Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (60)

Search Parameters:
Keywords = cryptic clades

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7210 KiB  
Article
Species Delimitation Methods Facilitate the Identification of Cryptic Species Within the Broadly Distributed Species in Homoeocerus (Tliponius) (Insecta: Hemiptera: Coreidae)
by Jingyu Liang, Shujing Wang, Jingyao Zhang, Juhong Chen, Siying Fu, Zhen Ye, Huai-Jun Xue, Yanfei Li and Wenjun Bu
Insects 2025, 16(8), 797; https://doi.org/10.3390/insects16080797 - 1 Aug 2025
Viewed by 254
Abstract
Widespread species may exhibit considerable genetic variation among populations due to their extensive distribution ranges, and may even give rise to new species in remote areas. Integrative species delimitation via multiple types can provide a robust framework for accurate species identification and rapid [...] Read more.
Widespread species may exhibit considerable genetic variation among populations due to their extensive distribution ranges, and may even give rise to new species in remote areas. Integrative species delimitation via multiple types can provide a robust framework for accurate species identification and rapid discovery of cryptic diversity. The subgenus Tliponius (Hemiptera: Coreidae: Homoeocerus) has several species and three broadly distributed species across China. In this study, we selected as many geographical sample sites of widely distributed species as possible and conducted species identification based on integrated taxonomy of morphological, mitochondrial and SNP data for 28 individuals within Tliponius. Our results revealed a cryptic lineage previously subsumed under the polytypic H. unipunctatus in Yunnan Province and described as Homoeocerus (Tliponius) dianensis Liang, Li & Bu sp. nov. The presence of seven distinct species within Tliponius was supported by species delimitation and divided into two clades: (H. dilatatus + (H. marginellus + (H. unipunctatus + H. dianensis sp. nov.))) and (H. yunnanensis + (H. laevilineus + H. marginiventris). Based on our findings, extensive sampling of widespread species is highly important for the accuracy of species delimitation and the discovery of cryptic species. Full article
(This article belongs to the Special Issue Revival of a Prominent Taxonomy of Insects)
Show Figures

Figure 1

15 pages, 5462 KiB  
Article
Clade 2.3.4.4b Highly Pathogenic Avian Influenza H5N1 Pathology in a Common Shorebird Species (Sanderling; Calidris alba) in Virginia, USA
by Victoria A. Andreasen, Emily G. Phillips, Aidan M. O’Reilly, C. Robert Stilz, Rebecca L. Poulson, Ruth Boettcher, John K. Tracey and Nicole M. Nemeth
Animals 2025, 15(14), 2057; https://doi.org/10.3390/ani15142057 - 12 Jul 2025
Viewed by 439
Abstract
Anseriformes (waterfowl) and Charadriiformes (shorebirds) are well-recognized natural reservoirs of low pathogenic (LP) influenza A viruses (IAVs). Historically, LP IAVs circulate among healthy individuals during seasonal, and often transcontinental, migrations. However, following the introduction of clade 2.3.4.4b highly pathogenic (HP) A/Goose/Guangdong/1/1996 lineage H5 [...] Read more.
Anseriformes (waterfowl) and Charadriiformes (shorebirds) are well-recognized natural reservoirs of low pathogenic (LP) influenza A viruses (IAVs). Historically, LP IAVs circulate among healthy individuals during seasonal, and often transcontinental, migrations. However, following the introduction of clade 2.3.4.4b highly pathogenic (HP) A/Goose/Guangdong/1/1996 lineage H5 IAV to North America in 2021, countless wild birds succumbed to fatal infections across the Western Hemisphere. Due to their small size and cryptic plumage patterns, opportunities for carcass recovery and postmortem evaluation in sanderlings (Calidris alba) and other shorebirds are rare. A multispecies mortality event in coastal Virginia, USA, in March–April 2024 included sanderlings among other wild bird species. Nine sanderlings underwent postmortem evaluation and clade 2.3.4.4b H5 IAV RNA was detected in pooled oropharyngeal-cloacal swabs from 11/11 individuals by real-time reverse transcription polymerase chain reaction. Histopathology was similar to that in waterfowl and included necrosis in the pancreas and brain and less commonly in the gonad, adrenal gland, spleen, liver, and intestine. Immunohistochemistry revealed IAV antigen labeling in necrotic neurons of the brain (neurotropism) and epithelial cells of the pancreas, gonad, and adrenal gland (epitheliotropism). Describing HP IAV-attributed pathology in shorebirds is key to understanding ecoepidemiology and population health threats in order to further document and compare pathogenesis among avian species. Full article
(This article belongs to the Section Birds)
Show Figures

Graphical abstract

19 pages, 6682 KiB  
Article
Unusual Genetic Diversity Within Thereuopoda clunifera (Wood, 1862) (Chilopoda: Scutigeromorpha) Revealed by Phylogeny and Divergence Times Using Mitochondrial Genomes
by Jie-Hong Ji, Hui-Yuan Wu, Yi-Xin Gao, Chen-Yang Shen, Zi-Wen Yang, Kenneth B. Storey, Dan-Na Yu and Jia-Yong Zhang
Insects 2025, 16(5), 486; https://doi.org/10.3390/insects16050486 - 2 May 2025
Viewed by 614
Abstract
As one of the four primary evolutionary groups within myriapods, centipedes (Chilopoda) comprise approximately 3150 valid species. Recent molecular studies have begun to elucidate the phylogeny and time to divergence in Chilopoda; yet, identifying scutigeromorphs at the species level remains a notoriously challenging [...] Read more.
As one of the four primary evolutionary groups within myriapods, centipedes (Chilopoda) comprise approximately 3150 valid species. Recent molecular studies have begun to elucidate the phylogeny and time to divergence in Chilopoda; yet, identifying scutigeromorphs at the species level remains a notoriously challenging task. In this study, we obtained seven new complete mitogenomes of Thereuopoda clunifera (Wood, 1862) to investigate the phylogeny and divergence times of Chilopoda. Both maximum likelihood (ML) and Bayesian inference (BI) analyses recovered the relationship of (Scutigeromorpha + (Scolopendromorpha + (Lithobiomorpha + Geophilomorpha))). For Scutigeromorpha, seven newly sequenced mitogenomes of T. clunifera were divided into four distinct clades. Divergence time estimates suggest that the basal split of Chilopoda occurred during the Middle Ordovician period, with the origins of Scolopendromorpha, Lithobiomorpha, and Geophilomorpha dating to the Devonian period. Factors such as warm climates, coevolution between predator and prey, and the rifting of the Hainan Island may have driven the diversification of Scutigeromorpha. Based on genetic distance, the delimitation of molecular species, phylogenetic relationships, and divergence time analyses, we identified three cryptic species that existed within T. clunifera. This exceptionally high degree of hidden diversity can be ascribed to the morphological stasis that has occurred since the Paleozoic era and taxonomic impediment. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

11 pages, 1339 KiB  
Article
DNA Barcode and Correct Scientific Name of Golden Pompano, an Important Marine Aquaculture Fish Species in China
by Ang Li, Changting An, Huan Wang, Shuai Che, Shufang Liu and Zhimeng Zhuang
Fishes 2025, 10(3), 129; https://doi.org/10.3390/fishes10030129 - 16 Mar 2025
Viewed by 703
Abstract
The golden pompano ranks at the top of production in current China’s marine fish aquaculture; however, there has been long-standing controversy regarding its valid scientific name. Multiple latin names were used simultaneously to refer to golden pompano, such as Trachinotus ovatus, T. [...] Read more.
The golden pompano ranks at the top of production in current China’s marine fish aquaculture; however, there has been long-standing controversy regarding its valid scientific name. Multiple latin names were used simultaneously to refer to golden pompano, such as Trachinotus ovatus, T. blochii, T. mookalee and T. anak. Moreover, two distinct morphological species are regarded as deserving the scientific name T. ovatus. In this study, we employed DNA barcoding to determine which particular species the “golden pompano” represents and to explore the potential synonyms and cryptic species within T. ovatus and its closely related species. We analyzed the DNA barcodes of golden pompano samples from various aquaculture farms in China’s main production regions, as well as most species within the genus Trachinotus. The phylogenetic analyses revealed that all T. ovatus sequences clustered into two divergent clades with a large genetic distance, and the two clades were geographically separated, being from the Indo-west Pacific and the East Atlantic regions, respectively. Based on the type locality information and historical distribution records, we support the validity of the naming of Trachinotus ovatus from the Indo-west Pacific, and the so-called Trachinotus ovatus from the East Atlantic may represent a cryptic species. All the golden pompano samples were clustered into the Indo-west Pacific T. ovatus clade, with a considerably small intragroup genetic distance, which suggests that the golden pompano in China should be identified as the species Trachinotus ovatus. The golden pompano, T. blochii and T. mookalee were completely separated into distinct monophyletic clades in the phylogenetic trees, which indicated that they are different species. The T. anak clustered with the monophyletic clade of Indo-west Pacific T. ovatus and the genetic distance between them was at the intraspecific difference level. This implied that the T. anak might be the junior synonym of T. ovatus. The species delimitations based on the ABGD and bPTP methods are in agreement with the findings from phylogenetic analyses. The above results help to form a consistent viewpoint regarding the naming of the golden pompano and provide new understandings for the taxonomy of the genus Trachinotus. Full article
Show Figures

Figure 1

24 pages, 6971 KiB  
Article
Uncovering the Evolutionary History in Lineage of Caribbean Octocorals: Phylogenomics Reveals Unrecognized Diversity in Eunicea
by Adriana Sarmiento, Iván Calixto-Botía, Tatiana Julio-Rodríguez, Andrea M. Quattrini and Juan A. Sánchez
Diversity 2025, 17(3), 173; https://doi.org/10.3390/d17030173 - 27 Feb 2025
Viewed by 1287
Abstract
The evolutionary history of the Caribbean candelabrum octocorals from the genus Eunicea (Plexauridae: Octocorallia) remains unknown despite their high diversity and abundance in reef environments. Understanding the evolutionary relationships between and within the Eunicea species is critical to accurately measuring the group diversity. [...] Read more.
The evolutionary history of the Caribbean candelabrum octocorals from the genus Eunicea (Plexauridae: Octocorallia) remains unknown despite their high diversity and abundance in reef environments. Understanding the evolutionary relationships between and within the Eunicea species is critical to accurately measuring the group diversity. Furthermore, this group has a high potential for cryptic diversity and new species, particularly given the rich morphological variability. Conventional molecular markers, however, have not provided a precise positioning for the species inside the genus. Here, we provide the first phylogenomic reconstruction of these candelabrum octocorals employing NextRAD, a reduced-representation sequencing technique, to generate thousands of SNPs. We include 15 morphospecies sampled between valid and new species throughout the Caribbean. At large, the phylogeny is well supported and resolved. In total, 13 species-level clades are discernible, including two lineages with demonstrated genetic and morphological variation that are considered and described as two new species, Eunicea criptica sp. nov. and E. colombiensis sp. nov., both previously assigned as E. clavigera and the second as the “thick morphotype”, thereby increasing the diversity of the group. Understanding the magnitude of species diversity within Eunicea is essential for directing conservation initiatives and clarifying the biological processes in reef ecosystems. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Graphical abstract

15 pages, 1869 KiB  
Article
Trichoderma: Harzianum Clade in Soils from Central and South America
by Adnan Ismaiel, Prashant P. Jambhulkar, Parimal Sinha and Dilip K. Lakshman
J. Fungi 2024, 10(12), 813; https://doi.org/10.3390/jof10120813 - 23 Nov 2024
Cited by 1 | Viewed by 1631
Abstract
As environmental and health concerns increase, the trend toward sustainable agriculture is moving toward using biological agents. About 60% of all biological fungicides have Trichoderma species as the active ingredient, with T. harzianum as the most common species in these products. However, the [...] Read more.
As environmental and health concerns increase, the trend toward sustainable agriculture is moving toward using biological agents. About 60% of all biological fungicides have Trichoderma species as the active ingredient, with T. harzianum as the most common species in these products. However, the name T. harzianum has often been used incorrectly in culture collections, databases, and scientific literature due to the division of the Harzianum clade (HC) into more than 95 cryptic species, with only one being named T. harzianum. In this study, 49 strains previously identified as T. harzianum in three surveys of Trichoderma species from soils in South and Central America were re-identified using phylogenetic analyses based on tef1α, rpb2, and ITS sequences obtained from GenBank. These were combined with the HC species from two other studies, which were identified based on the current taxonomy. Based on the results of the five surveys of the total 148 strains in HC, 11 species were identified. T. afroharzianum, T. lentiforme, and T. endophyticum, followed by T. azevedoi and T. harzianum, were the dominant species of the HC in South and Central America. This is the first report to identify dominant Trichoderma species within the HC in South and Central American soil based on multiple studies. These results will be useful in selecting strains within the clade for the formulation of biocontrol and biofertilizer products on the continent. Full article
(This article belongs to the Special Issue Biological Control of Fungal Diseases)
Show Figures

Figure 1

15 pages, 3033 KiB  
Article
Congruent and Hierarchical Intra-Lake Subdivisions from Nuclear and Mitochondrial Data of a Lake Baikal Shoreline Amphipod
by Risto Väinölä, Tytti Kontula, Kazuo Mashiko and Ravil M. Kamaltynov
Diversity 2024, 16(11), 706; https://doi.org/10.3390/d16110706 - 20 Nov 2024
Viewed by 911
Abstract
A central goal of molecular studies on ancient lake faunas is to resolve the origin and phylogeny of their strikingly diverse endemic species flocks. Another equally intriguing goal is to understand the integrity of individual morphologically diagnosed species, which should help to perceive [...] Read more.
A central goal of molecular studies on ancient lake faunas is to resolve the origin and phylogeny of their strikingly diverse endemic species flocks. Another equally intriguing goal is to understand the integrity of individual morphologically diagnosed species, which should help to perceive the nature and speed of the speciation process, and the true biological species diversity. In the uniquely diverse Lake Baikal amphipod crustaceans, molecular data from shallow-water species have often disclosed their cryptic subdivision into geographically segregated genetic lineages, but the evidence so far is mainly based on mitochondrial DNA. We now present a lake-wide parallel survey of both mitochondrial and multilocus nuclear genetic structuring in the common shoreline amphipod Eulimnogammarus verrucosus, known to comprise three deep, parapatric mtDNA lineages. Allele frequencies of seven nuclear allozyme loci divide the data into three main groups whose distributions exactly match the distributions of the main mitochondrial lineages S, W, and E and involve a further division of the W cluster into two subgroups. The inter-group differences involve one to four diagnostic loci and additional group-specific alleles. The transition zones are either abrupt (1 km), occur over a long segment of uninhabitable shoreline, or may be gradual with non-coincident clinal change at different loci. Mitochondrial variation is hierarchically structured, each main lineage further subdivided into 2–4 parapatric sublineages or phylogroups, and patterns of further local segregation are seen in some of them. Despite the recurring observations of cryptic diversity in Baikalian amphipods, the geographical subdivisions and clade depths do not match in different taxa, defying a common explanation for the diversification in environmental history. Full article
(This article belongs to the Special Issue Diversity and Evolution within the Amphipoda)
Show Figures

Figure 1

16 pages, 7359 KiB  
Article
Comprehensive Evaluation of Cryptic Juglans Genotypes: Insight from Molecular Markers and Phylogenetic Analysis
by Sajjad Sajjad, Muhammad Islam, Khushi Muhammad, Sajid-ul Ghafoor, Irfan Ullah, Asif Khan, Muhammad Siraj, Abdulwahed Fahad Alrefaei, Jawad Ali Shah and Sajid Ali
Genes 2024, 15(11), 1417; https://doi.org/10.3390/genes15111417 - 31 Oct 2024
Cited by 1 | Viewed by 2289
Abstract
Background/Objectives: The current research work aimed to evaluate the cryptic walnut genotypes of the Hazara region in Pakistan by using DNA barcoding and phylogenetic analysis. Methods: Based on morphological traits such as nut size, nut shape, and the number of leaflets, five genotypes [...] Read more.
Background/Objectives: The current research work aimed to evaluate the cryptic walnut genotypes of the Hazara region in Pakistan by using DNA barcoding and phylogenetic analysis. Methods: Based on morphological traits such as nut size, nut shape, and the number of leaflets, five genotypes were chosen and samples were collected for the current study. For molecular analysis, gDNA was isolated from the fresh leaves, and the five most effective angiosperm-specific markers, ITS2, rbcLa, rbcLc, rpoC1, and UBE3, were utilized. Based on amplification, sequencing, and identification success rates, ITS2 and UBE3 were recorded as the most efficient markers followed by rbcLa, rbcLc, and rpoC1. Results: During phylogenetic analysis, the query genotype-1 based on ITS2 and genotype-2 based on UBE3 clustered with (KF454101.1-Juglans regia) and (KC870919.1-J. regia) with bootstraps of 56 and 100, respectively. Genotype-3 based on rbcla clustered in a major clade with J. regia L., cultivars (MN397935.1 J. regia ‘Vina’) and (MN397934.1-J. regia ‘Serr’), (MN397933.1 J. regia ‘Pedro’), (MN397932.1 J. regia ‘Lara’), (MN397931.1 J. regia ‘Howard’), and (MN397930.1 J. regia ‘Hartley’) with bootstrap of 100. Meanwhile, genotype-4 and genotype-5 based on rbclc and rpoC1 clustered with (MN397935.1 J. regia ‘Vina’) and (MN397934.1 J. regia ‘Serr’), across the database sequences. To clarify the taxonomic status of cryptic walnut genotypes, it is necessary to combine diverse DNA barcodes. The results of ITS2 and UBE3, followed by rbcL barcoding markers, are promising taxonomic tools for cryptic walnut genotypes in Pakistan. Conclusions: It has been determined that the genotypes of walnuts in the study area are both J. regia L. and its cultivars and that the accuracy of discrimination regarding the genus Juglans L. is greater than 90%. The reported DNA barcodes are recommended for the correct identification and genetic evaluation of Juglans taxa and its population. Full article
(This article belongs to the Special Issue Bioinformatics of Plant)
Show Figures

Figure 1

18 pages, 2888 KiB  
Article
Genetic Diversity of Whiteflies Colonizing Crops and Their Associated Endosymbionts in Three Agroecological Zones of Cameroon
by Lanvin R. K. Kepngop, Everlyne N. Wosula, Massoud Amour, Pierre G. T. Ghomsi, Louise N. Wakam, Germain Kansci and James P. Legg
Insects 2024, 15(9), 657; https://doi.org/10.3390/insects15090657 - 30 Aug 2024
Cited by 1 | Viewed by 1615
Abstract
Bemisia tabaci (Gennadius) is as a major pest of vegetable crops in Cameroon. These sap-sucking insects are the main vector of many viruses infecting plants, and several cryptic species have developed resistance against insecticides. Nevertheless, there is very little information about whitefly species [...] Read more.
Bemisia tabaci (Gennadius) is as a major pest of vegetable crops in Cameroon. These sap-sucking insects are the main vector of many viruses infecting plants, and several cryptic species have developed resistance against insecticides. Nevertheless, there is very little information about whitefly species on vegetable crops and the endosymbionts that infect them in Cameroon. Here, we investigated the genetic diversity of whiteflies and their frequency of infection by endosymbionts in Cameroon. Ninety-two whitefly samples were collected and characterized using mitochondrial cytochrome oxidase I (mtCOI) markers and Kompetitive Allele Specific PCR (KASP). The analysis of mtCOI sequences of whiteflies indicated the presence of six cryptic species (mitotypes) of Bemisia tabaci, and two distinct clades of Bemisia afer and Trialeurodes vaporariorum. Bemisia tabaci mitotypes identified included: MED on tomato, pepper, okra, and melon; and SSA1-SG1, SSA1-SG2, SSA1-SG5, SSA3, and SSA4 on cassava. The MED mitotype predominated in all regions on the solanaceous crops, suggesting that MED is probably the main phytovirus vector in Cameroonian vegetable cropping systems. The more diverse cassava-colonizing B. tabaci were split into three haplogroups (SNP-based grouping) including SSA-WA, SSA4, and SSA-ECA using KASP genotyping. This is the first time that SSA-ECA has been reported in Cameroon. This haplogroup is predominant in regions currently affected by the severe cassava mosaic virus disease (CMD) and cassava brown streak virus disease (CBSD) pandemics. Three endosymbionts including Arsenophonus, Rickettsia, and Wolbachia were present in female whiteflies tested in this study with varying frequency. Arsenophonus, which has been shown to influence the adaptability of whiteflies, was more frequent in the MED mitotype (75%). Cardinium and Hamiltonella were absent in all whitefly samples. These findings add to the knowledge on the diversity of whiteflies and their associated endosymbionts, which, when combined, influence virus epidemics and responses to whitefly control measures, especially insecticides. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

14 pages, 1469 KiB  
Article
Shiga Toxin-Producing Escherichia coli Strains from Romania: A Whole Genome-Based Description
by Codruța-Romanița Usein, Mihaela Oprea, Sorin Dinu, Laura-Ioana Popa, Daniela Cristea, Cornelia-Mădălina Militaru, Andreea Ghiță, Mariana Costin, Ionela-Loredana Popa, Anca Croitoru, Cristina Bologa and Lavinia-Cipriana Rusu
Microorganisms 2024, 12(7), 1469; https://doi.org/10.3390/microorganisms12071469 - 19 Jul 2024
Cited by 1 | Viewed by 1408
Abstract
The zoonotic Shiga toxin-producing Escherichia coli (STEC) group is unanimously regarded as exceptionally hazardous for humans. This study aimed to provide a genomic perspective on the STEC recovered sporadically from humans and have a foundation of internationally comparable data. Fifty clinical STEC isolates, [...] Read more.
The zoonotic Shiga toxin-producing Escherichia coli (STEC) group is unanimously regarded as exceptionally hazardous for humans. This study aimed to provide a genomic perspective on the STEC recovered sporadically from humans and have a foundation of internationally comparable data. Fifty clinical STEC isolates, representing the culture-confirmed infections reported by the STEC Reference Laboratory between 2016 and 2023, were subjected to whole-genome sequencing (WGS) analysis and sequences were interpreted using both commercial and public free bioinformatics tools. The WGS analysis revealed a genetically diverse population of STEC dominated by non-O157 serogroups commonly reported in human STEC infections in the European Union. The O26:H11 strains of ST21 lineage played a major role in the clinical disease resulting in hospitalisation and cases of paediatric HUS in Romania surpassing the O157:H7 strains. The latter were all clade 7 and mostly ST1804. Notably, among the Romanian isolates was a stx2a-harbouring cryptic clade I strain associated with a HUS case, stx2f- and stx2e-positive strains, and hybrid strains displaying a mixture of intestinal and extraintestinal virulence genes were found. As a clearer picture emerges of the STEC strains responsible for infections in Romania, further surveillance efforts are needed to uncover their prevalence, sources, and reservoirs. Full article
Show Figures

Figure 1

21 pages, 2382 KiB  
Article
Multi-Locus Sequence Analysis Indicates Potential Cryptic Speciation in the Chigger Mite Neoschoengastia gallinarum (Hatori, 1920) Parasitising Birds in Asia
by Praveena Rajasegaran, Sirikamon Koosakulnirand, Kim-Kee Tan, Jing Jing Khoo, Youseuf Suliman, Mohammad Saiful Mansor, Mohd K. S. Ahmad Khusaini, Sazaly AbuBakar, Kittipong Chaisiri, Serge Morand, Zubaidah Ya’cob and Benjamin L. Makepeace
Animals 2024, 14(6), 980; https://doi.org/10.3390/ani14060980 - 21 Mar 2024
Cited by 2 | Viewed by 2250
Abstract
Neoschoengastia gallinarum is widely distributed in Asia, preferentially parasitising birds, and heavy infestations have clinical impacts on domestic fowl. In common with other trombiculid mites, the genetic diversity and potential variation in host preferences or pathology induced by N. gallinarum are poorly understood. [...] Read more.
Neoschoengastia gallinarum is widely distributed in Asia, preferentially parasitising birds, and heavy infestations have clinical impacts on domestic fowl. In common with other trombiculid mites, the genetic diversity and potential variation in host preferences or pathology induced by N. gallinarum are poorly understood. This study aimed to unravel the geographical variation and population structure of N. gallinarum collected from galliform birds in Peninsular Malaysia and Thailand by inference from concatenated mitochondrial-encoded cytochrome c oxidase subunit I (COI), and nuclear-encoded internal transcribed spacer 2 (ITS2) and 18S ribosomal DNA gene sequences, including a comparison with previously published data from southeastern China. Our multi-locus sequence analysis revealed three monophyletic clades comprising (A) specimens from Peninsular Malaysia, (B) the samples from Thailand together with a minority of Chinese sequences, and (C) the majority of sequences from China. Similarly, most species delimitation approaches divided the specimens into three operational taxonomic units. Analysis of molecular variance revealed 96.41% genetic divergence between Malaysian and Thai populations, further supported by the absence of gene flow (Nm = 0.01). In conclusion, despite the two countries sharing a land border, populations of N. gallinarum from Peninsular Malaysia and Thailand appear to be genetically segregated and may represent distinct cryptic species. Full article
(This article belongs to the Special Issue The Ecology, Evolution, Systematics and Behaviour of Mites)
Show Figures

Graphical abstract

18 pages, 5018 KiB  
Article
DNA Barcoding Supports “Color-Pattern’’-Based Species of Stictochironomus from China (Diptera: Chironomidae)
by Chao Song, Guanyu Chen, Le Wang, Teng Lei and Xin Qi
Insects 2024, 15(3), 179; https://doi.org/10.3390/insects15030179 - 6 Mar 2024
Cited by 5 | Viewed by 1870
Abstract
The genus Stictochironomus (Diptera: Chironomidae) has an almost worldwide distribution, with more than 30 species. However, species delimitation and identification based on the markings on the wings and legs are controversial and uncertain. In this study, we focused on color patterns to review [...] Read more.
The genus Stictochironomus (Diptera: Chironomidae) has an almost worldwide distribution, with more than 30 species. However, species delimitation and identification based on the markings on the wings and legs are controversial and uncertain. In this study, we focused on color patterns to review the adults of the genus from China, and two new species (S. trifuscipes sp. nov. and S. quadrimaculatus sp. nov.) are described and figured. DNA barcodes can accurately separate the two new species with specific color patterns. However, heterospecific individuals form a monophyletic cluster in the phylogeny tree. For example, S. maculipennis (Meigen) and S. pictulus (Meigen), which have a lower interspecific genetic divergence, form a single clade. Sequences with the same species name but with high intraspecific distance form more than one phylogenetic clade, such as S. sticticus (Fabricius) of three clades, S. pictulus of four clades, S. akizukii (Tokunaga) and S. juncaii Qi, Shi, and Wang of two clades, might have potential cryptic species diversity. Species delimitation analysis using ASAP, PTP, and GMYC clearly delineated them as separate species. Consequently, color patterns are a good diagnostic characteristic for species delimitation in Stictochironomus. The distance-based analysis shows that a threshold of 4.5–7.7% is appropriate for species delimitation in Stictochironomus. Additionally, an updated key including color pattern variation for male adults of known Stictochironomus species from China is provided. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

28 pages, 3114 KiB  
Article
Disentangling the Anacondas: Revealing a New Green Species and Rethinking Yellows
by Jesús A. Rivas, Paola De La Quintana, Marco Mancuso, Luis F. Pacheco, Gilson A. Rivas, Sandra Mariotto, David Salazar-Valenzuela, Marcelo Tepeña Baihua, Penti Baihua, Gordon M. Burghardt, Freek J. Vonk, Emil Hernandez, Juán Elías García-Pérez, Bryan G. Fry and Sarah Corey-Rivas
Diversity 2024, 16(2), 127; https://doi.org/10.3390/d16020127 - 16 Feb 2024
Cited by 8 | Viewed by 88997
Abstract
Anacondas, genus Eunectes, are a group of aquatic snakes with a wide distribution in South America. The taxonomic status of several species has been uncertain and/or controversial. Using genetic data from four recognized anaconda species across nine countries, this study investigates the [...] Read more.
Anacondas, genus Eunectes, are a group of aquatic snakes with a wide distribution in South America. The taxonomic status of several species has been uncertain and/or controversial. Using genetic data from four recognized anaconda species across nine countries, this study investigates the phylogenetic relationships within the genus Eunectes. A key finding was the identification of two distinct clades within Eunectes murinus, revealing two species as cryptic yet genetically deeply divergent. This has led to the recognition of the Northern Green Anaconda as a separate species (Eunectes akayima sp. nov), distinct from its southern counterpart (E. murinus), the Southern Green Anaconda. Additionally, our data challenge the current understanding of Yellow Anaconda species by proposing the unification of Eunectes deschauenseei and Eunectes beniensis into a single species with Eunectes notaeus. This reclassification is based on comprehensive genetic and phylogeographic analyses, suggesting closer relationships than previously recognized and the realization that our understanding of their geographic ranges is insufficient to justify its use as a separation criterion. We also present a phylogeographic hypothesis that traces the Miocene diversification of anacondas in western South America. Beyond its academic significance, this study has vital implications for the conservation of these iconic reptile species, highlighting our lack of knowledge about the diversity of the South American fauna and the need for revised strategies to conserve the newly identified and reclassified species. Full article
(This article belongs to the Special Issue DNA Barcoding for Biodiversity Conservation and Restoration)
Show Figures

Graphical abstract

22 pages, 10020 KiB  
Article
Ecological Speciation without Morphological Differentiation? A New Cryptic Species of Diodontus Curtis (Hymenoptera, Pemphredonidae) from the Centre of Europe
by Eduardas Budrys, Svetlana Orlovskytė and Anna Budrienė
Insects 2024, 15(2), 86; https://doi.org/10.3390/insects15020086 - 26 Jan 2024
Viewed by 2459
Abstract
Upon exploring the mitotype diversity of the aphid-hunting wasp, Diodontus tristis, we revealed specimens with highly divergent mitotypes from two localities in Lithuania and nesting in clayey substrate, while the specimens with typical mitotypes were found nesting in sandy sites. The comparison [...] Read more.
Upon exploring the mitotype diversity of the aphid-hunting wasp, Diodontus tristis, we revealed specimens with highly divergent mitotypes from two localities in Lithuania and nesting in clayey substrate, while the specimens with typical mitotypes were found nesting in sandy sites. The comparison of inter- and intra-specific distances and application of delimitation algorithms supported the species status of the clay-nesting populations. Using a set of DNA markers that included complete or partial sequences of six mitochondrial genes, three markers of ribosomal operon, two homeobox genes, and four other nuclear genes, we clarified the phylogenetic relationships of the new cryptic species. The endosymbiotic bacteria infestation was checked, considering the option that the divergent populations may represent clades isolated by Wolbachia infection; however, it did not demonstrate any specificity. We found only subtle morphological differences in the new clay-nesting species, D. argillicola sp. nov.; the discriminant analysis of morphometric measurements did not reliably segregate it as well. Thus, we provide the molecular characters of the cryptic species, which allow confident identification, its phylogenetic position within the genus, and an updated identification key for the D. tristis species group. Full article
(This article belongs to the Collection Hymenoptera: Biology, Taxonomy and Integrated Management)
Show Figures

Figure 1

12 pages, 1984 KiB  
Article
Reference-Based Restriction-Site-Associated DNA Sequencing Data Are Useful for Species Delineation in a Recently Diverged Asexually Reproducing Species Complex (Parmeliaceae, Ascomycota)
by Alejandrina Barcenas-Peña, Pradeep K. Divakar, Ana Crespo, Jano Nuñez-Zapata, H. Thorsten Lumbsch and Felix Grewe
J. Fungi 2023, 9(12), 1180; https://doi.org/10.3390/jof9121180 - 9 Dec 2023
Cited by 3 | Viewed by 2023
Abstract
Cryptic species are common in lichen-forming fungi and have been reported from different genera in the most speciose family, Parmeliaceae. Herein, we address species delimitation in a group of mainly asexually reproducing Parmelina species. The morphologically distinct P. pastillifera was previously found nested [...] Read more.
Cryptic species are common in lichen-forming fungi and have been reported from different genera in the most speciose family, Parmeliaceae. Herein, we address species delimitation in a group of mainly asexually reproducing Parmelina species. The morphologically distinct P. pastillifera was previously found nested within a morphologically circumscribed P. tiliacea based on several loci. However, these studies demonstrated a relatively high genetic diversity within P. tiliacea sensu lato. Here, we revisit the species delimitation in the group by analyzing single-nucleotide polymorphisms (SNPs) through genome-wide assessment using Restriction-Site-Associated sequencing and population genomic methods. Our data support previous studies and provide further insight into the phylogenetic relationships of the four clades found within the complex. Based on the evidence suggesting a lack of gene flow among the clades, we recognize the four clades as distinct species, P. pastillifera and P. tiliacea sensu stricto, and two new species, P. clandestina sp. nov. and P. mediterranea sp. nov. Full article
(This article belongs to the Special Issue Lichen Forming Fungi—in Honour of Prof. Ana Rosa Burgaz)
Show Figures

Figure 1

Back to TopTop