Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (413)

Search Parameters:
Keywords = cross-neutralizing antibodies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2225 KiB  
Article
The Persistence of Cross-Reactive Immunity to Influenza B/Yamagata Neuraminidase Despite the Disappearance of the Lineage: Structural and Serological Evidence
by Yulia Desheva, Polina Kudar, Maria Sergeeva, Pei-Fong Wong, Tamara Shvedova, Ekaterina Bazhenova, Evelyna Krylova, Maria Kurpiaeva, Ekaterina Romanovskaya-Romanko, Vera Krivitskaya, Kira Kudria, Irina Isakova-Sivak and Marina Stukova
Int. J. Mol. Sci. 2025, 26(15), 7476; https://doi.org/10.3390/ijms26157476 - 2 Aug 2025
Viewed by 224
Abstract
Influenza B viruses, divided into B/Victoria and B/Yamagata lineages, have not had B/Yamagata isolates after 2020. A study evaluated immunity to influenza B surface antigens hemagglutinin (HA) and neuraminidase (NA) in 138 patient sera from 2023 and 23 pairs of sera from 2018 [...] Read more.
Influenza B viruses, divided into B/Victoria and B/Yamagata lineages, have not had B/Yamagata isolates after 2020. A study evaluated immunity to influenza B surface antigens hemagglutinin (HA) and neuraminidase (NA) in 138 patient sera from 2023 and 23 pairs of sera from 2018 to 2019 vaccine recipients. The phylogenetic tree of the influenza B virus, based on HA and NA genes, shows that the Yamagata lineage evolves gradually, while the Victoria lineage exhibits rapid mutations with short branches. In 2023, mean levels of antibodies to HA and NA of B/Yamagata virus were higher than to B/Victoria, despite no cases of B/Yamagata lineage isolation after 2020. The titers of antibodies to NA of B/Yamagata statistically significantly differed among individuals born before and after 1988. Among patients examined in 2018–2019, neuraminidase-inhibiting (NI) antibody titers before vaccination were higher to B/Yamagata than to B/Victoria, and NI antibodies to B/Victoria and B/Yamagata positively correlated with neutralizing antibodies to B/Victoria virus before and after vaccination. Immunity to B/Yamagata virus was stronger in 2023, despite no isolation since 2020, probably due to the presence of cross-reactive antibodies from B/Victoria infections or vaccinations. Antibodies to NA of B/Victoria and B/Yamagata in 2023 correlated significantly in patients born before 1988, potentially supporting the concept of ‘antigenic sin’ phenomenon for influenza B viruses. The fact that NI antibody titers to B/Victoria and B/Yamagata correlated with neutralizing antibody titers to B/Victoria may suggest broad cross-protection. Studying influenza B virus NA antigenic properties helps understand the evolution and antigenic competition of HA and NA. Full article
(This article belongs to the Special Issue Respiratory Virus Infection)
Show Figures

Figure 1

8 pages, 1302 KiB  
Communication
Vaccinia and Monkeypox Virus-Neutralizing Antibodies in People Living with HIV: A Serological Study in a Orthopoxvirus-Endemic, Low-Income Region in Brazil
by Thyago José Silva, Ana Gabriella Stoffella-Dutra, Victor Lacerda Gripp, Pollyana R. C. Gorgens, Iago José da Silva Domingos, Pedro Henrique Bastos e Silva, Bruna Caroline Chaves-Garcia, Erna Geessien Kroon, Etel Rocha-Vieira, Giliane de Souza Trindade and Danilo Bretas de Oliveira
Pathogens 2025, 14(8), 733; https://doi.org/10.3390/pathogens14080733 - 25 Jul 2025
Viewed by 313
Abstract
Co-infections of Orthopoxviruses (OPVs), such as vaccinia virus (VACV) and monkeypox virus (MPXV), and the human immunodeficiency virus (HIV) can be associated with severe outcomes. Serro’s dairy region, located in Minas Gerais, southeastern Brazil, is an endemic area for VACV, where zoonotic outbreaks [...] Read more.
Co-infections of Orthopoxviruses (OPVs), such as vaccinia virus (VACV) and monkeypox virus (MPXV), and the human immunodeficiency virus (HIV) can be associated with severe outcomes. Serro’s dairy region, located in Minas Gerais, southeastern Brazil, is an endemic area for VACV, where zoonotic outbreaks affect rural communities. This epidemiological context is especially relevant for at-risk populations, such as people living with HIV (PLHIV). This study aimed to assess the presence of neutralizing antibodies (NAbs) against OPV in PLHIV in this endemic setting. Serum samples were collected from 177 PLHIV in treatment at the specialized service between December 2021 and August 2022. VACV and MPXV NAbs were measured using the plaque reduction neutralization test (PRNT) and VACV-infected cells. The overall occurrence of OPV NAbs was 27.7%. NAbs were higher in individuals born before 1980 (53.3%) than those born after 1980 (1.1%). Among anti-VACV-seropositive individuals, 40.8% also had MPXV NAbs, suggesting cross-immunity. These findings indicate the circulation of VACV in PLHIV and highlight the increased susceptibility to OPV infections among individuals born after the cessation of smallpox vaccination. The results reinforce the importance of continued surveillance of OPV, especially in endemic regions and vulnerable populations. Full article
(This article belongs to the Section Emerging Pathogens)
Show Figures

Figure 1

12 pages, 1316 KiB  
Article
Retinal Epithelial Neutralization Assay Optimizes AAV Serotype Selection for Ocular Gene Therapy
by Yao Li, Yujia Chen, Nan Huo, Zuyuan Jia, He Huang, Zhenghao Zhao, Shipo Wu and Lihua Hou
Viruses 2025, 17(7), 988; https://doi.org/10.3390/v17070988 - 15 Jul 2025
Viewed by 385
Abstract
Adeno-associated virus (AAV) vectors face a critical translational challenge in ocular gene therapy due to pre-existing neutralizing antibodies (NAbs) whose seroprevalence limits patient eligibility. Standard NAb detection using non-ocular cell models (Human Embryonic Kidney 293T) may inadequately predict retinal transduction inhibition due to [...] Read more.
Adeno-associated virus (AAV) vectors face a critical translational challenge in ocular gene therapy due to pre-existing neutralizing antibodies (NAbs) whose seroprevalence limits patient eligibility. Standard NAb detection using non-ocular cell models (Human Embryonic Kidney 293T) may inadequately predict retinal transduction inhibition due to cell type-related variations in receptor usage and immunogenicity. This study established parallel NAb detection platforms utilizing human retinal pigment epithelial (ARPE-19) cells and standard 293T cells to systematically evaluate clinical serum samples against ophthalmologically relevant AAV serotypes (2, 5, 8, 9) via luciferase reporter-based transduction inhibition assays. Comparative analysis demonstrated ARPE-19 exhibited 42–48% higher NAb titers against AAV5/9 compared to 293T cells, with distinct serotype-biased neutralization hierarchies observed between cellular models. Furthermore, female-derived sera exhibited significantly elevated NAbs against particular serotypes in the ARPE-19 system. Critically, inter-serotype cross-neutralization correlation patterns differed substantially between cellular platforms. These findings demonstrate that physiologically relevant retinal cellular models provide essential immunological profiling data, revealing NAb characteristics obscured in standard assays. Consequently, employing retinal cell-based platforms is crucial for optimizing AAV serotype selection, patient stratification, and predicting clinical outcomes in ocular gene therapy. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

24 pages, 3435 KiB  
Article
Loss of IgA and IgM Compromises Broad Neutralization of Structurally Divergent SARS-CoV-2 Variants
by Yalcin Pisil, Tomoyuki Miura, Kiyoki Ito and Yoshihiro Watanabe
Antibodies 2025, 14(3), 59; https://doi.org/10.3390/antib14030059 - 12 Jul 2025
Viewed by 866
Abstract
Objectives: The durability and breadth of neutralizing antibodies following SARS-CoV-2 mRNA vaccination remain incompletely understood. This study aimed to investigate how longitudinal changes in antibody isotype composition impact neutralization against structurally diverse SARS-CoV-2 variants. Methods: After screening a broader cohort of mRNA-vaccinated sera, [...] Read more.
Objectives: The durability and breadth of neutralizing antibodies following SARS-CoV-2 mRNA vaccination remain incompletely understood. This study aimed to investigate how longitudinal changes in antibody isotype composition impact neutralization against structurally diverse SARS-CoV-2 variants. Methods: After screening a broader cohort of mRNA-vaccinated sera, time-matched samples collected one month (1 mpv) and three months post-vaccination (3 mpv) were selected for detailed analysis. Neutralization assays against live virus variants, enzyme-linked immunosorbent assays (ELISA), and immunogold electron microscopy were performed to assess antibody titers, isotype levels, and virion morphology. Results: Neutralization titers declined markedly at 3 mpv, particularly against immune-evasive variants. Notably, the Lambda variant showed disproportionately high sensitivity to early-phase sera despite its divergence from the vaccine strain. Antibody isotyping showed that IgA and IgM decreased over time, while IgG levels were relatively more sustained. Electron microscopy revealed broader virion size heterogeneity in Lambda (50–200 nm) compared to Wuhan (80–120 nm), potentially enhancing multivalent antibody engagement. Consistently, ELISA under reduced spike density conditions showed that IgA and IgM retained stronger binding than IgG. Conclusions: These findings indicate that the decline of IgA and IgM compromises neutralization breadth, especially against structurally divergent variants such as Lambda. Sustaining dynamic multivalent isotype responses that adapt to diverse spike morphologies may be critical for broad cross-variant immunity. Full article
Show Figures

Graphical abstract

20 pages, 6090 KiB  
Review
Rotavirus Reverse Genetics Systems and Oral Vaccine Delivery Vectors for Mucosal Vaccination
by Jun Wang, Songkang Qin, Kuanhao Li, Xin Yin, Dongbo Sun and Jitao Chang
Microorganisms 2025, 13(7), 1579; https://doi.org/10.3390/microorganisms13071579 - 4 Jul 2025
Viewed by 364
Abstract
Mucosal immunization represents a promising strategy for preventing enteric infections. Rotavirus (RV), a leading gastrointestinal pathogen distinguished by its remarkable stability and segmented double-stranded RNA genome, has been engineered into a versatile oral vaccine vector through advanced reverse genetics systems. The clinical efficacy [...] Read more.
Mucosal immunization represents a promising strategy for preventing enteric infections. Rotavirus (RV), a leading gastrointestinal pathogen distinguished by its remarkable stability and segmented double-stranded RNA genome, has been engineered into a versatile oral vaccine vector through advanced reverse genetics systems. The clinical efficacy of live-attenuated RV vaccines highlights their unique capacity to concurrently induce mucosal IgA responses and systemic neutralizing antibodies, positioning them as a multiple action vector for multiple immune protection. In this review, we summarize the RV colonization of the intestine and stimulation of intestinal immunity, as well as recent advancements in RV reverse genetics, and focus on their application in the rational design of a multivalent mucosal vaccine vector targeting enteric pathogens considering the advantages and challenges of RV as a vector. We further propose molecular strategies to overcome genetic instability in recombinant RV vectors, including the codon optimization of heterologous inserts. These insights provide a theoretical foundation for developing next-generation mucosal immunization platforms with enhanced safety, stability, and cross-protective efficacy. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

11 pages, 2696 KiB  
Article
The Baculovirus Expression System Expresses Chimeric RHDV VLPs as Bivalent Vaccine Candidates for Classic RHDV (GI.1) and RHDV2 (GI.2)
by Yan Wang, Yiyang Fan, Ruixiang Bi, Yapeng Zhao, Wanning Gao, Derong Zhang and Jialin Bai
Vaccines 2025, 13(7), 695; https://doi.org/10.3390/vaccines13070695 - 27 Jun 2025
Viewed by 332
Abstract
Background: Rabbit hemorrhagic disease (RHD) is an acute, hemorrhagic and highly lethal infectious disease caused by rabbit hemorrhagic disease virus (RHDV), which causes huge economic losses to the rabbit breeding industry. Moreover, there is limited cross-protection between the two different serotypes of classic [...] Read more.
Background: Rabbit hemorrhagic disease (RHD) is an acute, hemorrhagic and highly lethal infectious disease caused by rabbit hemorrhagic disease virus (RHDV), which causes huge economic losses to the rabbit breeding industry. Moreover, there is limited cross-protection between the two different serotypes of classic RHDV (GI.1) and RHDV2 (GI.2). The shortcomings of traditional inactivated vaccines have led to the development of novel subunit vaccines that can protect against both strains, and the VP60 capsid protein is the ideal antigenic protein. This study focused on developing a bivalent RHDV vaccine that can prevent infection with both GI.1 and GI.2 strains. Methodology: Baculovirus vectors containing classic RHDV and RHDV2 VP60 were co-transfected with linearized baculovirus into sf9 cells and transferred to baculovirus via homologous recombination of the VP60 gene. Infected sf9 cells were lysed, and after purification via Ni-NTA chromatography, VLPs were observed using transmission electron microscopy (TEM). In order to evaluate the immunogenicity of the chimeric RHDV VLP vaccine in rabbits, the RHDV VP60-specific antibody, IL-4, IFN-γ and neutralizing antibody titers were analyzed in serum using ELISA and HI. Results: The recombinant baculovirus system successfully expressed chimeric RHDV VLPs with a diameter of 32–40 nm. After immunization, it could produce specific antibodies, IL-4 and IFN-γ. Following the second immunization, neutralizing antibodies, determined using hemagglutination inhibition (HI) assays, were elicited. Conclusions: These data show that the chimeric RHDV VLP bivalent vaccine for immunized New Zealand rabbits can induce humoral immunity and cellular immunity in vivo, and the immunization effect of the high-dose group is similar to that of the current commercial vaccine. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

16 pages, 1434 KiB  
Article
Exploring Immune Responses to SARS-CoV-2: Insights from Sinopharm (BBIBP-CorV)-Vaccinated Individuals in a Group of Venezuelan Admixed Volunteers
by Alexis Hipólito García, Soriuska José Mayora, Christian Medina, Inírida Amada Belisario, Wendy Yaqueline Martínez, Francis Isamarg Crespo and Juan Bautista De Sanctis
Biomedicines 2025, 13(7), 1550; https://doi.org/10.3390/biomedicines13071550 - 25 Jun 2025
Viewed by 473
Abstract
Background: Vaccines are crucial for preventing infectious diseases, as both humoral and cellular immune responses play a vital role in combating viral infections. The cellular immune response is crucial against SARS-CoV-2, particularly with the emergence of new variants that evade antibody neutralization. [...] Read more.
Background: Vaccines are crucial for preventing infectious diseases, as both humoral and cellular immune responses play a vital role in combating viral infections. The cellular immune response is crucial against SARS-CoV-2, particularly with the emergence of new variants that evade antibody neutralization. This study focuses on the immune memory response in individuals who have been vaccinated with the Sinopharm BBIBP-CorV vaccine. Methods: A cross-sectional study evaluated lymphocyte subpopulations using flow cytometry in 52 vaccinated adults (30 females, 22 males) who had been exposed to SARS-CoV-2 or diagnosed with COVID-19. Conducted from February to June 2023 during the Omicron variant’s circulation, this study assessed antigens—CD154 in CD4+ T cells, CD107 and CD314 in CD8+ T cells, CD314 in NK cells, and CD86 in CD19 B cells—after stimulation with viral peptides and an inactivated virus. Granzyme B and IFN-γ were quantified using ELISA. Results: The memory response, regardless of gender, age, or Body Mass Index (BMI), was mild but significant upon exposure to a viral antigen or inactivated virus. An increase in the secretion of IFN-γ and granzyme B was also observed. Conclusions: It is suggested that the vaccine was able to generate a mild long-term memory against the SARS-CoV-2 virus in vaccinated adult individuals, independent of gender and BMI. Full article
Show Figures

Figure 1

19 pages, 4197 KiB  
Article
Re-Emergence of Usutu Virus and Spreading of West Nile Virus Neuroinvasive Infections During the 2024 Transmission Season in Croatia
by Tatjana Vilibić-Čavlek, Ljubo Barbić, Ana Klobučar, Marko Vucelja, Maja Bogdanić, Dario Sabadi, Marko Kutleša, Branimir Gjurašin, Vladimir Stevanović, Marcela Curman Posavec, Linda Bjedov, Marko Boljfetić, Tonka Jozić-Novinc, Robert Škara, Morana Tomljenović, Željka Hruškar, Mahmoud Al-Mufleh, Tanja Potočnik-Hunjadi, Ivana Rončević and Vladimir Savić
Viruses 2025, 17(6), 846; https://doi.org/10.3390/v17060846 - 13 Jun 2025
Viewed by 1390
Abstract
Neuroinvasive arboviruses such as tick-borne encephalitis virus (TBEV), West Nile virus (WNV), Usutu virus (USUV), and Toscana virus (TOSV) have (re-)emerged with increasing incidence and geographic range. We analyzed the epidemiology of arboviral infections in Croatia during the 2024 transmission season. A total [...] Read more.
Neuroinvasive arboviruses such as tick-borne encephalitis virus (TBEV), West Nile virus (WNV), Usutu virus (USUV), and Toscana virus (TOSV) have (re-)emerged with increasing incidence and geographic range. We analyzed the epidemiology of arboviral infections in Croatia during the 2024 transmission season. A total of 154 patients with neuroinvasive diseases (NID), 1596 horses, 69 dead birds, and 7726 mosquitoes were tested. Viral RNA was detected using RT-qPCR. IgM/IgG-specific antibodies were detected using commercial ELISA or IFA, with confirmation of cross-reactive samples by virus neutralization test. RT-qPCR-positive samples were Sanger sequenced. Arboviral etiology was confirmed in 33/21.42% of patients with NID. WNV was most frequently detected (17/11.03%), followed by TBEV (10/6.49%), USUV (5/3.24%), and TOSV (1/0.64%). WNV infections were reported in regions previously known as endemic, while in one continental county, WNV was recorded for the first time. USUV infections re-emerged after a six-year absence. In addition to human cases, acute WNV infections were recorded in 11/395 (2.78%) of horses and two dead crows. WNV IgG seropositivity was detected in 276/1168 (23.63%) and TBEV IgG seropositivity in 68/428 (15.88%) horses. None of the tested mosquito pools were positive for WNV and USUV RNA. Phylogenetic analysis showed the circulation of WNV lineage 2 and Usutu Europe 2 lineage. Climate conditions in 2024 in Croatia were classified as extremely warm, which could, at least in part, impact the quite intense arboviral season. The spreading of flaviviruses in Croatia highlights the need for continuous surveillance in humans, animals, and vectors (“One Health”). Full article
(This article belongs to the Special Issue Arboviral Lifecycle 2025)
Show Figures

Figure 1

22 pages, 5356 KiB  
Article
Mucosal and Serum Neutralization Immune Responses Elicited by COVID-19 mRNA Vaccination in Vaccinated and Breakthrough-Infection Individuals: A Longitudinal Study from Louisville Cohort
by Lalit Batra, Divyasha Saxena, Triparna Poddar, Maryam Zahin, Alok Amraotkar, Megan M. Bezold, Kathleen T. Kitterman, Kailyn A. Deitz, Amanda B. Lasnik, Rachel J. Keith, Aruni Bhatnagar, Maiying Kong, Jon D. Gabbard, William E. Severson and Kenneth E. Palmer
Vaccines 2025, 13(6), 559; https://doi.org/10.3390/vaccines13060559 - 24 May 2025
Viewed by 858
Abstract
Background/Objectives: The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2), has resulted in 777 million cases worldwide. Various vaccines have been approved to control the spread of COVID-19, with mRNA vaccines (Pfizer and Moderna) being widely used in the [...] Read more.
Background/Objectives: The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2), has resulted in 777 million cases worldwide. Various vaccines have been approved to control the spread of COVID-19, with mRNA vaccines (Pfizer and Moderna) being widely used in the USA. We conducted a prospective longitudinal study to analyze the immune response elicited by two/three and four doses of monovalent mRNA vaccines in both vaccinated individuals and those who experienced breakthrough infections. Participants were stratified into different age groups: 18–40, 41–60, and over 60 years. Methods: We assessed cross-variant neutralization responses in two cohorts—Cohort I: n = 167 (serum), Cohort II: n = 92 (serum and nasal swab) samples—using infectious virus microneutralization assay (MN) and antibody (IgG or IgA) binding ELISA titers to the spike protein receptor binding domain (RBD). Samples were collected from the Louisville Metro–Jefferson County Co-Immunity Project, a federally funded, population-based study for the surveillance of SARS-CoV-2 in Jefferson County, Kentucky during 2020–2022, involving both health care workers and a local community. Results: Individuals who received two doses of the mRNA vaccine exhibited reduced neutralization against Beta, Delta, and Omicron BA.1 variants compared to wildtype Wuhan, with further decline observed six months post-booster vaccination. However, individuals who experienced natural COVID-19 infection (breakthrough) after receiving two vaccine doses showed enhanced neutralization and antibody responses, particularly against Omicron BA.1. Following the 3rd dose, antibodies and neutralization responses were restored. Among triple-vaccinated individuals, reduced neutralization was observed against Omicron variants BA.1, BA.5, and BA.2 compared to Wuhan. Neutralization responses were better against BA.2 variant compared to BA.1 and BA.5. However, individuals who received three doses of vaccine and experienced a breakthrough infection (n = 45) elicited significantly higher neutralizing antibodies responses against all Omicron subvariants compared to vaccinated individuals. Interestingly, nasal swab samples collected from volunteers with breakthrough infection showed significantly elevated spike-reactive mucosal IgA antibodies and enhanced cross neutralization against BA.1, BA.2, and BA.5 compared to individuals who received only three vaccine doses. Conclusions: mRNA vaccination elicits a strong systemic immune response by boosting serum neutralizing antibodies (NAb), although this protection wanes over time, allowing new variants to escape neutralization. Breakthrough individuals have extra enrichment in nasal NAb offering protection against emerging variants. This longitudinal immune profiling underscores the strengthening of pandemic preparedness and supports the development of durable mucosal vaccines against respiratory infectious disease. Full article
Show Figures

Figure 1

11 pages, 3438 KiB  
Article
Emergence of a Recombinant Bovine Enterovirus in China: Insights from Phylogenetic and Temporal Analysis
by Guidan Feng, Taisheng Kang, Pan Tang, Caihua Xie, Ruoqian Yan and Weidong Qian
Animals 2025, 15(10), 1457; https://doi.org/10.3390/ani15101457 - 18 May 2025
Cited by 1 | Viewed by 409
Abstract
Bovine enteroviruses (BEVs) are emerging pathogens with poorly understood evolutionary dynamics and zoonotic potential. Here, we report the discovery of a novel recombinant BEV strain, HeN-2022, isolated from cattle in China. Genomic analysis revealed that HeN-2022 is a primary hybrid of BEV-E1 (VG527, [...] Read more.
Bovine enteroviruses (BEVs) are emerging pathogens with poorly understood evolutionary dynamics and zoonotic potential. Here, we report the discovery of a novel recombinant BEV strain, HeN-2022, isolated from cattle in China. Genomic analysis revealed that HeN-2022 is a primary hybrid of BEV-E1 (VG527, Ireland) and BEV-E4 (GX1901, China), with recombination breakpoints in the VP1 gene and 5′ UTR. Divergence dating traced its origin to 1991, predating closely related strains. Experimental infection in sheep demonstrated asymptomatic viral shedding (peak at 5 dpi) and robust neutralizing antibody responses, highlighting the potential cross-species adaptability. These findings underscore recombination as a potential key driver of BEV evolution and emphasize the need for global surveillance to address emerging livestock pathogens. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

18 pages, 4923 KiB  
Article
A Computationally Designed Prefusion Stabilized Human Metapneumovirus Fusion Protein Vaccine Antigen Elicited a Potent Neutralization Response
by Michael Kishko, Antonia Stuebler, Sukanya Sasmal, Yvonne Chan, Dean Huang, Christopher Reyes, Jasmine Lin, Owen Price, Ana Kume, Katie Zong, Christine Bricault, Judith Alamares-Sapuay and Linong Zhang
Vaccines 2025, 13(5), 523; https://doi.org/10.3390/vaccines13050523 - 15 May 2025
Viewed by 1266
Abstract
Background/Objectives: Human metapneumovirus (hMPV) is a leading cause of respiratory infections in the elderly, with high morbidity and mortality and with no vaccines or specific therapies available. The primary protective antigen of hMPV is the fusion protein, and its prefusion conformation (pre-F) is [...] Read more.
Background/Objectives: Human metapneumovirus (hMPV) is a leading cause of respiratory infections in the elderly, with high morbidity and mortality and with no vaccines or specific therapies available. The primary protective antigen of hMPV is the fusion protein, and its prefusion conformation (pre-F) is considered the most promising target for vaccine development. Methods: Utilizing computational design strategies focused on intraprotomer interface stabilization, we designed hMPV pre-F recombinant subunit vaccine candidates based on the most prevalent A2 subtype and characterized them in vitro and in vivo, benchmarking to the prototypical hMPV pre-F stabilized by an introduction of a proline at site 185. Results: The top candidate (N46V_T160F) yielded 14.4 mg/L with a melting temperature of 79.3 °C as compared to 5.7 mg/L and 70.4 °C for the benchmark. By employing monoclonal antibody binding to all six antigenic sites of hMPV pre-F, we confirmed this construct retained all pre-F specific antigenic sites and that the key sites Ø and V were stable at 4 °C for up to 6 months. When immunogenicity of N46V_T160F was evaluated in mice, it induced higher binding and neutralizing antibody titers than the benchmark, which stemmed in part from increased levels of site Ø and site II targeting Abs. Further, this A2 based construct induced cross-neutralizing Abs against all four hMPV subtypes. Lastly, our construct exhibited similar immunogenicity as the recently published next-generation hMPV pre-F constructs, DS-CavEs2 and v3B_Δ12_D454C-V458C. Conclusions: N46V_T160F is a promising hMPV vaccine candidate paving the way for further development and optimization. Full article
Show Figures

Figure 1

7 pages, 861 KiB  
Communication
Construction and Evaluation of a HCoV-OC43 S2 Subunit Vaccine Fused with Nasal Immuno-Inducible Sequence Against Coronavirus Infection
by Hiraku Sasaki, Hiroki Ishikawa, Ayako Shigenaga, Yoshio Suzuki and Masayuki Iyoda
Curr. Issues Mol. Biol. 2025, 47(5), 355; https://doi.org/10.3390/cimb47050355 - 13 May 2025
Viewed by 497
Abstract
A partial sequence of an human coronavirus (HCoV)-OC43 S2 subunit that cross-reacts with the S2 subunit of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was fused with a nasal immuno-inducible sequence (NAIS), and the resulting complex was used for intranasal immunization of rabbits. [...] Read more.
A partial sequence of an human coronavirus (HCoV)-OC43 S2 subunit that cross-reacts with the S2 subunit of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was fused with a nasal immuno-inducible sequence (NAIS), and the resulting complex was used for intranasal immunization of rabbits. Crude serum from rabbits immunized with three doses showed an IgG titer > 1000 against the S2 subunits of HCoV-OC43 and SARS-CoV-2 and inhibited OC43 viral replication as a neutralizing antibody in vitro. Full article
Show Figures

Figure 1

21 pages, 6961 KiB  
Article
Isolation and Characterization of E8 Monoclonal Antibodies from Donors Vaccinated with Recombinant Vaccinia Vaccine with Efficient Neutralization of Authentic Monkeypox Virus
by Yutao Shi, Shuhui Wang, Yanling Hao, Xiuli Shen, Jun Zhang, Shuo Wang, Junjie Zhang, Yuyu Fu, Ran Chen, Dong Wang, Yiming Shao, Dan Li and Ying Liu
Vaccines 2025, 13(5), 471; https://doi.org/10.3390/vaccines13050471 - 27 Apr 2025
Viewed by 689
Abstract
Background/Objectives: Monkeypox, twice declared a public health emergency of international concern by the WHO, currently lacks approved targeted therapeutics. This study focused on the development of monkeypox virus (MPXV) E8-specific human monoclonal antibodies (mAbs) derived from recipients of the recombinant vaccinia vaccine (rTV), [...] Read more.
Background/Objectives: Monkeypox, twice declared a public health emergency of international concern by the WHO, currently lacks approved targeted therapeutics. This study focused on the development of monkeypox virus (MPXV) E8-specific human monoclonal antibodies (mAbs) derived from recipients of the recombinant vaccinia vaccine (rTV), with subsequent evaluation of their cross-neutralizing activity against orthopoxviruses, including the vaccinia virus (VACV) and MPXV. Methods: Three mAbs (C5, C9, and F8) were isolated from rTV vaccinees. Structural mapping characterized their binding domains on the MPXV E8 and VACV D8 proteins. Neutralization potency was assessed against the VACV TianTan strain and MPXV clade IIb. A combo was further evaluated in a VACV-infected mice model for clinical recovery and viral load reduction. Complement-dependent enhancement mechanisms were also investigated in vitro. Results: C9 targets the virion surface region of E8 and both the virion surface region and intravirion region of D8, showing cross-neutralization activity against the MPXV (IC50 = 3.0 μg/mL) and VACV (IC50 = 51.1 ng/mL) in vitro. All three antibodies demonstrated potent neutralization against the VACV in vitro: C5 (IC50 = 3.9 ng/mL), C9 (IC50 = 51.1 ng/mL), and F8 (IC50 = 101.1 ng/mL). Notably, complement enhanced neutralization against the VACV by >50-fold, although no enhancement was observed for the MPXV. In vivo administration accelerated clinical recovery by 24 h and achieved significant viral clearance (0.9-log reduction). Conclusions: E8-targeting mAbs exhibited broad-spectrum neutralization against orthopoxviruses, demonstrating therapeutic potential against both historical (VACV) and emerging (MPXV) pathogens. However, MPXV’s resistance to complement-dependent enhancement highlights the necessity for pathogen-adapted optimization. These findings establish E8 as a critical conserved target for pan-poxvirus VACV and MPXV countermeasure development. Full article
Show Figures

Figure 1

22 pages, 723 KiB  
Review
From Antibodies to Immunity: Assessing Correlates of Flavivirus Protection and Cross-Reactivity
by Hannah E. Flores, Eduar Fernando Pinzon Burgos, Sigrid Camacho Ortega, Alonso Heredia and Joel V. Chua
Vaccines 2025, 13(5), 449; https://doi.org/10.3390/vaccines13050449 - 24 Apr 2025
Viewed by 1350
Abstract
Flaviviruses are arthropod-borne RNA viruses that can cause a wide range of human diseases, from mild symptoms to severe illness with multiorgan failure and death. Effective prevention of these diseases relies on identifying reliable vaccine targets, typically measured by correlates of protection (CoPs), [...] Read more.
Flaviviruses are arthropod-borne RNA viruses that can cause a wide range of human diseases, from mild symptoms to severe illness with multiorgan failure and death. Effective prevention of these diseases relies on identifying reliable vaccine targets, typically measured by correlates of protection (CoPs), which help indicate host immunity after vaccination. Current vaccines primarily focus on neutralizing antibodies (nAbs) against the viral envelope E protein, though emerging evidence suggests other potential targets may also be effective in disease prevention. Additionally, there is growing evidence of cross-protection between different flaviviruses when immunity to one virus is achieved, although this can be limited by antibody-dependent enhancement. This review examines the current understanding of flavivirus immunity, CoPs, and the potential for cross-protection in the context of existing vaccine strategies. Full article
Show Figures

Figure 1

11 pages, 1278 KiB  
Article
Vibration Technology Makes It Possible to Obtain Standardized Biological Preparations: Vibrational Iterations Based on Cultured Cells
by Elena Don, Sabina Yaroshenko, Svetlana Zakharova, Evgenia Nechaeva, Alexander Kovalchuk, Anastasia Petrova, Sergey Tarasov and Oleg Epstein
Biophysica 2025, 5(2), 14; https://doi.org/10.3390/biophysica5020014 - 18 Apr 2025
Cited by 2 | Viewed by 478
Abstract
Cell-based therapy is a promising direction for the treatment of various diseases. However, it is associated with several problems, primarily related to reproducibility and standardization. In this context, the development of new methods for the production of cell-based preparations is of particular relevance. [...] Read more.
Cell-based therapy is a promising direction for the treatment of various diseases. However, it is associated with several problems, primarily related to reproducibility and standardization. In this context, the development of new methods for the production of cell-based preparations is of particular relevance. Recently, a novel technology named ‘crossing’ has been developed. It comprises the multi-stage vibrational processing of two closely spaced test tubes containing the initial substance and a neutral carrier (water or lactose). As a result, the neutral carrier acquires some properties of the initial substance, and artificial products, vibrational iterations, are obtained. Some vibrational iterations are also capable of exerting a modifying effect on the initial substance (or its target in the body), changing its physico-chemical/biological properties. Earlier, we demonstrated the possibility of obtaining vibrational iterations from biological molecules (antibodies). In this study, we evaluated the biological effects of vibrational iterations obtained by the crossing technology using cells grown in culture. This work shows that vibrational iterations obtained from CHO-S cell culture affect the ability of CHO-S cells to utilize glucose in the presence of insulin. The data demonstrate the prospect of developing fundamentally new biological drugs based on vibrational iterations, including for the treatment of diabetes mellitus. Full article
Show Figures

Graphical abstract

Back to TopTop