacked crystalline lamellae after adsorption. The surface topography and morphology of the PEG thin films were also investigated by atomic force microscopy (AFM). While in the bulk state, PEG crystallizes in the form of large spherulites; on substrates whose adsorption is favored by surface chemistry, PEG crystallizes in the form of stacked lamellae with a thickness equal to 20 nm. Conversely, on a hydrophobic substrate, the PEG chains do not crystallize and adsorption occurs in the statistical coil state. Full article
(This article belongs to the Special Issue Progress in Polymer Thin Films and Surface Modification)
Show Figures

Figure 1

Back to TopTop